Fall 2001, Exam 2, Math 142, The solution to problems 7, 8, 9, 10, 11.

7. Find $\int \frac{e^{2x}}{1+e^{2x}} dx$. Check your answer. Let $u = 1 + e^{2x}$. Then $du = 2e^{2x} dx$. The original integral is equal to $\frac{1}{2} \int \frac{du}{u} = \frac{1}{2} \ln |u| + c = \boxed{\frac{1}{2} \ln(1+e^{2x}) + C}.$

Of course, the derivative of
$$\frac{1}{2}\ln(1+e^{2x})$$
 is $\frac{e^{2x}}{1+e^{2x}}$.

8. Find $\int \frac{e^x}{1+e^{2x}} dx$. Check your answer. Let $u = e^x$. Then $du = e^x dx$. The original integral is equal to $\int \frac{du}{1+u^2} du = \arctan u + c = \boxed{\arctan e^x + C}.$

Of course, the derivative of $\arctan e^x$ is $\frac{e^x}{1+e^{2x}}$.

9. Solve the differential equation $\frac{dy}{dx} - \frac{y}{x} = 3x^3$. Check your answer. This is a first order linear differential equation. Let

$$\mu = e^{\int \frac{-1}{x} \, dx} = e^{-\ln x} = \frac{1}{x}$$

Multiply both sides by μ to get

$$\frac{1}{x}\frac{dy}{dx} - \frac{y}{x^2} = 3x^2.$$

Integrate with respect to x to get

$$\frac{1}{x}y = x^3 + C.$$

So, $y = x^4 + cx$. We check this answer. Observe that $\frac{dy}{dx} - \frac{y}{x} = 4x^3 + c - (x^3 + c) = 3x^3.$

10. Let
$$f(x) = x^2 - 2x$$
 for $x \le 1$. Find $f^{-1}(x)$.
Let $y = f^{-1}(x)$. So, $f(y) = x$. It follows that $y^2 - 2y = x$:
 $y^2 - 2y + 1 = x + 1$
 $(y - 1)^2 = x + 1$
 $y - 1 = \pm \sqrt{x + 1}$

But, y is in the domain of f; so, $y \le 1$. Thus, $y = 1 - \sqrt{x+1}$. The answer is $f^{-1}(x) = 1 - \sqrt{x+1}$.

11. Find the volume of the solid generated by revolving the region bounded by $y = e^x$, the x-axis, the y-axis, and x = 1 about the x-axis. Spin the rectangle. Get a disc of volume $\pi r^2 t$, where t = dx, and r is equal to the y-coordinate, which is e^x . So the volume is

$$\pi \int_0^1 e^{2x} dx = \left. \pi \frac{e^{2x}}{2} \right|_0^1 = \left[\frac{\pi}{2} (e^2 - 1) \right].$$

The picture is on a separate page.