PRINT Your Name: \qquad
Get your course grade from TIPS/VIP late on Thursday or later.
There are 19 problems on 10 pages. Problems 1 and 2 are worth 7 points each. Each of the other problems is worth 8 points. The exam is worth a total of 150 points. SHOW your work. $C I R C L E$ your answer. NO CALCULATORS!

1. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equation of the plane through $(1,1,1),(1,2,-2)$, and $(3,1,-3)$.
2. (There is no partial credit for this problem. Make sure your answer is correct.) Find the equations of the line through $(1,3,4)$ and $(3,6,9)$.
3. Graph and name $y^{2}-x^{2}=1$ in $2-$ space.
4. Graph and name $\frac{z^{2}}{16}-\frac{y^{2}}{9}+\frac{x^{2}}{25}=1$ in $3-$ space.
5. What are the equations of the line tangent to the curve which is parameterized by $\overrightarrow{\boldsymbol{r}}(t)=\left(3 t^{3}+2 t\right) \overrightarrow{\boldsymbol{i}}+6 t^{2} \vec{j}+4 t^{3} \overrightarrow{\boldsymbol{k}}$ at $t=1$?
6. Find the equation of the plane tangent to the surface $z=x^{2}+3 y^{3}$ at the point where $x=3$ and $y=-1$.
7. (There is no partial credit for this problem. Make sure your answer is correct.) Let $\overrightarrow{\boldsymbol{a}}=2 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}+6 \overrightarrow{\boldsymbol{k}}$ and $\overrightarrow{\boldsymbol{b}}=3 \overrightarrow{\boldsymbol{i}}+4 \overrightarrow{\boldsymbol{j}}+\vec{k}$. Find vectors $\xrightarrow[\overrightarrow{\boldsymbol{u}}]{\overrightarrow{\boldsymbol{u}}}$ and $\overrightarrow{\boldsymbol{v}}$ with $\overrightarrow{\boldsymbol{b}}=\overrightarrow{\boldsymbol{u}}+\overrightarrow{\boldsymbol{v}}, \overrightarrow{\boldsymbol{u}}$ parallel to $\overrightarrow{\boldsymbol{a}}$, and $\overrightarrow{\boldsymbol{v}}$ perpendicular to \vec{a}.
8. Find the point on $2 x+3 y+4 z=49$ which is closest to $(1,2,3)$.
9. Where do the following two lines intersect? CHECK YOUR ANSWER!

$$
\frac{x-1}{1}=\frac{y-8}{2}=\frac{z-8}{3} \quad \text { and } \quad \frac{x+4}{-1}=\frac{y-10}{2}=\frac{z+4}{-2}
$$

10. Find the length of the curve $\overrightarrow{\boldsymbol{r}}(t)=t^{2} \overrightarrow{\boldsymbol{i}}+t^{3} \overrightarrow{\boldsymbol{j}}$ for $1 \leq t \leq 2$.
11. Find the directional derivative of $f(x, y)=y^{3} \ln x$ at the point $(1,2)$ in the direction of $\overrightarrow{\boldsymbol{u}}=\frac{1}{\sqrt{2}}(\overrightarrow{\boldsymbol{i}}-\overrightarrow{\boldsymbol{j}})$.
12. Find all local maximum points, all local minimum points, and all saddle points of $f(x, y)=x^{3}+y^{3}-6 x y$.
13. The temperature of a plate at the point (x, y) is $T(x, y)=20-3 x^{2}-2 y^{2}$. Find the path that a heat seeking particle would travel if it starts at the point $(1,4)$. (The particle always moves in the direction of the greatest increase in temperature.)
