Solutions to Exam 1, Fall 2003, Math 174

PRINT Your Name:_____ There are 10 problems on 4 pages. Each problem is worth 5 points. *CIRCLE* your answers.

- 1. (a) Write 273 in base 2. $273 = 256 + 16 + 1 = 2^8 + 2^4 + 2^0 = 100010001_2$. (b) Write 273 in base 16. $273 = 256 + 16 + 1 = 16^2 + 16^1 + 1 = 111_{16}$.
- 2. Are $p \wedge (q \vee r)$ and $(p \wedge q) \vee (p \wedge r)$ logically equivalent? Justify your answer. These two statements ARE logically equivalent. This is the formula for distribution. Here is a truth table

p	q	r	$p \wedge (q \vee r)$	$(p \wedge q) \vee (p \wedge r)$
T	T	T	T	T
T	T	F	T	T
T	F	T	T	T
T	F	F	F	F
F	T	T	F	F
F	T	F	F	F
F	F	T	F	F
F	F	F	F	F

The two columns on the right have the same truth values for all choices for p, q, r. Thus, $p \land (q \lor r)$ and $(p \land q) \lor (p \land r)$ ARE logically equivalent.

- 3. What is negation of x < 2 or $4 \le x$? $2 \le x < 4$.
- 4. Write $(p \lor \sim q) \to r$ using \land , \lor , and \sim , but not \to . $(p \lor \sim q) \to r$ is logically equivalent to $\sim (p \lor \sim q) \lor r$.
- 5. Is the argument

$$\begin{array}{l} p \to q \\ \sim p \\ \therefore \sim q \end{array}$$

valid? Jutify your answer.

This argument is NOT valid. It exhibits the inverse error. Here is a truth table.

q	$p \to q$	$\sim p$	$\sim q$	
T	T	F	F	
F	F	F	T	
T	T	T	F	★
F	T	T	T	
	T F T	$ \begin{array}{cccc} T & T \\ F & F \\ T & T \\ \hline \end{array} $	$\begin{array}{cccc} T & T & F \\ T & T & F \\ F & F & F \\ T & T & T \\ - & - & - \end{array}$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

The hypotheses are both true in rows 3 and 4. The conclusion is false in row 3. This argument is not valid.

6. True or False. If true, **prove** it. If false, then give a **counterexample**. For all integers n and m, if n - m is even, then $n^3 - m^3$ is even.

TRUE. Assume n-m is even. We will prove that $n^3 - m^3$ is also even. We know that $n-m = 2\ell$ for some integer ℓ . It follows that

$$n^{3} - m^{3} = (n - m)(n^{2} + nm + m^{2}) = 2\ell(n^{2} + nm + m^{2}).$$

The number $\ell(n^2 + nm + m^2)$ is an integer; hence, $n^3 - m^3$ is also even.

7. True or False. If true, **prove** it. If false, then give a **counterexample**. The sum of any two irrational numbers is irrational.

This statement is FALSE. The numbers $\sqrt{2}$ and $-\sqrt{2}$ are both irrational, but the sum of these two numbers is zero, which is rational.

8. Is the argument:

All healthy people eat an apple a day.

Helen eats an apple a day;

therefore, Helen is a healthy person.

valid? Jutify your answer.

This argument is NOT valid. It exhibits the converse error. Let p represent Helen is healthy, and q represent Helen eats an apple a day. The argument is

$$p \rightarrow q$$
 q
 $\therefore p$

If you need a truth table, it is

p	q	$p \rightarrow q$	q	p	
T	T	T	T	T	
T	F	F	F	T	
F	T	T	T	F	\star
F	F	T	F	F	

The hypotheses are all true in rows 1 and 3. The conclusion is false in row 3. The argument is not valid.

9. Write the following sentence in if – then form: "Earning a grade of C minus in this course is a sufficient condition for it to count toward graduation."

If one earns a grade of C minus in this course, then the course counts towards graduation.

10. What is the negation of: \forall colors $\,C\,,\,\,\exists\,$ an animal $\,A\,$ such that $\,A\,$ is colored $\,C\,.\,$

 \exists a color C, such that \forall animals A, A is not colored C.