Socle degrees of Frobenius powers
Lecture 4 — February 8, 2006
talk by A. Kustin

My typed notes have gotten ahead of what I have actually said. So, most of the
typed notes for today were already typed last week. The new material concerns the
proof of step 4.

The hypothesis. Let k be a field of positive characteristic p, P be the polynomial
ring k[x1,...,2,], C = (f1,..., fc) be generated by a homogeneous regular sequence
in P, R be the ring P/C, and I be a homogeneous ideal of P with P/I a Gorenstein
ring and P/I finite dimensional as a k-vector space. Assume that the socles of R/IR
and R/IPIR have the same dimension, and that

D; = pdz - (p - 1)0“(R)5

for all 4, where the socle degrees of R/IR are {d;}, the socle degrees of R/I'P!R are
{Di}, and a(R) is 22 [fil = 22 |2l
The goal. Prove that pd R/IR < cc.

Last week I outlined an 8 step program to reach this goal. Today I will march
through the 8 steps.

Step 1. Tor, (P/1, P/C) = BE(= 3 |fi).
Proof of Step 1. Let G be the Koszul complex which resolves P/C. The end of
G is .
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We may compute Tor.(P/I, P/C) by tensoring the above resolution with P/I (that

is setting I = 0) and then computing homology. So, Tor.(P/I, P/C) is the kernel
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which is L2 (— Z |fil), as claimed.

Step 2. We can connect the generator degrees of % to the socle degrees of P/I.

Proof of Step 2. We will use two statements about Gorenstein duality. Assume
that P/I is a finite dimensional vector space and is a Gorenstein ring. Let N be
the socle degree of P/I. Let M be a finitely generated P/I-module. Then

A. Homp/I(Homp/I(M, P/I),P/I) = M, and
B. dimy Homp,;(M, P/I)q = dimy My_q for all d.

Of course, the point is that Homp,;(_, P/I) exactly turns P/I modules upside
down!

Anyhow, I claim that if {6;} are the generator degrees of £5<, then &§; = N — d;.

Proof. In this argument, “Hom” means “Homp,;” and “®” means “@p/r”. Use
Nakayama’s Lemma to see that the generator degrees of L:X are equal to the
degrees of m Recall that R/IR is the same as P/ (I + C); and therefore,
the socle of R/IR is equal to

I+C):
e = Hom(T 1)

and by A, this is equal to

Hom( Hom(Hom(% ?),?)) Hom( Hom(I (I]+C),§))

= Hom(Z, Hom(L£, £)).



Now use the Adjoint Isomorphism Theorem, which says
Hom(A ® B,C) = Hom(A, Hom(B, C)),
to see that the socle of R/IR is equal to

Hom(£ @ L3¢

~I

) = Hom( o foeys 7)-

Finally, we use B to complete the proof. [

Step 3. Suppose the generators of Tor.(P/I, P/C) have degrees {7;} and the
generators of Tor.(P/IP), P/C) have degrees {I';}. Then T; = p;.
Proof of Step 3. We have

e the socle degrees of R/IR are {d;},

e the socle degrees of R/IPIR are {D;},

o D; =pd; — (p— )X 1f5] = 22 ;1)

e the generator degrees of Tor.(P/I, P/C) are {v;},

e the generator degrees of Tor.(P/IP), P/C) are {I;},

e Tor.(P/I,P/C) = ( STUfD,

o Tor.(P/I", P/C) = f“’ L (=1,

e the generator degrees of % are {N —d,;}, and

are {| pN — (p —1)(= ) _ lz;]) |- Di}-

(Recall that the (1) < (2) part of the proof tells us that if the socle degree of P/I
is N, then the socle degree of P/IP! is pN — (p—1)a(P). This explains the formula
inside the box.)

Our job is to “Do the Math.” I find it convenient to let {J;} be the generator
degrees of L2 C and {A;} be the generator degrees of 1 ] : ¢ We have

Di=A+ 3 _|fil=pN — (0= 1)(=>_|ajl) = Di + >_ |l

=pN—<p—1><—Z|xj\>—(pd— — DIl =D laih) + D1
=pN —pdi + (p— 1) Y _|f;1+ D _1fil =pN —pdi+p)_|f;l

e the generator degrees of L [p]C: ¢




=p((N —di) + Y| = (6 + > 1) = pvis

as claimed. O

Step 4. Use the generators of Tor.(P/I,P/C) to produce the generators of
Tor.(P/IP P/C).

Proof of Step 4. Let I be a resolution of P/I by free P-modules. It follows that
Tor.(P/I,P/C)=H.(F® P/C).

Kunz’s Theorem guarantees that F[! is a resolution of P/I?) by free P-modules;

and therefore,
Tor.(P/I", P/C) = H,(FP! @ P/C).

A homology element of H.(F ® P/C) is [z], where z is a column vector z in F,
with d.(z) € CF._;. The homology element [z] is non-zero if z ¢ imd.41 + CF..
We see that if [Z] is a homology element of H.(F ® P/C), then [2[P]] is a homology
element of H.(FPl @ P/C). Furthermore, the degree of [2[P!] is p times the degree
of [Z]. We take a minimal generating set [z1],...,[Z¢] for H.(F @ P/C). We see
that [ng ]], Ce [Eép ]] are elements of H.(F[P! @ P/C) which have the correct degrees

to be a minimal generating set. We can show that [21"], ..., [Zép )] are a minimal
generating set by proving that they are linearly independent.

The argument goes by induction. A good way to convey the flavor of the argu-
ment, without overwhelming you with details, is to show the base case. (Only slight
modifications are needed to do the inductive step.) Assume that [z] is non-zero el-
ement of H.(F ® P/C) of least degree. We prove that [2[!] is non-zero element of
H.(FPl @ P/C). Suppose [z[P]] is zero in H.(FP! @ P/C). So

P e imdPl, + CFP.
I will prove that
(%) 2 cimd?, + C'FP 4+ CPIFP — 20 € im ]| 4 ctH EP 4 CPIER]
for all ¢ for which this makes sense. Once (%) is established, then

7 e imd? | 4 CPI P

because Ct C CP! for t > c¢(p—1)+ 1. Now Kunz’s Theorem (again!) tells us that
z € imd.4+1+CF,, and this is a contradiction because [Z] is not zero in H.(F® P/C).



Now we prove (% ). We are told that there are y, € FIP! with
=N £y € imdP], + CWIE

where the sum is taken over all c-tuples a with > «; =t and 0 < a; < p—1, for
all 4. Fix an a. Multiply by fF~'7%" ... fp=1=ac Apply d?!. Observe that

(fi-e fo)P~tdP (ya) € CPIFIP.

But
clrl. (f1- ..fc)p—l =C

So .
dPl(y,) e CF™..

In other words, [¢,] is a homology element of H.(FPl @ P/C). But |y.| < |2]|; so,
by hypotheis, [7a] is zero in H.(FIPl @ P/C); so
Ya € imal[Jr1 + CF..

Do this procedure for each «, to complete the proof of ().

Step 5. Drag the answer to Step 4 through the double complex machine to learn
that
P = (1)l (fy - fp=t 4 1P,

(I will leave this step out of these lectures.)
Step 6. Prove that the conclusion to step 5 implies

"'nc=ano)P 4+ 1#c,
(This step is very similar to step 4.)
Step 7. Prove that the conclusion of Step 6 implies Tory(R/IR, ¥R) = 0.
Proof of Step 7. We want to prove that
(%) P o = (In C)[p} + 1Pl
implies Torf*(R/IR, YR) = 0. We show that Torf(R/IR, YR) = 0 by showing that

Rb> &, gt A R, R/I — 0 is exact
Kok
( ) b d[2p] b dg-P] .
— R 25 R 1 R — R/IP -0 s exact.
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We show that (***) implies (**).

I make my calculation at the P-level. Let ay,...,ap, generate I in P; so,
d1 = [a1 e ap, ]
and .
i’ =1la} ... a}].

We think of ds as having two pieces:
dy = [d’z d/2/]

where
;d! d
sz 2 Pbl Lp

is exact (and df is all of the extra columns that describe elements of I which are
also in C.) Recall that Kunz’s Theorem (ingredient (B) of the other direction) tells

us that

, d/ [p] d[P]
Pb2 ( 2 ) Pbl 1 P

is exact.
Suppose v is in P? with d[lp](v) € C. In other words,

dP(w) e 1P nC =1 no)l 4 1PC.

So, there exist s1,...,s4 € INC; ay,...,a; in P; and ¢q,...¢, in C so that

1
t b1
d[lp](v) = Z a;st + Zafci.
i=1 i=1

Of course, there exists v; € P** with dy (v;) = s; (and therefore also dPolP! = sP).

7
So,
C1

t
d[lp} (v) = d[lp} Zaivl[p} +
i=1

Cb1

So,
C1

t
v — g aivl[p} -
i=1

Cp,
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is killed by d[lp}; hence is in the image of (d5)P. Finally, di(v;) = s; € INC, so
v; = df (w;) for some w;; hence, vl[p} = (dg)[p](wl[p}). Thus,

veimd? + cph,

as desired.

Step 8. We are finished by the Theorem of Avramov and Claudia Miller (see the
last seminar talk given by John Olmo last semester.): If Torf(R/IR, YR) = 0, then
pdgr(R/IR) < co. (There is nothing for us to do here!)



