Math 174 Fall 2003 Final Exam Solutions

PRINT Your Name: \qquad
There are 25 problems on 7 pages. Each problem is worth 4 points. The exam is worth 100 points. CIRCLE your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.

If I know your e-mail address, I will e-mail your course grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail. Otherwise, get your course grade from VIP.

I will post the solutions on my website later today.
You may leave the binomial coefficient $\binom{n}{r}$ in any of your answers.

1. Consider the relation " $\leq "$ on the set of real numbers. Is this relation reflexive, symmetric, transitive? Explain.

The relation is reflexive since $a \leq a$ for all a. The relation is NOT symmetric since $1 \leq 2$, but $2 \not \leq 1$. The relation is transitive since if $a \leq b$ and $b \leq c$, then $a \leq c$.
2. If a and b are integers, then $a \equiv b \bmod 5$ if and only if $5 \mid(a-b)$. Describe the equivalance classes that correspond to this equivalence relation.

There are 5 equivalenance classes:

$$
\begin{gathered}
\{\ldots,-10,-5,0,5,10, \ldots\}, \quad\{\ldots,-9,-4,1,6,11, \ldots\}, \quad\{\ldots,-8,-3,2,7,12, \ldots\} \\
\{\ldots,-7,-2,3,8,13, \ldots\} \text { and }\{\ldots,-6,-1,4,9,14, \ldots\} .
\end{gathered}
$$

3. Suppose $n \equiv 1 \bmod 5$. Give a formula for $\left\lfloor\frac{n}{5}\right\rfloor$ which does not involve \rfloor.
If $n \equiv 1 \bmod 5$, then $\left\lfloor\frac{n}{5}\right\rfloor=\frac{n-1}{5}$.
4. Solve the recurrence relation $a_{0}=1000, a_{n}=(1.05) a_{n-1}+100$ for $1 \leq n$.

Observe that

$$
\begin{gathered}
a_{1}=(1.05) 1000+100, \quad a_{2}=(1.05)^{2} 1000+(1.05) 100+100, \\
a_{3}=(1.05)^{3} 1000+(1.05)^{2} 100+(1.05) 100+100 .
\end{gathered}
$$

Eventually, we see that

$$
\begin{aligned}
a_{n}=(1.05)^{n} 1000 & +100\left((1.05)^{n-1}+(1.05)^{n-2}+\cdots+(1.05)^{1}+1\right) \\
& =(1.05)^{n} 1000+100 \frac{(1.05)^{n}-1}{(1.05)-1} .
\end{aligned}
$$

5. Consider the Tower of Hanoi problem. There are three towers in a row: tower A, tower B, and tower C. There are n disks of different sizes stacked on tower A. One must move all n disks to tower C. One may NEVER place a bigger disk on top of a smaller disk. In the present problem, one may move a disk only to an ADJACENT tower. Let a_{n} be the minimum number of moves needed to transfer a stack of n disks from tower A to tower C. Find a_{1}, a_{2}, a_{3}. Find a recurrence relation for $a_{1}, a_{2}, a_{3}, \ldots$.
It is clear that $a_{1}=2$. Move the disk to tower B. Move the disk to tower C. For a_{2} : move the small disk to tower C (2 moves). Move the big disk to tower B (one move). Move the small disk back to tower A (two moves). Move the big disk to tower C (one move). Move the small disk back to tower C (2 moves). So, $a_{2}=8$. For a_{3} : move the two small disks to Tower C (a_{2} moves). Move the big disk to tower B (1 move). Move the two small disks to tower A (a_{2} moves). Move the big disk to tower C (1 move). Move the two small disks back to tower C (a_{2} moves). So, $a_{3}=3 a_{2}+2=26$. Of course, we now see how to do the general problem. Move the $n-1$ small disks to Tower C (a_{n-1} moves). Move the big disk to tower B (1 move). Move the $n-1$ small disks to tower A (a_{n-1} moves). Move the big disk to tower C (1 move). Move the $n-1$ small disks back to tower C (a_{n-1} moves $)$. So, $a_{n}=3 a_{n-1}+2$.
6. Does there exist a one-to-one and onto function from \mathbb{N} to $\mathbb{N} \times \mathbb{N}$, where \mathbb{N} is the set of positive integers? Explain.

View the elements of $\mathbb{N} \times \mathbb{N}$ as sitting in a grid:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	\ldots
$(2,1)$	$(2,2)$	$(2,3)$	$(2,4)$	\ldots
$(3,1)$	$(3,2)$	$(3,3)$	$(3,4)$	\ldots
$(4,1)$	$(4,2)$	$(4,3)$	$(4,4)$	\ldots
\vdots	\vdots	\vdots	\vdots	

Notice that every element of $\mathbb{N} \times \mathbb{N}$ sits on this grid exactly once. Count off the elements of $\mathbb{N} \times \mathbb{N}$ by marching down the diagonal lines from NorthEast to SouthWest as indicated:

$(1,1)$	$(1,2)$	$(1,3)$	$(1,4)$	\ldots
1,	2	4		
$(2,1)$	$(2,2)$	$(2,3)$	7	$(2,4)$
3	\ldots			
$(3,1)$	$(3,2)$	8	$(3,3)$	$(3,4)$
6	\ldots			
6	9	$, 1)$	$(4,2)$	$(4,3)$
10	$(4,4)$	\ldots		
\vdots	\vdots	\vdots	\vdots	

7. Let r, m, and n be integers with $0 \leq r \leq m, n$. Simplify $\binom{n}{0}\binom{m}{r}+\binom{n}{1}\binom{m}{r-1}+\binom{n}{2}\binom{m}{r-2}+\cdots+\binom{n}{r-1}\binom{m}{1}+\binom{n}{r}\binom{m}{0} \cdot($ Your answer should not have any \ldots or any summation signs.)

$$
\binom{n+m}{r}
$$

Suppose a committee has n men and m women. How many subcommittees of size r can be formed?
8. Let n be a positive integer. Simplify $\sum_{k=0}^{n} 2^{k}\binom{n}{k}$. (Your answer should not have any ... or any summation signs.)

$$
\sum_{k=0}^{n} 2^{k}\binom{n}{k}=(2+1)^{n}=3^{n}
$$

9. How many four tuples (i, j, k, ℓ) are there with $3 \leq i \leq j \leq k \leq \ell \leq 10$.

Think of 8 bins. The first bin contains 3 's. The second bin contains 4 's. The eighth bin contains 10 's. I walk past the bins and pick out 4 numbers. There is a one-to-one correspondence between legal 4 -tuples and work orders which consist of 4 picks and 7 switches. The answer is $\binom{4+7}{4}$.
10. How many bit strings of length 8 contain exactly three 1 's? (A bit string is a string of 0 's and 1 's.)
$\binom{8}{3}$.
11. How many integers between 1 and 1000 are relatively prime to 28 ?

Notice that $4(250)=1000,7(142)=994$, and $28(35)=980$. There are 1000 integers between 1 and $1000 ; 250$ of these integers are divisible by $4 ; 142$ are divisible by 7 . We have pitched out 35 twice. We must compensate for our over eagerness.

$$
1000-250-142+35
$$

12. A group of eight people attend a movie together. John and Mary are part of the group and they refuse to sit next to one another. How many ways may the eight people be arranged in a row?
There are 8! ways for the people to sit; 7! of these have John on Mary's left; 7! of these have John on Mary's right side.

$$
8!-2(7!)
$$

13. If the largest of 87 consecutive integers is 326 , what is the smallest?

$$
326-87+1
$$

14. Let $A=\{t, u, v, w\}$ and let S_{1} be the set of all subsets of A that do not contain w and S_{2} the set of all subsets of A that do contain w.
(a) Find S_{1}. The elements of S_{1} are: $\emptyset,\{t\},\{u\},\{v\},\{t, u\},\{t, v\}$, $\{u, v\},\{t, u, v\}$.
(b) Find S_{2}. The elements of S_{2} are: $\{w\},\{t, w\},\{u, w\},\{v, w\}$, $\{t, u, w\},\{t, v, w\},\{u, v, w\},\{t, u, v, w\}$.
15. Let $A=\{1,2,3\}$ and $B=\{4,5\}$. List the elements of $A \times B$.

The elements of $A \times B$ are $(1,4),(1,5),(2,4),(2,5),(3,4),(3,5)$.
16. If A, B, and C are sets, is $A \cup(B \cap C)=(A \cup B) \cap C$? Prove or give a counterexample.

False. Take $A=\{1\}, B=C=\emptyset$. The left side is $\{1\}$. The right side is \emptyset.
17. Prove $\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6}$.

Proof by induction. The base case is okay. If $n=1$, then the left side of the proposed equation is 1 and the right side is $\frac{1(2)(3)}{6}$, which is also 1 . The induction hypothesis is that for some fixed n

$$
\begin{equation*}
\sum_{k=1}^{n} k^{2}=\frac{n(n+1)(2 n+1)}{6} \tag{IH}
\end{equation*}
$$

We show that the formula holds at $n+1$. That is we show that

$$
\begin{equation*}
\sum_{k=1}^{n+1} k^{2}=\frac{(n+1)(n+2)(2 n+3)}{6} \tag{WMS}
\end{equation*}
$$

The left side of (WMS) is

$$
\sum_{k=1}^{n+1} k^{2}=\sum_{k=1}^{n} k^{2}+(n+1)^{2},
$$

and, by (IH), this is

$$
\begin{gathered}
\frac{n(n+1)(2 n+1)}{6}+(n+1)^{2}=(n+1)\left[\frac{n(2 n+1)}{6}+\frac{6(n+1)}{6}\right] \\
=(n+1)\left[\frac{2 n^{2}+n+6 n+6}{6}\right]=(n+1)\left[\frac{2 n^{2}+7 n+6}{6}\right]=(n+1)\left[\frac{(2 n+3)(n+2)}{6}\right],
\end{gathered}
$$

which is the right side of (WMS).
18. Consider the infinite sequence $a_{1}=\frac{1}{4}, a_{2}=\frac{2}{9}, a_{3}=\frac{3}{16}, a_{4}=\frac{4}{25}$, $a_{5}=\frac{5}{36}, a_{6}=\frac{6}{49}, \ldots$. What is a formula for a_{n} ?
$a_{n}=\frac{n}{(n+1)^{2}}$

19. Prove that there are infinitely many prime integers.

Suppose there are only finitely many prime integers. Call these integers $p_{1}, p_{2}, \ldots, p_{s}$. Consider $N=p_{1} \times p_{2} \times \cdots \times p_{s}+1$. We see that N is bigger than all of the prime integers. We also see that N is not divisible by any of the primes $p_{1}, p_{2}, \ldots, p_{s}$. Since N is not divisible by any prime, N must be prime; but N is too big to be prime. This is a contradiction. Our supposition must be false. There are an infinite number of prime integers.
20. True or False. The sum of two irrational numbers is irrational. Give a proof or a counterexample.

False. $2-\sqrt{2}$ and $\sqrt{2}$ are both irrational, but the sum of these two numbers is 2 which is rational.
21. Prove that the square of any integer has the form $3 k$ or $3 k+1$ for some integer k.

Let n be an arbitrary integer. There are three cases: $n=3 \ell, n=3 \ell+1$, or $n=3 \ell+2$ for some integer ℓ.

In the first case, $n=3 \ell$, so $n^{2}=9 \ell^{2}=3\left(3 \ell^{2}\right)$, which has the form $3 k$, with $k=3 \ell^{2}$.

In the second case, $n=3 \ell+1$, so $n^{2}=9 \ell^{2}+6 \ell+1=3\left(3 \ell^{2}+2 \ell\right)+1$, which has the form $3 k+1$, with $k=3 \ell^{2}+2 \ell$.

In the third case, $n=3 \ell+2$, so $n^{2}=9 \ell^{2}+12 \ell+4=3\left(3 \ell^{2}+4 \ell+1\right)+1$, which has the form $3 k+1$, with $k=3 \ell^{2}+4 \ell+1$.
22. True or False. If a, b, and c are integers with $a \mid b c$, then $a \mid b$ or $a \mid c$. Give a proof or a counterexample.

False. $6 \mid 2 \cdot 3$, but $6 \nmid 2$ and $6 \nmid 3$.
23. Write the repeating decimal $6.2 \overline{34}$ as the ratio of two integers.

Let $d=6.2 \overline{34}$. Observe that $100 d=623.4 \overline{34}$, so $99 d=100 d-d=$ $623.4 \overline{34}-6.2 \overline{34}=617.2$. Therefore $d=\frac{617.2}{99}=\frac{6172}{990}$.
24. Write "Being divisible by 6 is a sufficient condition for being divisible by 3 ." in if-then form.

If a number is divisible by 6 , then the number is divisible by 3 .
25. Prove that $p \rightarrow q$ is logically equivalent to the contrapositive of $p \rightarrow q$. The contrapositive of $p \rightarrow q$ is $\sim q \rightarrow \sim p$. These statements take the same truth value as the truth values of p and q are T and F :

p	q	$p \rightarrow q$	$\sim q \rightarrow \sim p$
T	T	T	T
T	F	F	F
F	T	T	T
F	F	T	T

