Problem 1 in Section 7.1. Use the definition of \mathcal{L} to compute $\mathcal{L}(f(t))$ for $f(t)=t$.

Solution. Recall that $\mathcal{L}(f(t))=\int_{0}^{\infty} e^{-s t} f(t) d t$. We must compute

$$
\mathcal{L}(t)=\int_{0}^{\infty} e^{-s t} t d t
$$

We use integration by parts:

$$
\int u d v=u v-\int v d u
$$

Take $u=t$ and $d v=e^{-s t} d t$. Compute $d u=d t$ and $v=\frac{1}{-s} e^{-s t}$. It follows that

$$
\begin{aligned}
\mathcal{L}(t) & =\int_{0}^{\infty} e^{-s t} t d t \\
& =\left[\left.\left(u v-\int v d u\right]\right|_{t=0} ^{t=\infty}\right. \\
& =\left[-\frac{t}{s} e^{-s t}-\int-\frac{1}{s} e^{-s t} d t\right]_{t=0}^{\infty} \\
& =\left[-\frac{t}{s} e^{-s t}-\frac{1}{s^{2}} e^{-s t}\right]_{t=0}^{\infty}
\end{aligned}
$$

Of course, integrate to infinity means integrate to a number b and take the limit as b goes to infinity.

$$
=\lim _{b \rightarrow \infty}\left[-\frac{b}{s} e^{-s b}-\frac{1}{s^{2}} e^{-s b}\right]-\left[-\frac{0}{s} e^{-s(0)}-\frac{1}{s^{2}} e^{-s(0)}\right]
$$

It is obvious that $\lim _{b \rightarrow \infty} \frac{1}{e^{s b}}=0$, when s is a positive constant. Use L'Hopital's rule, if necessary to see that $\lim _{b \rightarrow \infty} \frac{b}{e^{s b}}=0$, when s is a positive constant.

$$
=0+0+0+\frac{1}{s^{2}}=\frac{1}{s^{2}} \text { provided } 0<s
$$

