Problem 13 in Section 3.3. Find the general solution of 9y''' + 12y'' + 4y' = 0.

Solution. We try $y=e^{rx}$. We plug $y, y'=re^{rx}, y''=r^2e^{rx}$, and $y'''=r^3e^{rx}$ into the Differential Equation. We want

$$9r^3e^{rx} + 12r^2e^{rx} + 4re^{rx} = 0.$$

We want $e^{rx}(9r^3+12r^2+4r)=0$. If a product is zero, one of the factors must be zero. The function e^{rx} is never zero; so we want

$$(9r^3 + 12r^2 + 4r) = 0$$
$$r(9r^2 + 12r + 4) = 0$$
$$r(3r + 2)^2 = 0$$

So, r=0 or $r=\frac{-2}{3}$. The root $=\frac{-2}{3}$ has multiplicity two. The general solution of the Differential Equation is

$$y = c_1 + c_2 e^{-\frac{2}{3}x} + c_3 x e^{-\frac{2}{3}x}.$$

Check. We plug

$$y = c_1 + c_2 e^{-\frac{2}{3}x} + c_3 x e^{-\frac{2}{3}x}$$

$$y' = -\frac{2}{3}c_2 e^{-\frac{2}{3}x} + c_3 e^{-\frac{2}{3}x} - \frac{2}{3}c_3 x e^{-\frac{2}{3}x}$$

$$= (-\frac{2}{3}c_2 + c_3)e^{-\frac{2}{3}x} - \frac{2}{3}c_3 x e^{-\frac{2}{3}x}$$

$$y'' = -\frac{2}{3}(-\frac{2}{3}c_2 + c_3)e^{-\frac{2}{3}x} - \frac{2}{3}c_3 e^{-\frac{2}{3}x} + \frac{4}{9}c_3 x e^{-\frac{2}{3}x}$$

$$= (\frac{4}{9}c_2 - \frac{4}{3}c_3)e^{-\frac{2}{3}x} + \frac{4}{9}c_3 x e^{-\frac{2}{3}x}$$

$$y''' = -\frac{2}{3}(\frac{4}{9}c_2 - \frac{4}{3}c_3)e^{-\frac{2}{3}x} + \frac{4}{9}c_3 e^{-\frac{2}{3}x} - \frac{8}{27}c_3 x e^{-\frac{2}{3}x}$$

$$= (-\frac{8}{27}c_2 + \frac{12}{9}c_3)e^{-\frac{2}{3}x} - \frac{8}{27}c_3 x e^{-\frac{2}{3}x}$$

into 9y''' + 12y'' + 4y' and obtain

$$\begin{cases}
9\left(\left(-\frac{8}{27}c_2 + \frac{12}{9}c_3\right)e^{-\frac{2}{3}x} - \frac{8}{27}c_3xe^{-\frac{2}{3}x}\right) \\
+12\left(\left(\frac{4}{9}c_2 - \frac{4}{3}c_3\right)e^{-\frac{2}{3}x} + \frac{4}{9}c_3xe^{-\frac{2}{3}x}\right) \\
+4\left(\left(-\frac{2}{3}c_2 + c_3\right)e^{-\frac{2}{3}x} - \frac{2}{3}c_3xe^{-\frac{2}{3}x}\right)
\end{cases}$$

$$= \left(-\frac{72}{27} + \frac{48}{9} - \frac{8}{3}\right)c_2e^{-\frac{2}{3}} + \left(12 - 16 + 4\right)c_3e^{-\frac{2}{3}} + \left(-\frac{8}{3} + \frac{16}{3} - \frac{8}{3}\right)c_3xe^{-\frac{2}{3}x}$$

and this is zero because $(-\frac{72}{27} + \frac{48}{9} - \frac{8}{3}) = (-\frac{8}{3} + \frac{16}{3} - \frac{8}{3}) = 0$. Our proposed answer works.