Problem 11 in Section 3.3. Find the general solution of $y^{(4)}-8 y^{(3)}+16 y^{\prime \prime}=$ 0 .

Solution. We try $y=e^{r x}$. We plug $y, y^{\prime}=r e^{r x}, y^{\prime \prime}=r^{2} e^{r x}, y^{\prime \prime \prime}=r^{3} e^{r x}$, and $y^{\prime \prime \prime \prime}=r^{4} e^{r x}$ into the Differential Equation. We want

$$
r^{4} e^{r x}-8 r^{3} e^{r x}+16 r^{2} e^{r x}=0
$$

We want $e^{r x}\left(r^{4}-8 r^{3}+16 r^{2}\right)=0$. If a product is zero, one of the factors must be zero. The function $e^{r x}$ is never zero; so we want

$$
\begin{gathered}
\left(r^{4}-8 r^{3}+16 r^{2}\right)=0 \\
r^{2}\left(r^{2}-8 r+16\right)=0 \\
r^{2}(r-4)^{2}=0
\end{gathered}
$$

So $r$ is 0 (with multiplicity 2 ) or $r$ is 4 (also with multiplicity 2)., Four linearly independent solutions of the Differential Equation are 1, $x, e^{4 x}$, and $x e^{4 x}$. (Of course $1=e^{0 x}$ and $x=x e^{0 x}$.) The general solution of the Differential Equation is

$$
y=c_{1}+c_{2} x+c_{3} e^{4 x}+c_{4} x e^{4 x}
$$

Check. We plug

$$
\begin{array}{rlrl}
y & = & c_{1}+c_{2} x+c_{3} e^{4 x}+c_{4} x e^{4 x} \\
y^{\prime} & = & c_{2}+4 c_{3} e^{4 x}+c_{4} e^{4 x}+4 c_{4} x e^{4 x} \\
& = & c_{2}+\left(4 c_{3}+c_{4}\right) e^{4 x}+4 c_{4} x e^{4 x} \\
y^{\prime \prime} & = & & 4\left(4 c_{3}+c_{4}\right) e^{4 x}+4 c_{4} e^{4 x}+16 c_{4} x e^{4 x} \\
& = & & \left(16 c_{3}+8 c_{4}\right) e^{4 x}+16 c_{4} x e^{4 x} \\
y^{\prime \prime \prime} & = & & 4\left(16 c_{3}+8 c_{4}\right) e^{4 x}+16 c_{4} e^{4 x}+64 c_{4} x e^{4 x} \\
& = & & \left(64 c_{3}+48 c_{4}\right) e^{4 x}+64 c_{4} x e^{4 x} \\
y^{\prime \prime \prime \prime} & = & & 4\left(64 c_{3}+48 c_{4}\right) e^{4 x}+64 c_{4} e^{4 x}+256 c_{4} x e^{4 x} \\
& = & & \left(256 c_{3}+256 c_{4}\right) e^{4 x}+256 c_{4} x e^{4 x}
\end{array}
$$

into $y^{(4)}-8 y^{(3)}+16 y^{\prime \prime}$ an obtain

$$
\left.\begin{array}{c}
\left\{\begin{array}{l}
\left(\left(256 c_{3}+256 c_{4}\right) e^{4 x}+256 c_{4} x e^{4 x}\right) \\
-8\left(\left(64 c_{3}+48 c_{4}\right) e^{4 x}+64 c_{4} x e^{4 x}\right.
\end{array}\right) \\
+16\left(\left(16 c_{3}+8 c_{4}\right) e^{4 x}+16 c_{4} x e^{4 x}\right)
\end{array}\right\}
$$

Notice that

$$
256-8(64)+16(16)=2^{8}-2^{3}\left(2^{6}\right)+2^{4}\left(2^{4}\right)=2^{8}(1-2+1)=0
$$

and

$$
256-8(48)+16(8)=2^{8}-\left(2^{3}\right)(3)\left(2^{4}\right)+2^{4}\left(2^{3}\right)=2^{7}(2-3+1)=0
$$

Our proposed answer works.

