Math 241, Spring 2001, Exam 4

PRINT Your Name:______ There are 10 problems on 6 pages. Each problem is worth 10 points. SHOW your work. *CIRCLE* your answer. **NO CALCULATORS!**

1.

- (a) Find $\lim_{\substack{(x,y)\to(0,0)\\\text{along }y=3x}} \frac{x^2y}{x^4+y^2}$. (b) Find $\lim_{\substack{(x,y)\to(0,0)\\\text{along }y=2x^2}} \frac{x^2y}{x^4+y^2}$. (c) What is $\lim_{(x,y)\to(0,0)} \frac{x^2y}{x^4+y^2}$? Why?
- 2. Let R be the region $R = \{(x, y) \mid 2 \le x \le 8, \text{ and } 2 \le y \le 6\}$. Let P be the partition of R into six equal squares by the lines x = 4, x = 6, and y = 4. Approximate $\iint_{R} (72 - x^2 - y) dA$ by calculating the corresponding Riemann $\sup \sum_{k=1}^{6} f(\bar{x}_k, \bar{y}_k) \Delta A_k$, where (\bar{x}_k, \bar{y}_k) is the center of the k^{th} box, and ΔA_k is the area of the k^{th} box. (Be sure to answer the question I have asked. You will receive no credit for computing the integral directly. Express your answer as a sum of products. There is no need to do any arithmetic.)
- 3. Identify all local maximum points, all local maximum points, and all saddle points of $f(x, y) = 2x^4 x^2 + 3y^2$.
- 4. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 60 inches and is increasing at 4 inches per minute and the radius is 30 inches and is increasing at 3 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $V = (1/3)\pi r^2 h$.)

5. Find
$$\int_0^{\pi/2} \int_0^1 x \sin xy \, dy \, dx$$
.

6. Find
$$\int_{1/2} \int_0^{\infty} \cos(\pi x^2) \, dy \, dx$$

- 7. Evaluate $\int \int_R \sin(y^3) dA$, where *R* is the region bounded by $y = \sqrt{x}$, y = 2, and x = 0.
- 8. Consider the solid which is bounded by x + 3y + 6z = 12 and the three coordinate planes. Find the volume of the solid. Set up the integral, but do **NOT compute the integral.**
- 9. Evaluate $\int \int_R e^{x^2 + y^2} dA$, where *R* is the region enclosed by $x^2 + y^2 = 4$.