Exam 1, Math 142, Fall 1998, Problems 3, 4, 9, and 10

3. Find the area of the region bounded by y = e” , and the line through (0,1) and
(Le).

The equation of the lineis y—1=(e—1)z,or y =(e—1)z+ 1. For our
region, the line has a larger y-coordinate than the exponential curve. So,
the area is
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4. Simplify cos [cos_1 (%) + sin™! (%)} :
We have
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Think about the right triangle whose sides are 3 — 4 — 5 to see that
sin (cos_1 (%)) = % Think about the right triangle whose sides are

5—12 — 13 to see that cos (sin_1 (%)) = % . Thus,
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9. Find f L
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Let v =Inz. It follows that du = %dm . Thus,

1 d
/ dm:/—u:1n|u|+c:ln|lnx|+0.
u

zlnx

10. Find [(s3 + 5o)dw .
We see that
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