Define the definite integral. Give a complete definition. Be sure to explain all of your notation.

Let $f(x)$ be a continuous function defined on the closed interval $[a, b]$. For each partition P of $[a, b]$ of the form $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, let M_{i} be the maximum value of $f(x)$ on the subinterval $\left[x_{i-1}, x_{i}\right]$ and let m_{i} be the minimum value of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$. If there is exactly one number with

$$
\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \leq \text { this number } \leq \sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

as P varies over all partitions of $[a, b]$, then this number is called the definite integral of f on $[a, b]$ and this number is denoted $\int_{a}^{b} f(x) d x$.

