Math 174 Fall 2003 Final Exam Solutions

PRINT Your Name:

There are 25 problems on 7 pages. Each problem is worth 4 points. The exam is worth 100 points. \boxed{CIRCLE} your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.

If I know your e-mail address, I will e-mail your course grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**. Otherwise, get your course grade from VIP.

I will post the solutions on my website later today.

You may leave the binomial coefficient $\binom{n}{r}$ in any of your answers.

1. Consider the relation " \leq " on the set of real numbers. Is this relation reflexive, symmetric, transitive? Explain.

The relation is reflexive since $a \leq a$ for all a. The relation is NOT symmetric since $1 \leq 2$, but $2 \not\leq 1$. The relation is transitive since if $a \leq b$ and $b \leq c$, then $a \leq c$.

2. If a and b are integers, then $a \equiv b \mod 5$ if and only if 5|(a-b). Describe the equivalance classes that correspond to this equivalence relation.

There are 5 equivalenance classes:

$$\{\dots, -10, -5, 0, 5, 10, \dots\}, \{\dots, -9, -4, 1, 6, 11, \dots\}, \{\dots, -8, -3, 2, 7, 12, \dots\}$$
$$\{\dots, -7, -2, 3, 8, 13, \dots\} \text{ and } \{\dots, -6, -1, 4, 9, 14, \dots\}.$$

3. Suppose $n \equiv 1 \mod 5$. Give a formula for $\lfloor \frac{n}{5} \rfloor$ which does not involve $\lfloor \rfloor$.

If $n \equiv 1 \mod 5$, then $\lfloor \frac{n}{5} \rfloor = \frac{n-1}{5}$.

4. Solve the recurrence relation $a_0 = 1000$, $a_n = (1.05)a_{n-1} + 100$ for $1 \le n$. Observe that

$$a_1 = (1.05)1000 + 100, \quad a_2 = (1.05)^2 1000 + (1.05)100 + 100,$$

 $a_3 = (1.05)^3 1000 + (1.05)^2 100 + (1.05)100 + 100.$

Eventually, we see that

$$a_n = (1.05)^n 1000 + 100((1.05)^{n-1} + (1.05)^{n-2} + \dots + (1.05)^1 + 1)$$
$$= \boxed{(1.05)^n 1000 + 100 \frac{(1.05)^n - 1}{(1.05) - 1}}.$$

5. Consider the Tower of Hanoi problem. There are three towers in a row: tower A, tower B, and tower C. There are n disks of different sizes stacked on tower A. One must move all n disks to tower C. One may NEVER place a bigger disk on top of a smaller disk. In the present problem, one may move a disk only to an ADJACENT tower. Let a_n be the minimum number of moves needed to transfer a stack of n disks from tower A to tower C. Find a_1 , a_2 , a_3 . Find a recurrence relation for a_1, a_2, a_3, \ldots .

It is clear that $a_1 = 2$. Move the disk to tower B. Move the disk to tower C. For a_2 : move the small disk to tower C (2 moves). Move the big disk to tower B (one move). Move the small disk back to tower A (two moves). Move the big disk to tower C (one move). Move the small disk back to tower C (2 moves). So, $a_2 = 8$. For a_3 : move the two small disks to Tower C (a_2 moves). Move the big disk to tower B (1 move). Move the two small disks to tower A (a_2 moves). Move the big disk to tower C (1 move). Move the two small disks to tower A (a_2 moves). Move the big disk to tower C (1 move). Move the two small disks back to tower C (a_2 moves). Move the big disk to tower C (1 move). Move the two small disks back to tower C (a_2 moves). So, $a_3 = 3a_2 + 2 = 26$. Of course, we now see how to do the general problem. Move the n-1 small disks to Tower C (a_{n-1} moves). Move the big disk to tower C (1 move). Move the n-1 small disks to tower A (a_{n-1} moves). Move the big disk to tower C (a_{n-1} moves). Move the big disk to tower C (a_{n-1} moves). Move the big disk to tower C (a_{n-1} moves). Move the big disk to tower C (a_{n-1} moves). So, $a_n = 3a_{n-1} + 2$.

6. Does there exist a one-to-one and onto function from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of positive integers? Explain.

View the elements of $\mathbb{N} \times \mathbb{N}$ as sitting in a grid:

(1, 1)	(1, 2)	(1,3)	(1, 4)	
(2, 1)	(2, 2)	(2, 3)	(2, 4)	
(3, 1)	(3,2)	(3,3)	(3, 4)	
(4, 1)	(4, 2)	(4,3)	(4, 4)	•••
:	:	:	:	

Notice that every element of $\mathbb{N} \times \mathbb{N}$ sits on this grid exactly once. Count off the elements of $\mathbb{N} \times \mathbb{N}$ by marching down the diagonal lines from NorthEast to SouthWest as indicated:

(1,1)	(1,2)	(1,3)	(1,4)	
$\begin{pmatrix} 1 \\ (2 \ 1) \end{pmatrix}$	$^{2}_{(2,2)}$	(2,2)	7	•••
$^{(2,1)}_{3}$		(2,3) 8	(2,4)	• • •
$\overset{3}{\overset{(3,1)}{\overset{6}{}}}$	(3,2)	(3, 3)	(3, 4)	
(4,1) 10	(4, 2)	(4, 3)	(4, 4)	
÷	:	:	:	
•	•	•	•	

7. Let r, m, and n be integers with $0 \le r \le m, n$. Simplify $\binom{n}{0}\binom{m}{r} + \binom{n}{1}\binom{m}{r-1} + \binom{n}{2}\binom{m}{r-2} + \cdots + \binom{n}{r-1}\binom{m}{1} + \binom{n}{0}\binom{m}{0}$. (Your answer should not have any \ldots or any summation signs.)

$$\binom{n+m}{r}$$

Suppose a committee has n men and m women. How many subcommittees of size r can be formed?

8. Let *n* be a positive integer. Simplify $\sum_{k=0}^{n} 2^k {n \choose k}$. (Your answer should not have any ... or any summation signs.)

$$\sum_{k=0}^{n} 2^k \binom{n}{k} = (2+1)^n = \boxed{3^n}$$

9. How many four tuples (i, j, k, ℓ) are there with $3 \le i \le j \le k \le \ell \le 10$.

Think of 8 bins. The first bin contains 3's. The second bin contains 4's. The eighth bin contains 10's. I walk past the bins and pick out 4 numbers. There is a one-to-one correspondence between legal 4-tuples and work orders which consist

of 4 picks and 7 switches. The answer is

$$\begin{pmatrix} 4+7\\ 4 \end{pmatrix}.$$

10. How many bit strings of length 8 contain exactly three 1's? (A bit string is a string of 0's and 1's.)

11. How many integers between 1 and 1000 are relatively prime to 28?

Notice that 4(250) = 1000, 7(142) = 994, and 28(35) = 980. There are 1000 integers between 1 and 1000; 250 of these integers are divisible by 4; 142 are divisible by 7. We have pitched out 35 twice. We must compensate for our over eagerness.

1000 - 250 - 142 + 35

12. A group of eight people attend a movie together. John and Mary are part of the group and they refuse to sit next to one another. How many ways may the eight people be arranged in a row?

There are 8! ways for the people to sit; 7! of these have John on Mary's left; 7! of these have John on Mary's right side.

$$8! - 2(7!)$$

13. If the largest of 87 consecutive integers is 326, what is the smallest?

$$326 - 87 + 1$$

- 14. Let $A = \{t, u, v, w\}$ and let S_1 be the set of all subsets of A that do not contain w and S_2 the set of all subsets of A that do contain w.
 - (a) Find S_1 . The elements of S_1 are: \emptyset , $\{t\}$, $\{u\}$, $\{v\}$, $\{t,u\}$, $\{t,v\}$, $\{u,v\}$, $\{u,v\}$.
 - (b) Find S_2 . The elements of S_2 are: $\{w\}$, $\{t, w\}$, $\{u, w\}$, $\{v, w\}$, $\{t, u, w\}$, $\{t, v, w\}$, $\{u, v, w\}$, $\{t, u, v, w\}$.

15. Let $A = \{1, 2, 3\}$ and $B = \{4, 5\}$. List the elements of $A \times B$.

The elements of $A \times B$ are (1,4), (1,5), (2,4), (2,5), (3,4), (3,5).

16. If A, B, and C are sets, is $A \cup (B \cap C) = (A \cup B) \cap C$? Prove or give a counterexample.

False. Take $A = \{1\}$, $B = C = \emptyset$. The left side is $\{1\}$. The right side is \emptyset .

17. **Prove**
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}$$
.

Proof by induction. The base case is okay. If n = 1, then the left side of the proposed equation is 1 and the right side is $\frac{1(2)(3)}{6}$, which is also 1. The induction hypothesis is that for some fixed n

(IH)
$$\sum_{k=1}^{n} k^2 = \frac{n(n+1)(2n+1)}{6}.$$

We show that the formula holds at n+1. That is we show that

(WMS)
$$\sum_{k=1}^{n+1} k^2 = \frac{(n+1)(n+2)(2n+3)}{6}$$

The left side of (WMS) is

$$\sum_{k=1}^{n+1} k^2 = \sum_{k=1}^{n} k^2 + (n+1)^2,$$

and, by (IH), this is

$$\frac{n(n+1)(2n+1)}{6} + (n+1)^2 = (n+1)\left[\frac{n(2n+1)}{6} + \frac{6(n+1)}{6}\right]$$

$$= (n+1)\left[\frac{2n^2+n+6n+6}{6}\right] = (n+1)\left[\frac{2n^2+7n+6}{6}\right] = (n+1)\left[\frac{(2n+3)(n+2)}{6}\right],$$

which is the right side of (WMS).

18. Consider the infinite sequence $a_1 = \frac{1}{4}$, $a_2 = \frac{2}{9}$, $a_3 = \frac{3}{16}$, $a_4 = \frac{4}{25}$, $a_5 = \frac{5}{36}$, $a_6 = \frac{6}{49}$, ... What is a formula for a_n ?

a —	n	
$a_n =$	$(n+1)^2$	

19. Prove that there are infinitely many prime integers.

Suppose there are only finitely many prime integers. Call these integers p_1, p_2, \ldots, p_s . Consider $N = p_1 \times p_2 \times \cdots \times p_s + 1$. We see that N is bigger than all of the prime integers. We also see that N is not divisible by any of the primes p_1, p_2, \ldots, p_s . Since N is not divisible by any prime, N must be prime; but N is too big to be prime. This is a contradiction. Our supposition must be false. There are an infinite number of prime integers.

20. True or False. The sum of two irrational numbers is irrational. Give a proof or a counterexample.

False. $2 - \sqrt{2}$ and $\sqrt{2}$ are both irrational, but the sum of these two numbers is 2 which is rational.

21. Prove that the square of any integer has the form 3k or 3k + 1 for some integer k.

Let n be an arbitrary integer. There are three cases: $n = 3\ell$, $n = 3\ell + 1$, or $n = 3\ell + 2$ for some integer ℓ .

In the first case, $n = 3\ell$, so $n^2 = 9\ell^2 = 3(3\ell^2)$, which has the form 3k, with $k = 3\ell^2$.

In the second case, $n = 3\ell + 1$, so $n^2 = 9\ell^2 + 6\ell + 1 = 3(3\ell^2 + 2\ell) + 1$, which has the form 3k + 1, with $k = 3\ell^2 + 2\ell$.

In the third case, $n = 3\ell + 2$, so $n^2 = 9\ell^2 + 12\ell + 4 = 3(3\ell^2 + 4\ell + 1) + 1$, which has the form 3k + 1, with $k = 3\ell^2 + 4\ell + 1$.

22. True or False. If a, b, and c are integers with a|bc, then a|b or a|c. Give a proof or a counterexample.

False. $6|2 \cdot 3$, but 6/2 and 6/3.

23. Write the repeating decimal $6.2\overline{34}$ as the ratio of two integers.

Let $d = 6.2\overline{34}$. Observe that $100d = 623.4\overline{34}$, so $99d = 100d - d = 623.4\overline{34} - 6.2\overline{34} = 617.2$. Therefore $d = \frac{617.2}{99} = \boxed{\frac{6172}{990}}$.

24. Write "Being divisible by 6 is a sufficient condition for being divisible by 3." in if-then form.

If a number is divisible by 6, then the number is divisible by 3.

The contrapositive of $p \to q$ is $\sim q \to \sim p$. These statements take the same truth value as the truth values of p and q are T and F: