Math 174, Fall 2003, Solution to Quiz 5

Problem: Let $A=\{t, u, v, w\}$ and let S_{1} be the set of all subsets of A that do not contain w and S_{2} the set of all subsets of A that do contain w.
(a) Find S_{1}.
(b) Find S_{2}.
(c) Are S_{1} and S_{2} disjoint?
(d) Compare the sizes of S_{1} and S_{2}.
(e) How many elements are in $S_{1} \cup S_{2}$?
(f) What is the relation between $S_{1} \cup S_{2}$ and $\mathcal{P}(A)$?

Answer:

(a) The elements of S_{1} are: $\emptyset,\{t\},\{u\},\{v\},\{t, u\},\{t, v\},\{u, v\}$, $\{t, u, v\}$.
(b) The elements of S_{2} are: $\{w\},\{t, w\},\{u, w\},\{v, w\},\{t, u, w\}$, $\{t, v, w\},\{u, v, w\},\{t, u, v, w\}$.
(c) Yes, the sets S_{1} and S_{2} ARE disjoint.
(d) The sets S_{1} and S_{2} each have 8 elements.
(e) The set $S_{1} \cup S_{2}$ has 16 elements.
(f) The sets $S_{1} \cup S_{2}$ and $\mathcal{P}(A)$ are equal.

