	_	, ,	7
1-	X8072	141	2000
4		1 (1	

PRINT Your Name:	Recitation Time	Tu. Th.
There are 10 problems on 6 pages. E	Cach problem is worth 10 points	In problem 2
you MUSI use the definition of the c	derivative. In the other problems	17011 morr 1700
any legitimate derivative rule. SHOTCALCULATORS!	W your work. CIRCLE your	answer. NO

1. Let $y = x\sin x$. Find dy. $dy = (x \cos x + \sin x) dx$

2. Let $y = \sin\left(x^3\cos^2(2x) + 19x^2\right)$. Find $\frac{dy}{dx}$. $\frac{dy}{dx} = \cos\left(\chi^3\cos^2(2x) + 19\chi^2\right) \left[-\chi^3 \cos^2(2x) + 3\chi^2\cos^2(2x) + 3\chi^2\cos^2(2x) + 3\chi^2\cos^2(2x)\right]$

3. Use the DEFINITION of the DERIVATIVE to find the derivative of $f(x) = \frac{2}{3x-4}$.

$$T'(x) = \lim_{R \to 0} \frac{f(x+\zeta) - f(x)}{\ell_1} = \lim_{R \to 0} \frac{2}{3(x+\zeta) - 4} - \frac{2}{3x-4} = \lim_{R \to 0} \frac{2(3x-4) - 2(3x+3\zeta-4)}{\ell_1(3x+3\zeta-4)}$$

$$= 1 \cdot \frac{6x - 6x - 6x + 8}{2 \cdot 3x - 6 \cdot (3x - 6) \cdot (3x - 6)} = 1 \cdot \frac{-64}{2 \cdot (3x - 6) \cdot (3x - 6) \cdot (3x - 6)}$$

$$= 2 \cdot \frac{-6}{(3x-4)(3x+36-4)} = \frac{-6}{(3x-4)(3x+4)} = \frac{-6}{(3x-4$$

4. Graph $y = 2\cos 3x$. Mark a few points on each axis.

5. (The penalty for each mistake is five points.) Let

$$f(x) = \begin{cases} 4 - x & \text{if } 2 \le x, \\ x & \text{if } 1 < x < 2, \text{ and} \\ 4 - x^2 & \text{if } x \le 1. \end{cases}$$

(a) Graph y = f(x).

(b) Fill in the blanks:

$$f(0) = \frac{\mathcal{L}}{\mathcal{L}} \qquad \lim_{x \to 0^{+}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 0^{-}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 0} f(x) = \underline{\mathcal{L}}$$

$$f(1) = \underline{\mathcal{L}} \qquad \lim_{x \to 1^{+}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 1^{-}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 1} f(x) = \underline{\mathcal{L}}$$

$$f(2) = \underline{\mathcal{L}} \qquad \lim_{x \to 2^{+}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 2^{-}} f(x) = \underline{\mathcal{L}} \qquad \lim_{x \to 2} f(x) = \underline{\mathcal{L}}$$

(c) Where is f(x) continuous?

(d) Where is f(x) differentiable?

fix is differentiable for all x except x=1, 2

6. The volume of a cube is growing at the rate of 6 cubic inches per second. Find the rate at which each side of the cube is growing at the instant when each side has length 10 inches.

$$\frac{dV}{dt} = 6 in \frac{3}{8} ex$$

$$V=e^3$$

$$\frac{dV}{dt}=3e^2\frac{dP}{dt}$$

$$\frac{d\ell}{\ell}\Big|_{\ell=100i\,\mu} = \frac{1}{3(10i\,\mu)^2} \left(6\frac{i\,\mu^3}{50c} = \frac{6}{300}\frac{i\,\mu}{50c} = \frac{1}{500}\frac{i\,\mu}{50c}\right)$$

7. (The penalty for each mistake is five points.) The picture represents the graph of y = f(x).

$$f(2) = \underbrace{II}_{x \to 2^{+}} f(x) = \underbrace{IO}_{x \to 2^{-}} \lim_{x \to 2^{-}} f(x) = \underbrace{IO}_{x \to 2^{-}} \lim_{x \to 3^{-}} f(x) = \underbrace{IO}_{x \to 3^{-}} f(x) = \underbrace{IO}_{x \to 3} \lim_{x \to 3} f(x) = \underbrace{IO}_{x \to 3} \lim_{x \to 3^{-}} f(x) = \underbrace{IO}_{x \to 3^{-}} \lim_{x \to 3^{-}} f($$

8. Let
$$4x^{5}y^{3} = \sin(3x^{4}y^{6})$$
. Find $\frac{dy}{dx}$.

 $4x^{5}3y^{2} \frac{dy}{dx} + 20x^{4}y^{3} = \cos(3x^{4}y^{6}) \left[18x^{4}y^{5} \frac{dy}{dy} + 112x^{3}y^{6} \right]$
 $\frac{dy}{dx} \left[12x^{5}y^{2} - 18x^{4}y^{5} \cos(3x^{4}y^{6}) \right] = +12x^{3}y^{6} \cos(3x^{4}y^{6}) - 20x^{4}y^{3}$
 $\frac{dy}{dx} = \frac{12x^{3}y^{6} \cos(3x^{4}y^{6}) - 20x^{4}y^{3}}{12x^{5}y^{2} - 18x^{4}y^{5} \cos(3x^{4}y^{6})}$

9. Find the equation of the line tangent to
$$f(x) = \cos^2 x$$
 at $x = \frac{\pi}{4}$. The y -cooldinate is $f(\frac{\pi}{4}) = (\cos \frac{\pi}{4})^2 = (\frac{\nabla z}{2})^2 = \frac{1}{4} = \frac{1}{4}$. If $f'(\frac{\pi}{4}) = -\chi (\frac{\nabla z}{2})^2 = -1$ [14e: $f'(\frac{\pi}{4}) = -1 (\chi - \frac{\pi}{4})$]

10. The height of an object above the ground at time t is $s(t) = -16t^2 + 32t + 48$, where s is measured in feet and t is measured in seconds. What is the velocity of the object when it strikes the ground?

The object strikes the gloud when a(t)=0 $-16(t^2-2t-3)=0$ -16(t-3)(t+1)=0 t=307-1 c. t=3 V(t)=a'(t)=-32t+32 V(3)=-32(3)+32=-32(3-1)=-31(2)=-64 By sec