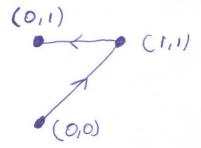
Math 141, Exam 1, Solutiuons Spring 2009


The exam is worth a total of 50 points. There are 7 questions on 3 pages. SHOW your work. Make your work be coherent and clear. Write in complete sentences whenever this is possible. CIRCLE your answer. CHECK your answer whenever possible. No Calculators.

I will post the solutions on my website a few hours after the exam is finished.

1. (7 points) Parameterize the curve pictured below. Use t as your parameter with $0 \le t \le 2$. The point that corresponds to t=0 is (0,0). The point that corresponds to t=1 is (1,1). The point that corresponds to t=2 is (0,1). (Note: Each part of the curve that looks like a line segment is a line segment.)

The first leg of the trip is on the line y=x. If we take x=t and y=t, then we walk off this line segment from (0,0) to (1,1) as t goes from 0 to 1. The second leg of this trip is on the line y=1. At t=1, we have x=1. At t=2, we have x=0. The function x(t)=2-t has the desired effect. The curve is parameterized by

$$x(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ 2 - t & \text{if } 1 \le t \le 2 \end{cases} \qquad y(t) = \begin{cases} t & \text{if } 0 \le t \le 1\\ 1 & \text{if } 1 \le t \le 2. \end{cases}$$

2. (7 points) Express $\sin(\theta + \varphi)$ in terms of $\sin \theta$, $\sin \varphi$, $\cos \theta$, and $\cos \varphi$. One of the five trig facts is:

$$\sin(\theta + \varphi) = \sin\theta\cos\varphi + \cos\theta\sin\varphi.$$

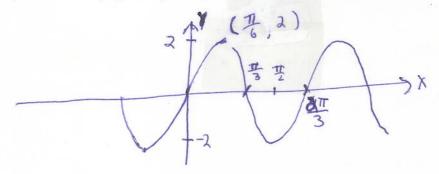
3. (7 points) Compute $\lim_{x\to 6^+} \frac{x+6}{x^2-36}$.

Factor the denominator to see that

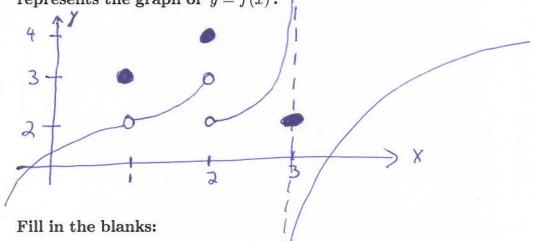
$$\lim_{x \to 6^+} \frac{x+6}{x^2 - 36} = \lim_{x \to 6^+} \frac{x+6}{(x+6)(x-6)} = \lim_{x \to 6^+} \frac{1}{(x-6)} = \boxed{+\infty}.$$

4. (7 points) Compute $\lim_{x\to 6^-} \frac{36-x}{6-\sqrt{x}}$.

Multiply top and bottom by $6 + \sqrt{x}$ to see that


$$\lim_{x \to 6^{-}} \frac{36 - x}{6 - \sqrt{x}} = \lim_{x \to 6^{-}} \frac{(36 - x)(6 + \sqrt{x})}{(6 - \sqrt{x})(6 + \sqrt{x})} = \lim_{x \to 6^{-}} \frac{(36 - x)(6 + \sqrt{x})}{36 - x}$$
$$= \lim_{x \to 6^{-}} (6 + \sqrt{x}) = \boxed{6 + \sqrt{6}}.$$

5. (7 points) Let $f(x) = 2x^2 + 3$. Find $\frac{f(a) - f(b)}{a - b}$ and simplify as much as possible.


We have

$$\frac{f(a) - f(b)}{a - b} = \frac{(2a^2 + 3) - (2b^2 + 3)}{a - b} = \frac{2a^2 - 2b^2}{a - b} = \frac{2(a + b)(a - b)}{a - b} = \boxed{2(a + b).}$$

6. (7 points) Graph $y = 2\sin(3x)$. Identify a few points on the graph.

7. (8 points) (The penalty for each mistake is four points.) The picture represents the graph of y = f(x).

$$f(1) = 3$$
 $\lim_{x \to 1^+} f(x) = 2$

$$\lim_{x \to 1^-} f(x) = 2$$

$$\lim_{x \to 1} f(x) = 2$$

$$f(2) = 4$$
 $\lim_{x \to 2^+} f(x) = 2$

$$\lim_{x \to 2^-} f(x) = 3$$

$$\lim_{x\to 2} f(x) = \text{Does not exist}$$

$$f(3) = 2 \qquad \lim_{x \to 3^+} f(x) = -\infty$$

$$\lim_{x \to 3^-} f(x) = +\infty$$

$$\lim_{x \to 3} f(x) = \text{Does not exist}$$