Math 142, Final Exam, Fall 2010
Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 100 points. Each problem is worth 5 points. SHOW your work. CIRCLE your answer.
No Calculators or Cell phones.

1. Consider the region bounded by $y=x^{2}$ and $x=y-6$. Revolve the region about $x=-4$. Find the volume of the resulting solid.
2. Consider a solid S. The base of S is an elliptical region with boundary curve $4 x^{2}+9 y^{2}=36$. The cross sections of S perpendicular to the x-axis are squares. Find the volume of S.
3. Consider the sequence $\left\{a_{n}\right\}$ with $a_{0}=0$, and for all $n \geq 1$, $a_{n}=\sqrt{20+a_{n-1}}$. Prove that this sequence is increasing. Prove that this sequence is bounded. Deduce that the sequence converges. Find the limit of the sequence.
4. Suppose that the government pumps an extra $\$ 1$ billion into the economy. Assume that each business and individual saves 25% of its income and spends the rest, so that of the initial $\$ 1$ billion, 75% is respent by individuals and businesses. Of that amount, 75% is spent, and so forth. What is the total increase in spending due to the government action?
5. Let $f(x)$ be the power series $\sum_{n=0}^{\infty} \frac{(x-3)^{n}}{n 3^{n}}$. Where does $f(x)$ converge?
6. Find the second Taylor Polynomial $T_{2}(x)$ for $f(x)=\sqrt{x+1}$ about $a=0$. Give an upper bound for the error that is introduced if $T_{2}(x)$ is used to approximate $f(x)$ for $0 \leq x \leq .2$.
7. Find $\lim _{x \rightarrow 0} \frac{\sin x^{2}-x^{2}+\frac{1}{6} x^{6}}{x^{9}}$.
8. Approximate $\int_{0}^{1} x \sin \left(x^{3}\right) d x$ with an error at most 10^{-3}. Justify your answer very thoroughly.
9. Approximate $\sum_{n=1}^{\infty} \frac{1}{n^{4}}$ with an error of at most $\frac{1}{100}$. Explain what you are doing very thoroughly.
10. Does $\sum_{n=1}^{\infty} \frac{2 n+3}{4 n^{2}+5}$ converge? Justify your answer very thoroughly.
11. Find $\int_{0}^{3} \frac{1}{(x-1)^{2}} d x$.
12. Define the definite integral. Give a complete definition. Be sure to explain all of your notation.

Let $f(x)$ be a continuous function defined on the closed interval $[a, b]$. For each partition P of $[a, b]$ of the form $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$, let M_{i} be the maximum value of $f(x)$ on the subinterval $\left[x_{i-1}, x_{i}\right]$ and let m_{i} be the minimum value of $f(x)$ on $\left[x_{i-1}, x_{i}\right]$. If there is exactly one number with

$$
\sum_{i=1}^{n} m_{i}\left(x_{i}-x_{i-1}\right) \leq \text { this number } \leq \sum_{i=1}^{n} M_{i}\left(x_{i}-x_{i-1}\right)
$$

as P varies over all partitions of $[a, b]$, then this number is called the definite integral of f on $[a, b]$ and this number is denoted $\int_{a}^{b} f(x) d x$.
13. Find $\int e^{2 x} \cos x d x$. Check your answer.
14. Find $\int \frac{3 x^{2}-x+3}{(x-2)\left(x^{2}+9\right)} d x$. Check your answer.

Use partial fractions to write

$$
\frac{3 x^{2}-x+3}{(x-2)\left(x^{2}+9\right)}=\frac{1}{x-2}+\frac{2 x+3}{x^{2}+9} .
$$

The integral is

$$
\int \frac{1}{x-2}+\frac{2 x+3}{x^{2}+9} d x=\ln |x-2|+\ln \left(x^{2}+9\right)+\arctan \frac{x}{3}+C
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\frac{1}{x-2}+\frac{2 x}{x^{2}+9}+\frac{\frac{1}{3}}{\left(\frac{x}{3}\right)^{2}+1}=\frac{1}{x-2}+\frac{2 x}{x^{2}+9}+\frac{9\left(\frac{1}{3}\right)}{9\left(\left(\frac{x}{3}\right)^{2}+1\right)} \\
=\frac{1}{x-2}+\frac{2 x}{x^{2}+9}+\frac{3}{\left(x^{2}+9\right)}= \\
=\frac{x^{2}+9+(2 x+3)(x-2)}{x^{2}+9}=\frac{x^{2}+9+2 x^{2}-x-6}{x^{2}+9} \\
=\frac{3 x^{2}-x+3}{x^{2}+9} .
\end{gathered}
$$

15. Find $\int \sin ^{4} x \cos ^{3} x d x$. Check your answer.

Save $\cos x$. Convert the other $\cos ^{2} x$ into $\sin x$'s. Let $u=\sin x$. It follows that $d u=\cos x d x$. The problem equals

$$
\begin{aligned}
\int \sin ^{4} x\left(1-\sin ^{2} x\right) \cos x d x & =\int u^{4}\left(1-u^{2}\right) d u=\int\left(u^{4}-u^{6}\right) d u=\frac{u^{5}}{5}-\frac{u^{7}}{7}+C \\
& =\frac{\sin ^{5} x}{5}-\frac{\sin ^{7} x}{7}+C .
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\sin ^{4} x \cos x-\sin ^{6} x \cos x=\sin ^{4} x \cos x\left(1-\sin ^{2} x\right)
$$

16. Find $\int \frac{d x}{x \sqrt{\ln x}}$. Check your answer.

Answer: Let $u=\ln x$. Then $d u=\frac{1}{x} d x$. The integral is equal to

$$
\int u^{-1 / 2} d u=2 \sqrt{u}+C=2 \sqrt{\ln x}+C \text {. }
$$

Check. The derivative of the proposed answer is

$$
2\left(\frac{1}{2}\right) \frac{1}{\sqrt{\ln x}} \frac{1}{x} \checkmark
$$

17. Find $\int \sec ^{6} t d t$. Check your answer.

Answer: Save $\sec ^{2} t$. Convert the remaining $\sec ^{4} t$ to $\tan t$'s using $\tan ^{2} t+1=$ $\sec ^{2} t$. Let $u=\tan t$. It follows that $d u=\sec ^{2} t d t$. The original problem is equal to
$\int\left(\tan ^{2} t+1\right)^{2} \sec ^{2} t d t=\int\left(u^{2}+1\right)^{2} d u=\int\left(u^{4}+2 u^{2}+1\right) d u=\frac{u^{5}}{5}+\frac{2 u^{3}}{3}+u+C$

$$
=\frac{\tan ^{5} t}{5}+\frac{2 \tan ^{3} t}{3}+\tan t+C .
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
\tan ^{4} t \sec ^{2} t+2 \tan ^{2} t \sec ^{2} t+\sec ^{2} t & =\sec ^{2} t\left(\tan ^{4}+2 \tan ^{2} t+1\right)=\sec ^{2} t\left(\tan ^{2} t+1\right)^{2} \\
& =\sec ^{2} t \sec ^{4} t . \checkmark
\end{aligned}
$$

18. Find $\int \tan ^{5} x d x$. Check your answer.

Answer: Save $\tan x$. Convert the remaining $\tan ^{4} x$ to $\sec x$'s using $\tan ^{2} x+1=$ $\sec ^{2} x$. Let $u=\sec x$. It follows that $d u=\sec x \tan x d x$. The original problem is equal to

$$
\begin{aligned}
& \int\left(\sec ^{2} x-1\right)^{2} \tan x d x=\int \frac{\left(u^{2}-1\right)^{2}}{u} d u=\int\left(u^{3}-2 u+\frac{1}{u}\right) d u \\
& =\frac{u^{4}}{4}-2 u^{2}+\ln |u|+C=\frac{\sec ^{4} x}{4}-\sec ^{2} x+\ln |\sec x|+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\sec ^{3} x \sec x \tan x-2 \sec x \sec x \tan x+\tan x=\tan x\left(\sec ^{4} x-2 \sec ^{2} x+1\right)= \\
\tan x\left(\sec ^{2} x-1\right)^{2}=\tan x \tan ^{4} x . \checkmark
\end{gathered}
$$

19. Find $\int \sqrt{5+4 x-x^{2}} d x$. Check your answer.

Answer: Complete the square $5+4 x-x^{2}=5+4-\left(x^{2}-4 x+4\right)=9-(x-2)^{2}$. We let $x-2=3 \sin \theta$. It follows that $d x=3 \cos \theta d \theta$ and $9-(x-2)^{2}=9-9 \sin ^{2} \theta=$ $9 \cos ^{2} \theta$. The original problem is

$$
\begin{gathered}
\int \sqrt{5+4 x-x^{2}} d x=\int \sqrt{9-(x-2)^{2}} d x=9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta \\
=\frac{9}{2}(\theta+(1 / 2) \sin 2 \theta)+C=\frac{9}{2}(\theta+\sin \theta \cos \theta)+C \\
=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{9-(x-2)^{2}}}{3}\right)+C
\end{gathered}
$$

$$
\begin{aligned}
& =\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{5+4 x-x^{2}}}{3}\right)+C \\
& =\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{5+4 x-x^{2}}+C
\end{aligned}
$$

Check. The derivative of the proposed answer is

$$
\begin{gathered}
\quad \frac{9}{2} \frac{1 / 3}{\sqrt{1-\left(\frac{x-2}{3}\right)^{2}}}+(1 / 2)\left[(x-2) \frac{4-2 x}{2 \sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{9}{2} \frac{1 / 3}{\frac{1}{3} \sqrt{9-(x-2)^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{9}{2} \frac{1}{\sqrt{5+4 x-x^{2}}}+(1 / 2)\left[(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right] \\
=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[9-(x-2)^{2}+5+4 x-x^{2}\right] \\
=\frac{1}{2 \sqrt{5+4 x-x^{2}}}\left[2\left(5+4 x-x^{2}\right)\right]=\sqrt{5+4 x-x^{2}} .
\end{gathered}
$$

20. Find $\int \sqrt{x^{2}+2 x} d x$. Check your answer.

Answer: We complete the square: $x^{2}+2 x=\left(x^{2}+2 x+1\right)-1=(x+1)^{2}-1$. Let $x+1=\sec \theta$. It follows that $(x+1)^{2}-1=\tan ^{2} \theta$ and $d x=\sec \theta \tan \theta d \theta$. The original problem is equal to

$$
\int \tan ^{2} \theta \sec \theta d \theta
$$

We use integration by parts. Let $u=\tan \theta$ and $d v=\sec \theta \tan \theta d \theta$. It follows that $d u=\sec ^{2} \theta d \theta$ and $v=\sec \theta$. So

$$
\begin{aligned}
\int \tan ^{2} \theta \sec \theta d \theta & =\sec \theta \tan \theta-\int \sec ^{3} \theta d \theta=\sec \theta \tan \theta-\int\left(\tan ^{2} \theta+1\right) \sec \theta d \theta \\
& =\sec \theta \tan \theta-\int \sec \theta d \theta-\int \tan ^{2} \theta \sec \theta d \theta
\end{aligned}
$$

Add $\int \tan ^{2} \theta \sec \theta d \theta$ to both sides to see that

$$
2 \int \tan ^{2} \theta \sec \theta d \theta=\sec \theta \tan \theta-\int \sec \theta d \theta
$$

So

$$
\begin{gathered}
\int \sqrt{x^{2}+2 x} d x=\int \tan ^{2} \theta \sec \theta d \theta=(1 / 2)\left[\sec \theta \tan \theta-\int \sec \theta d \theta\right] \\
=(1 / 2)[\sec \theta \tan \theta-\ln |\sec \theta+\tan \theta|]+C \\
=(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left|(x+1)+\sqrt{x^{2}+2 x}\right|\right]+C .
\end{gathered}
$$

Check. The derivative of

$$
(1 / 2)\left[(x+1) \sqrt{x^{2}+2 x}-\ln \left[(x+1)+\sqrt{x^{2}+2 x}\right]\right.
$$

is

$$
\begin{gathered}
(1 / 2)\left[\frac{(x+1)(2 x+2)}{2 \sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{2 x+2}{2 \sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1+\frac{x+1}{\sqrt{x^{2}+2 x}}}{(x+1)+\sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{\sqrt{x^{2}+2 x}+x+1}{\left[(x+1)+\sqrt{x^{2}+2 x}\right] \sqrt{x^{2}+2 x}}\right] \\
=(1 / 2)\left[\frac{(x+1)^{2}}{\sqrt{x^{2}+2 x}}+\sqrt{x^{2}+2 x}-\frac{1}{\sqrt{x^{2}+2 x}}\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[(x+1)^{2}+x^{2}+2 x-1\right] \\
=\frac{1}{2 \sqrt{x^{2}+2 x}}\left[2 x^{2}+4 x\right] \\
=\frac{1}{\sqrt{x^{2}+2 x}}\left[x^{2}+2 x\right]=\sqrt{x^{2}+2 x} .
\end{gathered}
$$

