Math 174, Fall 2003, Solution to Quiz 8

Problem: If $f: X \rightarrow Y$ and $g: Y \rightarrow Z$ are functions and $g \circ f: X \rightarrow Z$ is one-to-one, must f and g both be one-to-one? Prove or give a counterexample.

Answer: NO! The function g does not have to be one-to-one. Consider $X=Z=\{1\}, Y=\{1,2\}, f: X \rightarrow Y$ given by $f(1)=1$, and $g: Y \rightarrow Z$ given by $g(1)=g(2)=1$. Observe that $g \circ f:\{1\} \rightarrow\{1\}$, is $(g \circ f)(1)=1$, which is one-to-one, but g is not one-to-one since $1 \neq 2$ and $g(1)=g(2)$.

