PRINT Your Name: \qquad

Quiz - September 14, 2004

The the value of

$$
\sin \left[\arccos \left(\frac{3}{5}\right)+\arccos \left(\frac{5}{13}\right)\right] .
$$

Answer: We see that

$$
\begin{gathered}
\sin \left[\arccos \left(\frac{3}{5}\right)+\arccos \left(\frac{5}{13}\right)\right] \\
=\sin \left(\arccos \left(\frac{3}{5}\right)\right) \cos \left(\arccos \left(\frac{5}{13}\right)\right)+\cos \left(\arccos \left(\frac{3}{5}\right)\right) \sin \left(\arccos \left(\frac{5}{13}\right)\right) .
\end{gathered}
$$

It is clear that $\cos \left(\arccos \left(\frac{5}{13}\right)\right)=\frac{5}{13}$ and $\cos \left(\arccos \left(\frac{3}{5}\right)\right)$. Draw a triangle to see that $\sin \left(\arccos \left(\frac{3}{5}\right)\right)=\frac{4}{5}$. Draw another triangle to see that $\sin \left(\arccos \left(\frac{5}{13}\right)\right)=\frac{12}{13}$. It follows that the answer is

$$
\left(\frac{4}{5}\right)\left(\frac{5}{13}\right)+\left(\frac{3}{5}\right)\left(\frac{12}{13}\right)=\frac{56}{65} .
$$

