Math 174, Fall 2003, Solution to Quiz 4

Question: Prove that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for all integers $n \geq 1$.
Answer: Proof by induction. For each integer n with $n \geq 1$, let $P(n)$ be the statement:

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

Base case. We show that $P(1)$ is true. Well, $P(1)$ is the statement

$$
\frac{1}{1 \cdot 2}=\frac{1}{1+1}
$$

This is indeed true.
Inductive step. We assume that $P(n)$ is true for some n. We must show that $P(n+1)$ is true. In other words, we assume that

$$
\begin{equation*}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1} \tag{IH}
\end{equation*}
$$

We must prove that

$$
\begin{equation*}
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}+\frac{1}{(n+1)(n+2)}=\frac{n+1}{n+2} \tag{*}
\end{equation*}
$$

The left side of $\left({ }^{*}\right)$ is

$$
\left[\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}\right]+\frac{1}{(n+1)(n+2)}
$$

which according to (IH) is equal to

$$
\begin{gathered}
\frac{n}{n+1}+\frac{1}{(n+1)(n+2)}=\frac{n(n+2)+1}{(n+1)(n+2)}=\frac{n^{2}+2 n+1}{(n+1)(n+2)}=\frac{(n+1)^{2}}{(n+1)(n+2)} \\
=\frac{(n+1)}{(n+2)}
\end{gathered}
$$

and this is the right side of $\left({ }^{*}\right)$. We have completed our proof. We conclude that

$$
\frac{1}{1 \cdot 2}+\frac{1}{2 \cdot 3}+\cdots+\frac{1}{n(n+1)}=\frac{n}{n+1}
$$

for all integers $n \geq 1$.

