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Quiz – November 12, 2004

Consider the power series
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For which x does f(x) converge? Justify your answer.

Answer: The series is

f(x) =
∞∑

k=0
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We apply the ratio test. Let
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If ρ < 1 , then f(x) converges. If 1 < ρ , then f(x) diverges. We have to
study ρ = 1 further. Well, ρ < 1 when |x+1|

2
< 1 ; that is |x + 1| < 2 ; that is,

−2 < x + 1 < 2 ; or −3 < x < 1 . We also see that 1 < ρ for x < −3 also for
1 < x . The endpoints x = −3 and x = 1 need special attention. We see that
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which diverges by the Individual Term Test for Divergence since lim
k→∞

(−1)k does

not exist; and hence is not equal to zero. Also,
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which diverges by the Individual Term Test for Divergence since lim
k→∞

1 = 1 , which

is not zero. We conclude that

f(x) converges for −3 < x < 1 and diverges everywhere else.


