Math 241, Spring 2001, Exam 4

PRINT Your Name: \qquad
There are 10 problems on 6 pages. Each problem is worth 10 points. SHOW your work. CIRCLE your answer. NO CALCULATORS!
1.
(a) Find $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=3 x}} \frac{x^{2} y}{x^{4}+y^{2}}$.
(b) Find $\lim _{\substack{(x, y) \rightarrow(0,0) \\ \text { along } y=2 x^{2}}} \frac{x^{2} y}{x^{4}+y^{2}}$.
(c) What is $\lim _{(x, y) \rightarrow(0,0)} \frac{x^{2} y}{x^{4}+y^{2}}$? Why?
2. Let R be the region $R=\{(x, y) \mid 2 \leq x \leq 8$, and $2 \leq y \leq 6\}$. Let P be the partition of R into six equal squares by the lines $x=4, x=6$, and $y=4$. Approximate $\iint_{R}\left(72-x^{2}-y\right) d A$ by calculating the corresponding Riemann $\operatorname{sum} \sum_{k=1}^{6} f\left(\bar{x}_{k}, \bar{y}_{k}\right) \Delta A_{k}$, where $\left(\bar{x}_{k}, \bar{y}_{k}\right)$ is the center of the $k^{\text {th }}$ box, and ΔA_{k} is the area of the $k^{\text {th }}$ box. (Be sure to answer the question I have asked. You will receive no credit for computing the integral directly. Express your answer as a sum of products. There is no need to do any arithmetic.)
3. Identify all local maximum points, all local maximum points, and all saddle points of $f(x, y)=2 x^{4}-x^{2}+3 y^{2}$.
4. Sand is pouring onto a conical pile in such a way that at a certain instant the height is 60 inches and is increasing at 4 inches per minute and the radius is 30 inches and is increasing at 3 inches per minute. How fast is the volume increasing at that instant? (The volume of a cone is $V=(1 / 3) \pi r^{2} h$.)
5. Find $\int_{0}^{\pi / 2} \int_{0}^{1} x \sin x y d y d x$.
6. Find $\int_{1 / 2}^{1} \int_{0}^{2 x} \cos \left(\pi x^{2}\right) d y d x$.
7. Evaluate $\iint_{R} \sin \left(y^{3}\right) d A$, where R is the region bounded by $y=\sqrt{x}, y=2$, and $x=0$.
8. Consider the solid which is bounded by $x+3 y+6 z=12$ and the three coordinate planes. Find the volume of the solid. Set up the integral, but do NOT compute the integral.
9. Evaluate $\iint_{R} e^{x^{2}+y^{2}} d A$, where R is the region enclosed by $x^{2}+y^{2}=4$.

