Math 142, Exam 1, Solutions Fall 2012

Write everything on the blank paper provided. You should KEEP this piece of paper. If possible: return the problems in order (use as much paper as necessary), use only one side of each piece of paper, and leave 1 square inch in the upper left hand corner for the staple. If you forget some of these requests, don't worry about it - I will still grade your exam.
The exam is worth 50 points. SHOW your work. $C I R C L E$ your answer. CHECK your answer whenever possible.

No Calculators or Cell phones.

The solutions will be posted later today.

1. (7 points) Define the definite integral. Give a complete definition. Be sure to explain all of your notation.

Let $f(x)$ be a function defined on the closed interval $a \leq x \leq b$. For each partition P of the closed interval $[a, b]$ (so, P is $a=x_{0} \leq x_{1} \leq \cdots \leq x_{n}=b$), let $\Delta_{i}=x_{i}-x_{i-1}$, and pick $x_{i}^{*} \in\left[x_{i-1}, x_{i}\right]$. The definite integral $\int_{a}^{b} f(x) d x$ is the limit over all partitions P as all Δ_{i} go to zero of $\sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta_{i}$.
2. (7 points) State both parts of the Fundamental Theorem of Calculus. Be sure to explain all of your notation.

Let f be a continuous function defined on the closed interval $[a, b]$.
(a) If $A(x)$ is the function $A(x)=\int_{a}^{x} f(t) d t$, for all $x \in[a, b]$, then $A^{\prime}(x)=f(x)$ for all $x \in[a, b]$.
(b) If $F(x)$ is any antiderivative of $f(x)$, then $\int_{a}^{b} f(x) d x=F(b)-F(a)$.
3. (7 points) Find $\int \frac{e^{\frac{1}{x}}}{x^{2}} d x$. Check your answer.

Answer: Let $u=\frac{1}{x}$. Compute $d u=\frac{-1}{x^{2}} d x$. The original integral is equal to

$$
=-\int e^{u} d u=-e^{u}+C=-e^{\frac{1}{x}}+C \text {. }
$$

Check: The derivative of the proposed answer is

$$
-(-1) e^{\frac{1}{x}} \frac{1}{x^{2}} \cdot \checkmark
$$

4. (7 points) Find $\int(\ln x)^{2} d x$. Check your answer.

Answer: Try integration by parts: $\int u d v=u v-\int v d u$. Let $u=(\ln x)^{2}$ and $d v=d x$. It follows that $d u=2 \ln x\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2 \int \ln x d x
$$

Use integration by parts again. Let $u=\ln x$ and $d v=d x$. It follows that $d u=\left(\frac{1}{x}\right) d x$ and $v=x$. The original integral is

$$
x(\ln x)^{2}-2\left(x \ln x-\int d x\right)=x(\ln x)^{2}-2(x \ln x-x)+C .
$$

Check. The derivative of the proposed answer is

$$
\begin{aligned}
x 2 \ln x\left(\frac{1}{x}\right)+(\ln x)^{2}-2\left(x\left(\frac{1}{x}\right)\right. & +\ln x-1)=2 \ln x+(\ln x)^{2}-2(1+\ln x-1) \\
& =(\ln x)^{2} . \checkmark
\end{aligned}
$$

5. (7 points) Find $\int \sin 8 x \cos 5 x d x$. Check your answer.

Answer: Add the two identities

$$
\begin{aligned}
& \sin (A+B)=\sin A \cos B+\cos A \sin B \\
& \sin (A-B)=\sin A \cos B-\cos A \sin B
\end{aligned}
$$

to get

$$
\sin (A+B)+\sin (A-B)=2 \sin A \cos B
$$

Divide by 2 to get

$$
\frac{1}{2}[\sin (A+B)+\sin (A-B)]=\sin A \cos B
$$

Take $A=8 x$ and $B=5 x$. We have

$$
\int \sin 8 x \cos 5 x d x=\frac{1}{2} \int[\sin (13 x)+\sin (3 x)] d x=\frac{-\cos (13 x)}{26}-\frac{\cos (3 x)}{6}+C
$$

6. (7 points) Find $\int \frac{d x}{\sqrt{x^{2}+16}}$. Check your answer.

Answer: Let $x=4 \tan \theta$. Compute $d x=4 \sec ^{2} \theta d \theta$ and

$$
x^{2}+16=16 \tan ^{2} \theta+16=16 \sec ^{2} \theta .
$$

The original integral is

$$
\begin{gathered}
\int \frac{4 \sec ^{2} \theta d \theta}{4 \sec \theta}=\int \sec \theta d \theta=\ln |\sec \theta+\tan \theta|+C=\ln \left|\frac{\sqrt{x^{2}+16}}{4}+\frac{x}{4}\right|+C \\
=\ln \left|\sqrt{x^{2}+16}+x\right|-\ln (4)+C=\ln \left|\sqrt{x^{2}+16}+x\right|+K
\end{gathered}
$$

where K is the constant $K=\ln (4)+C$.
Check: The derivative of the proposed answer is

$$
\begin{gathered}
\frac{\frac{2 x}{2 \sqrt{x^{2}+16}}+1}{\sqrt{x^{2}+16}+x}=\frac{\left(\frac{x}{\sqrt{x^{2}+16}}+1\right) \sqrt{x^{2}+16}}{\left(\sqrt{x^{2}+16}+x\right) \sqrt{x^{2}+16}}=\frac{x+\sqrt{x^{2}+16}}{\left(\sqrt{x^{2}+16}+x\right) \sqrt{x^{2}+16}} \\
=\frac{1}{\sqrt{x^{2}+16}} \cdot \checkmark
\end{gathered}
$$

7. (8 points) Find $\int \sqrt{5+4 x-x^{2}} d x$. Check your answer.

Answer: We complete the square: $5+4 x-x^{2}=5+4-\left(x^{2}-4 x+4\right)=9-(x-2)^{2}$. Let $x-2=3 \sin \theta$. It follows that $9-(x-2)^{2}=9-9 \sin ^{2} \theta=9 \cos ^{2} \theta$ and $d x=3 \cos \theta d \theta$. The original problem is equal to

$$
\begin{gathered}
\int 3 \cos \theta(3 \cos \theta) d \theta=9 \int \cos ^{2} \theta d \theta=\frac{9}{2} \int(1+\cos 2 \theta) d \theta=\frac{9}{2}\left(\theta+\frac{\sin 2 \theta}{2}\right)+C \\
=\frac{9}{2}\left(\theta+\frac{2 \sin \theta \cos \theta}{2}\right)+C=\frac{9}{2}\left(\arcsin \left(\frac{x-2}{3}\right)+\frac{x-2}{3} \frac{\sqrt{5+4 x-x^{2}}}{3}\right)+C \\
=\frac{9}{2} \arcsin \left(\frac{x-2}{3}\right)+\frac{1}{2}(x-2) \sqrt{5+4 x-x^{2}}+C .
\end{gathered}
$$

Check. The derivative of the proposed answer is

$$
\frac{9}{2} \frac{\frac{1}{3}}{\sqrt{1-\frac{(x-2)^{2}}{9}}}+\frac{1}{2}\left(\sqrt{5+4 x-x^{2}}+(x-2) \frac{4-2 x}{2 \sqrt{5+4 x-x^{2}}}\right)
$$

4

$$
\begin{gathered}
=\frac{1}{2}\left(\frac{3}{\frac{1}{3} \sqrt{9-(x-2)^{2}}}+\sqrt{5+4 x-x^{2}}+(x-2) \frac{2-x}{\sqrt{5+4 x-x^{2}}}\right) \\
=\frac{1}{2}\left(\frac{9}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}+\frac{-(x-2)^{2}}{\sqrt{5+4 x-x^{2}}}\right) \\
=\frac{1}{2}\left(\frac{9-(x-2)^{2}}{\sqrt{5+4 x-x^{2}}}+\sqrt{5+4 x-x^{2}}\right)=\frac{1}{2}\left(\sqrt{5+4 x-x^{2}}+\sqrt{5+4 x-x^{2}}\right) \\
=\sqrt{5+4 x-x^{2}}
\end{gathered}
$$

