
Socle degrees of Frobenius powers

Lecture 3 — February 1, 2006

talk by A. Kustin

Today’s agenda:

I. Demonstrate the Magic machine for turning basis vectors into socle elements.

II. Outline the proof of (1) =⇒ (2).

III. Get to work on some of the steps of (1) =⇒ (2).

I. Demonstrate the Magic machine for turning basis vectors

into socle elements.

Let P = k[x1, . . . , xn] be a polynomial ring, I be an ideal of P with dimk P/I
finite, F be a resolution of P/I by free P -modules, and G be the (Koszul complex)
resolution of k = P/(x1, . . . , xn) by free P -modules. The isomorphism

(*) Hn(F ⊗ k) ∼= Hn(Tot(F ⊗ G)) ∼= Hn(P/I ⊗ G)

provides a method for converting the basis elements of Fn into socle elements of
P/I. I illustrate with an example. Let I = (x2, xy, y2). In this case, F is

0 → P (−3)2
︸ ︷︷ ︸

F2

f2=





x 0
y x
0 y





−−−−−−−−−→ P (−2)3
︸ ︷︷ ︸

F1

f1=[y2 −xy x2 ]
−−−−−−−−−−−−−−→ P

︸︷︷︸

F0

,

G is

0 → P (−2)
︸ ︷︷ ︸

G2

g2=

[
y
−x

]

−−−−−−−→ P (−1)2
︸ ︷︷ ︸

G1

g1=[x y ]
−−−−−−−−→ P

︸︷︷︸

G0

,

1
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and F ⊗ G is

0 0 0


y



y



y

0 −−−−→ F2 ⊗ G2
f2⊗1

−−−−→ F1 ⊗ G2
f1⊗1

−−−−→ F0 ⊗ G2

1⊗g2



y 1⊗g2



y 1⊗g2



y

0 −−−−→ F2 ⊗ G1
f2⊗1

−−−−→ F1 ⊗ G1
f1⊗1

−−−−→ F0 ⊗ G1

1⊗g1



y 1⊗g1



y 1⊗g1



y

0 −−−−→ F2 ⊗ G0
f2⊗1

−−−−→ F1 ⊗ G0
f1⊗1

−−−−→ F0 ⊗ G0.

Start with

[
1
0

]

⊗ 1 in F2 ⊗ G0 in the lower left hand corner. We see that this

element represents an element of the homology of H2(F ⊗ k). One can extend this
element to get an element of the homology of H2(Tot(F ⊗ G)):

1 ⊗ y


y





1
0
0



 ⊗

[
1
0

]

+





0
1
0



 ⊗

[
0
1

]

−−−−→ 1 ⊗

[
y2

−xy

]



y

[
1
0

]

−−−−→





x
y
0





The indicated element of H2(Tot(F ⊗ G)) gives rise to the element y of the socle
of P/I. To answer the question that our freshman ask: “Yes, it always works like
that.” We can use the idea of the snaky game to prove both isomorphisms in (*).

II. Outline the proof of (1) =⇒ (2).

Recall that our goal is the following result.

Theorem. Let k be a field of positive characteristic p, P be the polynomial ring

k[x1, . . . , xn], C be the homogeneous complete intersection ideal C = (f1, . . . , fc) in
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P and R be P/C. Let I be a homogeneous ideal in P with P/I a finite dimensional

vector space over k. Suppose that the socle degrees of R/IR are d1 ≤ · · · ≤ d` and

that the socle degrees of R/I [p]R are D1 ≤ · · · ≤ DL. Then the following statements

are equivalent:

(1) L = ` and Di = pdi − (p − 1)a(R) for all i, and

(2) The ring R/IR has finite projective dimension as an R-module.

Remark. In the present context a(R) is
∑

|fi| −
∑

|xi|.
We outline the proof of (1) =⇒ (2) under the additional hypothesis that

P/I is a Gorenstein ring. Our original proof did have this additional hypothesis.
The proof is more direct and the result is better without the additional hypothesis;
however, without the additional hypothesis one must make many calculations which
involve “the canonical module”. The canonical module of a Gorenstein ring is itself.
If I make this additional hypothesis, then I can hide the fact that we are making
canonical module calculations.

Assume (1). The following steps will yield (2).

Step 1. Torc(P/I, P/C) = I : C
I

(−
∑

|fi|). (Actually, you know how to prove this
already.)

Step 2. We can connect the generator degrees of I : C
I

to the socle degrees of P/I.
(This uses Gorenstein duality.)

Step 3. Suppose the generators of Torc(P/I, P/C) have degrees {γi} and the
generators of Torc(P/I [p], P/C) have degrees {Γi}. Then Γi = pγi. (This is a
straightforward calculation.)

Step 4. Use the generators of Torc(P/I, P/C) to produce the generators of
Torc(P/I [p], P/C). (This is a delicate linear independence argument.)

Step 5. Drag the answer to Step 4 through the double complex machine to learn
that

I [p] :C = (I : C)[p](f1 · · · fc)
p−1 + I [p].

(I will leave this step out of these lectures.)

Step 6. Prove that the conclusion to step 5 implies

I [p] ∩ C = (I ∩ C)[p] + I [p]C.

(This step is very similar to step 4.)

Step 7. Prove that the conclusion of Step 6 implies TorR
1 (R/IR, ϕR) = 0. (This

is a grubby calculation. It is the one piece of the proof in this direction that I
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included in the notes for last week. I copied this calculation into the present notes.
I might not bother to write them on the board.)

Step 8. We are finished by the Theorem of Avramov and Claudia Miller (see the

last seminar talk given by John Olmo last semester.): If TorR
1 (R/IR, ϕR) = 0, then

pdR(R/IR) < ∞. (There is nothing for us to do here!)

III. Get to work on some of the steps of (1) =⇒ (2).

Proof of Step 1. Let G be the Koszul complex which resolves P/C. The end of
G is

0 → P (−
c∑

i=1

|fi|)






f1
...
fc






−−−−→

P (−
c∑

i=1
i6=1

|fi|)

⊕

P (−
c∑

i=1
i6=2

|fi|)

⊕
...
⊕

P (−
c∑

i=1
i6=c

|fi|)

−→ . . . .

We may compute Torc(P/I, P/C) by tensoring the above resolution with P/I (that
is setting I = 0) and then computing homology. So, Torc(P/I, P/C) is the kernel
of

P

I
(−

c∑

i=1

|fi|)






f1
...
fc






−−−−→

P
I
(−

c∑

i=1
i6=1

|fi|)

⊕
P
I (−

c∑

i=1
i6=2

|fi|)

⊕
...
⊕

P
I (−

c∑

i=1
i6=c

|fi|),

which is I : C
I (−

c∑

i=1

|fi|), as claimed.

Proof of Step 2. We will use two statements about Gorenstein duality. These
statements are not independent; indeed, either one could be used to prove the other.
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Furthermore, maybe the real key statement is that if P/I is Gorenstein and a finite
dimensional vector space, then P/I is an injective P/I-module (which means that
the functor HomP/I( , P/I) is an exact functor.) At Bard College, Lars Christenson
tossed off that “most of us think of this as the definition of Gorenstein”.

Assume that P/I is a finite dimensional vector space and is a Gorenstein ring.
Let N be the socle degree of P/I. Let M be a finitely generated P/I-module. Then

A. HomP/I(HomP/I(M, P/I), P/I) = M , and

B. dimk HomP/I(M, P/I)d = dimk MN−d for all d.

Of course, the point is that HomP/I( , P/I) exactly turns P/I modules upside
down!

Anyhow, I claim that if {δi} are the generator degrees of I : C
I , then δi = N − di.

Proof. In this argument, “Hom” means “HomP/I” and “⊗” means “⊗P/I”. Use

Nakayama’s Lemma to see that the generator degrees of I : C
I are equal to the

degrees of I : C
I+m(I : C) . Recall that R/IR is the same as P/(I + C); and therefore,

the socle of R/IR is equal to

(I+C) : m

I+C = Hom(P
m

, P
I+C )

and by A, this is equal to

Hom(P
m

, Hom(Hom( P
I+C , P

I ), P
I )) = Hom(P

m
, Hom( I : (I+C)

I , P
I ))

= Hom(P
m

, Hom( I : C
I

, P
I
)).

Now use the Adjoint Isomorphism Theorem, which says

Hom(A ⊗ B, C) = Hom(A, Hom(B, C)),

to see that the socle of R/IR is equal to

Hom(P
m
⊗ I : C

I , P
I ) = Hom( I : C

I+m(I : C) ,
P
I ).

Finally, we use B to complete the proof. �

Proof of Step 3. We have

• the socle degrees of R/IR are {di},

• the socle degrees of R/I [p]R are {Di},
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• Di = pdi − (p − 1)(
∑

|fj | −
∑

|xj|),

• the generator degrees of Torc(P/I, P/C) are {γi},

• the generator degrees of Torc(P/I [p], P/C) are {Γi},

• Torc(P/I, P/C) = I : C
C

(−
∑

|fi|),

• Torc(P/I [p], P/C) = I[p] : C
C

(−
∑

|fi|),

• the generator degrees of I : C
C

are {N − di}, and

• the generator degrees of I[p] : C
C are { pN − (p − 1)(−

∑

|xj |) − Di}.

(Recall that the (1) ⇐ (2) part of the proof tells us that if the socle degree of P/I
is N , then the socle degree of P/I [p] is pN − (p−1)a(P ). This explains the formula
inside the box.)

Our job is to “Do the Math.” I find it convenient to let {δi} be the generator

degrees of I : C
C and {∆i} be the generator degrees of I[p] : C

C . We have

Γi = ∆i +
∑

|fj | = pN − (p − 1)(−
∑

|xj |) − Di +
∑

|fj |

= pN − (p − 1)(−
∑

|xj |) −
(

pdi − (p − 1)(
∑

|fj| −
∑

|xj |)
)

+
∑

|fj|

= pN − pdi + (p − 1)
∑

|fj| +
∑

|fj| = pN − pdi + p
∑

|fj|

= p((N − di) +
∑

|fj|) = p(δi +
∑

|fj|) = pγi,

as claimed. �

Proof of Step 7. We want to prove that

(***) I [p] ∩ C = (I ∩ C)[p] + I [p]C

implies TorR
1 (R/IR, ϕR) = 0. We show that TorR

1 (R/IR, ϕR) = 0 by showing that

(**)
Rb2 d2−→ Rb1 d1−→ R → R/I → 0 is exact

=⇒ Rb2
d
[p]
2−−→ Rb1

d
[p]
1−−→ R → R/I [p] → 0 is exact.

We show that (***) implies (**).
I make my calculation at the P -level. Let a1, . . . , ab1 generate I in P ; so,

d1 = [ a1 . . . ab1 ]
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and
d
[p]
1 = [ a

p
1 . . . ap

b1
] .

We think of d2 as having two pieces:

d2 = [ d′
2 d′′

2 ]

where

P b2
′ d′

2−→ P b1 d1−→ P

is exact (and d′′
2 is all of the extra columns that describe elements of I which are

also in C.) Recall that Kunz’s Theorem (ingredient (B) of the other direction) tells
us that

P b2
′ (d′

2)[p]

−−−−→ P b1
d
[p]
1−−→ P

is exact.
Suppose v is in P b1 with d

[p]
1 (v) ∈ C. In other words,

d
[p]
1 (v) ∈ I [p] ∩ C = (I ∩ C)[p] + I [p]C.

So, there exist s1, . . . , st ∈ I ∩ C; α1, . . . , αt in P ; and c1, . . . cb1 in C so that

d
[p]
1 (v) =

t∑

i=1

αis
p
i +

b1∑

i=1

ap
i ci.

Of course, there exists vi ∈ P b1 with d1(vi) = si (and therefore also d
[p]
1 v

[p]
1 = sp

i ).
So,

d
[p]
1 (v) = d

[p]
1





t∑

i=1

αiv
[p]
i +





c1
...

cb1







 .

So,

v −

t∑

i=1

αiv
[p]
i −





c1
...

cb1





is killed by d
[p]
1 ; hence is in the image of (d′

2)
[p]. Finally, d1(vi) = si ∈ I ∩ C, so

vi = d′′
2(wi) for some wi; hence, v

[p]
i = (d′′

2)[p](w
[p]
i ). Thus,

v ∈ im d
[p]
2 + CP b1 ,

as desired.


