PRINT Your Name:
There are 11 problems on 4 pages. The exam is worth 50 points.

CIRCLE your answers. No Calculators.

WHEN YOU DO SOMETHING CLEVER, EXPLAIN YOUR WORK.

If I know your e-mail address, I will e-mail your grade to you. If I don't already know your e-mail address and you want me to know it, then send me an e-mail.

If you would like, I will leave your exam outside my office door later today, you may pick it up any time between then and the next class. Let me know if you are interested.

I will post the solutions on my website at about 12:30 today.
You may leave the binbomial coefficient $\binom{n}{r}$ in any of your answers.

1. (5 points) Flip a coin ten times, what is the proababilty that the coin lands "Heads" exactly four times.
2. (5 points) A committee consists of 10 people, 6 women and 4 men.
(a) How many subcommittees which consist of 6 people can be made?
(b) How many subcommittees which consist of 4 women and 2 men can be made?
3. (4 points) Six friends have pictures made. Each picture consists of 4 people arranged in a straight line? How many arrangements are possible?
4. (4 points) How many integers between 1 and 1000 are relatively prime to 10 ?
5. (5 points) Let $A=\{p, q, r, s\}$ and let S_{1} be the set of all subsets of A that do not contain p and S_{2} the set of all subsets of A that do contain p.
(a) Find S_{1}.
(b) Find S_{2}.
6. (4 points) True or False. If true, prove it. If false, then give a counterexample. For all sets A, B, and C, if $A \nsubseteq B$ and $B \nsubseteq C$, then $A \nsubseteq C$.
7. (5 points) True or False. If true, prove it. If false, then give a counterexample. For all integers $n \geq 2$,

$$
\left(1-\frac{1}{2^{2}}\right) \cdot\left(1-\frac{1}{3^{2}}\right) \cdot \ldots \cdot\left(1-\frac{1}{n^{2}}\right)=\frac{n+1}{2 n} .
$$

8. (5 points) True or False. If true, prove it. If false, then give a counterexample. For all integers $n \geq 1$,

$$
1+2^{4}+3^{4}+\cdots+n^{4}=n^{4}+n-1 .
$$

9. (4 points) True or False. If true, prove it. If false, then give a counterexample. If $p_{1}, p_{2}, p_{3}, \ldots, p_{r}$ are prime integers, then $N=$ $p_{1} p_{2} p_{3} \cdots p_{r}+1$ is a prime integer.
10. (4 points) Prove that there is no greatest even integer.
11. (5 points) How many permutations of a, b, c, d, e, f are there in which the first letter is a, b, c, or d and the last letter is c, d, e, or f.
