Math 241 Exam 3 Spring 2008

Please leave room in the upper left corner for the staple.
TAKE THESE QUESTIONS HOME WITH YOU WHEN YOU LEAVE. I WILL POST SOLUTIONS LATER TODAY.
Write your answers as legibly as you can on the blank sheets of paper provided. Use only one side of each sheet. Be sure to number your pages. Put your solution to problem 1 first, and then your solution to number 2, etc.; although, by using enough paper, you can do the problems in any order that suits you.

There are 7 problems. Most of the problems are worth 7 points. The exam is worth 50 points. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

1. Find the directional derivative of $f(x, y)=x e^{x y}$ at the point $(2,3)$ in the direction of the vector $\overrightarrow{\boldsymbol{a}}=3 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}$.
2. Find the equation of the plane tangent to $z=x^{2}+y^{2}$ when $x=1$ and $y=2$.
3. Find all relative maxima, relative minima, and saddle points of $f(x, y)=$ $y^{2}+x y+3 y+2 x+3$.
4. (8 points) Find the points on the sphere $x^{2}+y^{2}+z^{2}=36$ that are closest to and farthest from the point $(1,2,2)$.
5. Find $\iint_{R} \sin \left(y^{3}\right) d A$, where R is the region in the $x y$-plane bounded by $y=\sqrt{x}, y=2$, and $x=0$.
6. Find the volume of the region between $z=9-x^{2}-y^{2}$ and $z=0$.
7. Find $\iiint_{G}\left(1-x^{2}-y^{2}-z^{2}\right) d V$, where G is the region inside the sphere $x^{2}+y^{2}+z^{2}=1$.
