Problem 14 in Section 3.2. The problem tells us that $y_{1}=e^{x}, y_{2}=e^{2 x}$, and $y_{3}=e^{3 x}$ all are solutions of the Differential equation $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$. We are supposed to solve the Initial Value Problem

$$
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0, \quad y(0)=0, \quad y^{\prime}(0)=0, \quad y^{\prime \prime}(0)=3 .
$$

Solution. The general solution of $y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=0$ is

$$
y=c_{1} e^{x}+c_{2} e^{2 x}+c_{3} e^{3 x} .
$$

Our job is to evaluate the constants. We calculate

$$
\begin{aligned}
y^{\prime} & =c_{1} e^{x}+2 c_{2} e^{2 x}+3 c_{3} e^{3 x} \\
y^{\prime \prime} & =c_{1} e^{x}+4 c_{2} e^{2 x}+9 c_{3} e^{3 x}
\end{aligned}
$$

We must solve

$$
\begin{aligned}
& 0=c_{1}+c_{2}+c_{3} \\
& 0=c_{1}+2 c_{2}+3 c_{3} \\
& 3=c_{1}+4 c_{2}+9 c_{3}
\end{aligned}
$$

Replace Equation 2 with Equation 2 minus Equation 1. Replace Equation 3 with Equation 3 minus Equation 1.

$$
\begin{aligned}
& 0=c_{1}+c_{2}+c_{3} \\
& 0=1 c_{2}+2 c_{3} \\
& 3=\quad 3 c_{2}+8 c_{3}
\end{aligned}
$$

Replace Equation 3 with Equation 3 minus 3 times Equation 2.

$$
\begin{array}{lr}
0 & =c_{1}+c_{2}+c_{3} \\
0 & =1 c_{2}+2 c_{3} \\
3 & =r
\end{array}
$$

We see that $c_{3}=\frac{3}{2}, c_{2}=-3$, and $c_{1}=\frac{3}{2}$. We conclude that the solution of the Initial Value Problem is

$$
y=\frac{3}{2} e^{x}-3 e^{2 x}+\frac{3}{2} e^{3 x} .
$$

Check. We compute

$$
\begin{aligned}
y & =\frac{3}{2} e^{x}-3 e^{2 x}+\frac{3}{2} e^{3 x} \\
y^{\prime} & =\frac{3}{2} e^{x}-6 e^{2 x}+\frac{9}{2} e^{3 x} \\
y^{\prime \prime} & =\frac{3}{2} e^{x}-12 e^{2 x}+\frac{27}{2} e^{3 x} \\
y^{\prime \prime \prime} & =\frac{3}{2} e^{x}-24 e^{2 x}+\frac{81}{2} e^{3 x}
\end{aligned}
$$

It follows that

$$
\begin{gathered}
y^{\prime \prime \prime}-6 y^{\prime \prime}+11 y^{\prime}-6 y=\left\{\begin{array}{l}
\frac{3}{2} e^{x}-24 e^{2 x}+\frac{81}{2} e^{3 x} \\
-6\left(\frac{3}{2} e^{x}-12 e^{2 x}+\frac{27}{2} e^{3 x}\right) \\
+11\left(\frac{3}{2} e^{x}-6 e^{2 x}+\frac{9}{2} e^{3 x}\right) \\
-6\left(\frac{3}{2} e^{x}-3 e^{2 x}+\frac{3}{2} e^{3 x}\right)
\end{array}\right. \\
=\left(\frac{3}{2}-9+\frac{33}{2}-9\right) e^{x}+(-24+72-66+18) e^{2 x}+\underbrace{\left(\frac{81}{2}-6\left(\frac{27}{2}\right)+11\left(\frac{9}{2}\right)-6\left(\frac{3}{2}\right)\right)}_{\frac{3}{2}(27-54+33-6)=0} e^{3 x}=0,
\end{gathered}
$$

as expected. \checkmark We also see that

$$
\begin{aligned}
& y(0)=\frac{3}{2} e^{0}-3 e^{0}+\frac{3}{2} e^{0}=\left(\frac{3}{2}-3+\frac{3}{2}\right)=0 ; \checkmark \\
& y^{\prime}(0)=\frac{3}{2} e^{0}-6 e^{0}+\frac{9}{2} e^{0}=\left(\frac{3}{2}-6+\frac{9}{2}\right)=0 ; \checkmark
\end{aligned}
$$

and

$$
y^{\prime \prime}(0)=\frac{3}{2} e^{0}-12 e^{0}+\frac{27}{2} e^{0}=\frac{3}{2}-12+\frac{27}{2}=15-12=3 . \checkmark
$$

Our proposed solution does everything it is supposed to do. It is correct.

