
Exam 1, Math 142, Fall 1998, Problems 3, 4, 9, and 10

3. Find the area of the region bounded by y = ex , and the line through (0; 1) and

(1; e) .

The equation of the line is y � 1 = (e � 1)x , or y = (e � 1)x + 1 . For our

region, the line has a larger y -coordinate than the exponential curve. So,

the area is
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Think about the right triangle whose sides are 3 � 4 � 5 to see that
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9. Find
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Let u = lnx . It follows that du = 1

x
dx . Thus,
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