Math 174, Exam 4, Fall 2003

PRINT Your Name:

There are 10 problems on 4 pages. Each problem is worth 5 points. The exam is worth 50 points.

CIRCLE your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then **send me an e-mail**.

If you would like, I will leave your exam outside my office door later today, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 12:30 today.

You may leave the binomial coefficient $\binom{n}{r}$ in any of your answers.

- 1. Flip a coin ten times, what is the probabilty that the coin lands "Heads" exactly three times.
- 2. How many license plates are possible if every license plate consists of three letters followed by three numerical digits and no letter or digit is repeated.
- 3. How many solutions does the equation $y_1 + y_2 + y_3 + y_4 = 32$ have, if every y_i is an integer at least 5?
- 4. If $f: X \to Y$ and $g: Y \to Z$ are functions and $g \circ f: X \to Z$ is one-to-one, must f and g both be one-to-one? Prove or give a counterexample.
- 5. Find the coefficient of x^7 in $(2x+3)^{10}$.
- 6. Given an example of a function from \mathbb{Z} to \mathbb{Z} which is onto, but which is not one-to-one.
- 7. Simplify $\binom{n}{0} + \binom{n}{1} + \binom{n}{2} + \dots + \binom{n}{n-1} + \binom{n}{n}$. (Your answer should not have any ... or any summation signs.)
- 8. Solve the recurrence relation $a_0 = 3$ and $a_k = a_{k-1} + k$ for $1 \le k$.
- 9. A person makes an initial deposit of \$1,000 to a bank account earning interest at a rate of 6% per year compounded monthly (so the interest earned each month is $\frac{.06}{12} = .005$), and each month she adds an additional \$100 to the account. For each nonnegative integer n, let A_n be the amount in the account at the end of n months. Find a recurrence relation relating A_n to A_{n-1} .

- 10. A single pair of rabbits (male and female) is born at the beginning of a year. Assume:
 - (1) Rabbit pairs are not fertile during the first month of life, but there after give birth to four new male/female pairs at the end of every month;
 - (2) No rabbits die.

Let r_n equal the number of pairs of rabbits alive at the end of month n. Start with $r_0 = 1$. Find r_1 , r_2 and r_3 . Find a recurrence relation relating r_n to earlier r_k 's.