Problem 19 in Section 3.4. Solve the Initial Problem

$$
4 x^{\prime \prime}+20 x^{\prime}+169 x=0, \quad x(0)=4, \quad x^{\prime}(0)=16 .
$$

Put your answer in the form $x(t)=C e^{a t} \cos (b t-\alpha)$ if this makes sense. Sketch the graph of $x=x(t)$.

Solution. We try $x=e^{r t}$. We must study the characteristic equation

$$
4 r^{2}+20 r+169=0
$$

We use the quadratic formula: the roots of $a r^{2}+b r+c=0$ are

$$
r=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a}
$$

In our problem,

$$
\begin{aligned}
r & =\frac{-20 \pm \sqrt{400-16(169)}}{8}=\frac{-20 \pm \sqrt{16(25-169)}}{8}=\frac{-20 \pm 4 \sqrt{-144}}{8} \\
& =\frac{-5 \pm 12 i}{2}=-\frac{5}{2} \pm 6 i
\end{aligned}
$$

The general solution of the Differential Equation is

$$
x(t)=\left(c_{1} \cos 6 t+c_{2} \sin 6 t\right) e^{-5 t / 2}
$$

We use the Initial Conditions to evaluate the constants. We compute

$$
x^{\prime}(t)=-\frac{5}{2}\left(c_{1} \cos 6 t+c_{2} \sin 6 t\right) e^{-5 t / 2}+\left(-6 c_{1} \sin 6 t+6 c_{2} \cos 6 t\right) e^{-5 t / 2}
$$

Plug $t=0$ into $x(t)$ and $x^{\prime}(t)$ to obtain

$$
\begin{aligned}
4 & =x(0)=c_{1} \\
16 & =x^{\prime}(0)=-\frac{5}{2} c_{1}+6 c_{2}
\end{aligned}
$$

or

$$
\begin{aligned}
4 & =c_{1} \\
16 & =-\frac{5}{2} c_{1}+6 c_{2}
\end{aligned}
$$

Thus, $c_{1}=4, c_{2}=\frac{13}{3}$, and

$$
\begin{equation*}
x(t)=e^{-5 t / 2}\left(4 \cos 6 t+\frac{13}{3} \sin 6 t\right) \tag{15}
\end{equation*}
$$

We would like to write $4 \cos 6 t+\frac{13}{3} \sin 6 t$ in the form $C \cos (b t-\alpha)$. We use the identity:

$$
\cos (\theta-\phi)=\cos \theta \cos \phi+\sin \theta \sin \phi
$$

We take $\theta=6 t$ and ϕ to be the angle that sits in the right triangle with

$$
\begin{aligned}
& \mathrm{ADJ}=4, \quad \mathrm{OP}=\frac{13}{3}, \quad \text { and } \\
& \mathrm{HYP}=\sqrt{4^{2}+\left(\frac{13}{3}\right)^{2}}=\frac{1}{3} \sqrt{16(9)+169}=\frac{\sqrt{313}}{3} .
\end{aligned}
$$

A picture of this angle sits on the next-to-last page of this solution. Notice that

$$
\begin{aligned}
& \cos \phi=\frac{4}{\mathrm{HYP}}=\frac{4}{\frac{\sqrt{313}}{3}}=\frac{12}{\sqrt{313}} \text { and } \\
& \sin \phi=\frac{\frac{13}{3}}{\mathrm{HYP}} \frac{\frac{13}{3}}{\frac{\sqrt{313}}{3}}=\frac{13}{\sqrt{313}} .
\end{aligned}
$$

Recall our answer from (15):

$$
\begin{aligned}
& x(t)=e^{-5 t / 2}\left(4 \cos 6 t+\frac{13}{3} \sin 6 t\right) \\
& x(t)=\operatorname{HYP} e^{-5 t / 2}\left(\frac{4}{\text { HYP }} \cos 6 t+\frac{13}{3} \operatorname{sYP} \sin 6 t\right) \\
& x(t)=\frac{\sqrt{313}}{3} e^{-5 t / 2}(\cos \phi \cos 6 t+\sin \phi \sin 6 t) \quad \text { for } \phi=\arccos \left(\frac{12}{\sqrt{313}}\right)
\end{aligned}
$$

$$
x(t)=\frac{\sqrt{313}}{3} e^{-5 t / 2}(\cos (6 t-\phi)), \quad \text { for } \phi=\arccos \left(\frac{12}{\sqrt{313}}\right)
$$

Check. We plug

$$
\begin{aligned}
x(t) & =\frac{\sqrt{313}}{3} e^{-5 t / 2}(\cos (6 t-\phi)) \\
x^{\prime}(t) & =\frac{\sqrt{313}}{3}\left(e^{-5 t / 2}(-6 \sin (6 t-\phi))-\left(\frac{5}{2}\right) e^{-5 t / 2}(\cos (6 t-\phi))\right. \\
& =\frac{\sqrt{313}}{3} e^{-5 t / 2}\left(-6 \sin (6 t-\phi)-\frac{5}{2}(\cos (6 t-\phi))\right. \\
x^{\prime \prime}(t) & =\frac{\sqrt{313}}{3}\left\{\begin{array}{l}
e^{-5 t / 2}\left(-36 \cos (6 t-\phi)+6\left(\frac{5}{2}\right)(\sin (6 t-\phi))\right. \\
-\frac{5}{2} e^{-5 t / 2}\left(-6 \sin (6 t-\phi)-\frac{5}{2}(\cos (6 t-\phi))\right.
\end{array}\right. \\
& =\frac{\sqrt{313}}{3} e^{-5 t / 2}\left\{\begin{array}{l}
\left(-36 \cos (6 t-\phi)+6\left(\frac{5}{2}\right)(\sin (6 t-\phi))\right. \\
-\frac{5}{2}\left(-6 \sin (6 t-\phi)-\frac{5}{2}(\cos (6 t-\phi))\right.
\end{array}\right. \\
& =\frac{\sqrt{313}}{3} e^{-5 t / 2}\left(\left(-36+\frac{25}{4}\right) \cos (6 t-\phi)+(15+15) \sin (6 t-\phi)\right.
\end{aligned}
$$

into $4 x^{\prime \prime}+20 x^{\prime}+169 x$ and obtain

$$
\frac{\sqrt{313}}{3} e^{-5 t / 2}\left\{\begin{array}{l}
\left(4\left(-36+\frac{25}{4}\right)+20\left(-\frac{5}{2}\right)+169\right) \cos (6 t-\phi) \\
+(4(30)+20(-6)) \sin (6 t-\phi)
\end{array}=0 \checkmark\right.
$$

$$
x(0)=\frac{\sqrt{313}}{3} \cos (-\phi)=\frac{\sqrt{313}}{3} \cos (\phi)=\left(\frac{\sqrt{313}}{3}\right) \frac{12}{\sqrt{313}}=4 \checkmark
$$

and

$$
\begin{aligned}
x^{\prime}(0) & =\frac{\sqrt{313}}{3}\left(-6 \sin (-\phi)-\frac{5}{2}(\cos (-\phi))\right. \\
& =\frac{\sqrt{313}}{3}\left(6 \frac{13}{\sqrt{313}}-\frac{5}{2} \frac{12}{\sqrt{313}}\right)=26-10=16 . \checkmark
\end{aligned}
$$

Our proposed answer does everything it is supposed to do. It is correct.
The next page is a picture of the triangle with $\cos \phi=\frac{12}{\sqrt{313}}$.
The last page is a sketch of
$x(t)=\frac{\sqrt{313}}{3} e^{-5 t / 2}(\cos (6 t-\phi)), \quad$ for $\phi=\arccos \left(\frac{12}{\sqrt{313}}\right)$.

The Triangle for Section 3.4 number 19

$$
\begin{aligned}
& \cos \phi=\frac{A D J}{A Y P}=\frac{4}{\frac{\sqrt{313}}{3}}=\frac{12}{\sqrt{3,3}} \\
& \sin \phi=\frac{O P}{1+Y P}=\frac{\frac{13}{3}}{\frac{\sqrt{3,3}}{3}}=\frac{13}{\sqrt{313}}
\end{aligned}
$$

Picture for 3.4 number 19
We are supposes to draw
$x=\frac{\sqrt{313}}{3} e^{-\frac{5}{2} t} \cos (6 t-\omega)$ where $\omega=\arccos \frac{12}{\sqrt{313}}$
The graph bounces between $x=\frac{\sqrt{313}}{3} e^{-\frac{5}{2} t}$ and $x=-\frac{\sqrt{313}}{3} e^{-\frac{5}{2} t}$

