Fall 2001, Exam 2, Math 142, The solution to problems 7, 8, 9, 10, 11.
7. Find $\int \frac{e^{2 x}}{1+e^{2 x}} d x$. Check your answer.

Let $u=1+e^{2 x}$. Then $d u=2 e^{2 x} d x$. The original integral is equal to

$$
\frac{1}{2} \int \frac{d u}{u}=\frac{1}{2} \ln |u|+c=\frac{1}{2} \ln \left(1+e^{2 x}\right)+C
$$

Of course, the derivative of $\frac{1}{2} \ln \left(1+e^{2 x}\right)$ is $\frac{e^{2 x}}{1+e^{2 x}}$.
8. Find $\int \frac{e^{x}}{1+e^{2 x}} d x$. Check your answer.

Let $u=e^{x}$. Then $d u=e^{x} d x$. The original integral is equal to

$$
\int \frac{d u}{1+u^{2}} d u=\arctan u+c=\arctan e^{x}+C
$$

Of course, the derivative of $\arctan e^{x}$ is $\frac{e^{x}}{1+e^{2 x}}$.
9. Solve the differential equation $\frac{d y}{d x}-\frac{y}{x}=3 x^{3}$. Check your answer.

This is a first order linear differential equation. Let

$$
\mu=e^{\int \frac{-1}{x} d x}=e^{-\ln x}=\frac{1}{x}
$$

Multiply both sides by $\mu$ to get

$$
\frac{1}{x} \frac{d y}{d x}-\frac{y}{x^{2}}=3 x^{2} .
$$

Integrate with respect to $x$ to get

$$
\frac{1}{x} y=x^{3}+C
$$

So, $y=x^{4}+c x$. We check this answer. Observe that

$$
\frac{d y}{d x}-\frac{y}{x}=4 x^{3}+c-\left(x^{3}+c\right)=3 x^{3}
$$

10. Let $f(x)=x^{2}-2 x$ for $x \leq 1$. Find $f^{-1}(x)$.

Let $y=f^{-1}(x)$. So, $f(y)=x$. It follows that $y^{2}-2 y=x$ :

$$
\begin{aligned}
& y^{2}-2 y+1=x+1 \\
& (y-1)^{2}=x+1 \\
& y-1= \pm \sqrt{x+1}
\end{aligned}
$$

But, $y$ is in the domain of $f$; so, $y \leq 1$. Thus, $y=1-\sqrt{x+1}$. The answer is $f^{-1}(x)=1-\sqrt{x+1}$.
11. Find the volume of the solid generated by revolving the region bounded by $y=e^{x}$, the $x$-axis, the $y$-axis, and $x=1$ about the $x$-axis.
Spin the rectangle. Get a disc of volume $\pi r^{2} t$, where $t=d x$, and $r$ is equal to the $y$-coordinate, which is $e^{x}$. So the volume is

$$
\pi \int_{0}^{1} e^{2 x} d x=\left.\pi \frac{e^{2 x}}{2}\right|_{0} ^{1}=\frac{\pi}{2}\left(e^{2}-1\right)
$$

The picture is on a separate page.

