Socle degrees of Frobenius powers Lecture 2 - January 25, 2006 talk by A. Kustin

The purpose of these talks is to prove (some parts of) the following result.
Theorem. Let k be a field of positive characteristic p, P be the polynomial ring $k\left[x_{1}, \ldots, x_{n}\right], C$ be the homogeneous complete intersection ideal $C=\left(f_{1}, \ldots, f_{m}\right)$ in P and R be P / C. Let I be a homogeneous ideal in P with P / I a finite dimensional vector space over k. Suppose that the socle degrees of $R / I R$ are $d_{1} \leq \cdots \leq d_{\ell}$ and that the socle degrees of $R / I^{[p]} R$ are $D_{1} \leq \cdots \leq D_{L}$. Then the following statements are equivalent:
(1) $L=\ell$ and $D_{i}=p d_{i}-(p-1) a(R)$ for all i, and
(2) The ring $R / I R$ has finite projective dimension as an R-module.

Remark. In the present context $a(R)$ is $\sum\left|f_{i}\right|-\sum\left|x_{i}\right|$.
Proof of $(1) \Leftarrow(2)$ when $C=0$. The ring P is regular. Every P-module has a finite resolution by free P-modules. Let

$$
\mathbb{F}: \quad 0 \rightarrow F_{n} \rightarrow F_{n-1} \rightarrow \cdots \rightarrow F_{1} \rightarrow F_{0}
$$

be the minimal homogeneous resolution of P / I by free P-modules, with $F_{n}=$ $\bigoplus_{i} P\left(-b_{i}\right)$. There are two ingredients to the proof.
(A) The number of back twists in \mathbb{F} is exactly equal to the dimension of the socle of P / I; furthermore, b_{i} and $d_{i}=b_{i}+a(P)$.
(B) One obtains the minimal free resolution of $P / I^{[p]}$ by applying the Frobenius functor to \mathbb{F}.

As soon as you buy (A) and (B), then the proof is complete. Ingredient (B) tells us that the back twists in the P-resolution of P / I are $p b_{i}$, with $1 \leq i \leq \ell$. Thus, by (A):

$$
D_{i}=p b_{i}+a(P)=p\left(b_{i}+a(P)\right)-(p-1) a(P)=p d_{i}-(p-1) a(P)
$$

A quick illustration. Let $P=k[x, y]$ and $I=\left(x^{2}, x y, y^{2}\right)$. The P-resolution of P / I is

$$
0 \rightarrow P(-3)^{2} \xrightarrow{\left[\begin{array}{ll}
x & 0 \\
y & x \\
0 & y
\end{array}\right]} P(-2)^{3} \xrightarrow{\left[\begin{array}{lll}
y^{2} & -x y & x^{2}
\end{array}\right]} P .
$$

The resolution of $P / I^{[p]}$ is

$$
0 \rightarrow P(-3 p)^{2} \xrightarrow{\left[\begin{array}{cc}
x^{p} & 0 \\
y^{p} & x^{p} \\
0 & y^{p}
\end{array}\right]} P(-2 p)^{3} \xrightarrow{\left[\begin{array}{lll}
y^{2 p} & -x^{p} y^{p} & x^{2 p}
\end{array}\right]} P .
$$

We have $a(P)=-2$. We saw that x and y form a basis for the socle of P / I. So the socle degrees of P / I are $d_{1}=1 \leq d_{2}=1$. The back twists in the resolution of P / I are $b_{1}=3 \leq b_{2}=3$. We see that $3-2=1$, so $b_{i}+a(P)=d_{i}$. We also see that $x^{p-1} y^{2 p-1}$ and $x^{2 p-1} y^{p-1}$ are in the socle of $P / I^{[p]}$. One can show that $x^{p-1} y^{2 p-1}$ and $x^{2 p-1} y^{p-1}$ are a basis for the socle of $P / I^{[p]}$. So the socle degrees of $P / I^{[p]}$ are $D_{1}=3 p-2 \leq D_{2}=3 p-2$; the back twists in the resolution of $P / I^{[p]}$ are $B_{1}=3 p \leq B_{2}=3 p$; and $a(P)$ is still -2 . We have $D_{i}=B_{i}+a(P)$ and also $D_{i}=p d_{i}-(p-1) a(P)$, for both i.

Ingredient (B), in the present form, is due to Kunz (1969) - this is the paper that got commutative algebraists (especially Peskine, Spziro, Hochster) using Frobenius methods. One could also think of this assertion as an application of "What makes a complex exact?" (John Olmo lectured on this last Fall). The complex \mathbb{F} is a resolution, so the ranks of its matrices behave correctly and the grade of the ideals of matrix minors grow correctly. If one raises each entry of each matrix to the $p^{\text {th }}$ power, then the ranks of the new matrices are the same as the ranks of the old matrices (since $\operatorname{det} M^{[p]}=(\operatorname{det} M)^{p}$ because the characteristic of the ring is p), and the grade of the ideals of minors also remains unchanged!

I will give two explanations for ingredient (A). The quick argument is that one may commute $\operatorname{Tor}_{n}^{P}(P / I, k)$ using either coordinate. If one resolves P / I, then applies $_\otimes_{P} k$, and then computes homology, then one sees that

$$
\operatorname{Tor}_{n}^{P}(P / I, k)=\bigoplus_{i} k\left(-b_{i}\right)
$$

In other words, the generators of Tor have degrees $b_{1} \leq \ldots$. On the other hand, if one resolves k, then applies $P / I \otimes_{P}$, and then computes homology, then one sees that

$$
\operatorname{Tor}_{n}^{P}(P / I, k)=\bigoplus_{i} \frac{I: \mathfrak{m}}{I}(a(P))
$$

In other words, the the generators of Tor have degrees $d_{1}-a(P), \ldots$ (where the socle degrees of P / I are $\left.d_{1}, \ldots\right)$. So $d_{i}=b_{i}+a(P)$ as claimed.

My second argument is exactly the same as my first, except, instead of stating the abstract result that Tor may computed in either coordinate, I reprove this result, giving a construction which associates an element of the socle of P / I to each basis vector at the back of the resolution of of P / I. The constructive argument takes longer, but shows what is really happening. Let \mathbb{F} be a resolution of P / I, as above. Let \mathbb{G} be the Koszul complex which resolves k. One can directly show that there is an isomorphism

$$
\begin{equation*}
H_{n}(\mathbb{F} \otimes k) \cong H_{n}(\operatorname{Tot}(\mathbb{F} \otimes \mathbb{G})) \cong H_{n}\left(\frac{P}{I} \otimes \mathbb{G}\right) \tag{*}
\end{equation*}
$$

Anyhow, I think that the best way to convey the idea of $\left(^{*}\right)$ is to work out the example where $I=\left(x^{2}, x y, y^{2}\right)$. In this case, \mathbb{F} is

$$
0 \rightarrow \underbrace{P(-3)^{2}}_{F_{2}} \xrightarrow{f_{2}=\left[\begin{array}{ll}
x & 0 \\
y & x \\
0 & y
\end{array}\right]} \underbrace{P(-2)^{3}}_{F_{1}} \xrightarrow{f_{1}=\left[\begin{array}{lll}
y^{2} & -x y & x^{2}
\end{array}\right]} \underbrace{P}_{F_{0}},
$$

\mathbb{G} is

$$
0 \rightarrow \underbrace{P(-2)}_{G_{2}} \xrightarrow{g_{2}=\left[\begin{array}{c}
y \\
-x
\end{array}\right]} \underbrace{P(-1)^{2}}_{G_{1}} \xrightarrow{g_{1}=\left[\begin{array}{ll}
x & y
\end{array}\right]} \underbrace{P}_{G_{0}}
$$

and $\mathbb{F} \otimes \mathbb{G}$ is

Start with $\left[\begin{array}{l}1 \\ 0\end{array}\right] \otimes 1$ in $F_{2} \otimes G_{0}$ in the lower left hand corner. We see that this element represents an element of the homology of $H_{2}(\mathbb{F} \otimes k)$. One can extend this element to get an element of the homology of $H_{2}(\operatorname{Tot}(\mathbb{F} \otimes \mathbb{G}))$:

$$
\begin{gathered}
{\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
1 \\
0
\end{array}\right]+\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \otimes\left[\begin{array}{l}
0 \\
1
\end{array}\right] \longrightarrow 1 \otimes\left[\begin{array}{c}
y^{2} \\
-x y
\end{array}\right]} \\
\left.\left[\begin{array}{l}
1 \\
0
\end{array}\right] \longrightarrow \begin{array}{l}
x \\
y \\
0
\end{array}\right]
\end{gathered}
$$

The indicated element of $H_{2}(\operatorname{Tot}(\mathbb{F} \otimes \mathbb{G}))$ gives rise to the element y of the socle of P / I. To answer the question that our freshman ask: "Yes, it always works like that." We can use the idea of the snaky game to prove both isomorphisms in $\left(^{*}\right)$.
Now we work on $(1) \Longrightarrow(2)$. We want to prove that $\operatorname{pd}_{R}(R / I R)<\infty$. We apply the Theorem of Avramov and Claudia Miller (see the last seminar talk given by John Olmo last semester.) It suffices to prove that $\operatorname{Tor}_{1}^{R}\left(R / I R,{ }^{\varphi} R\right)=0$. In other words, it suffices to show that if

$$
\begin{align*}
R^{b_{2}} & \xrightarrow{d_{2}} R^{b_{1}} \xrightarrow{d_{1}} R \rightarrow R / I \rightarrow 0 \quad \text { is exact } \\
& \Longrightarrow R^{b_{2}} \xrightarrow{d_{2}^{[p]}} R^{b_{1}} \xrightarrow{d_{1}^{[p]}} R \rightarrow R / I^{[p]} \rightarrow 0 \quad \text { is exact. } \tag{**}
\end{align*}
$$

In other words, it suffices to show that

$$
\begin{equation*}
I^{[p]} \cap C=(I \cap C)^{[p]}+I^{[p]} C . \tag{***}
\end{equation*}
$$

I will show that $\left({ }^{* * *}\right)$ implies $\left({ }^{* *}\right)$. (This is a rather grubby calculation. I do it to show that our goal is very concrete! One can read the calculation backwards to show that $\left({ }^{* *}\right)$ implies ($\left.{ }^{* * *}\right)$.)

I make my calculation at the P-level. Let $a_{1}, \ldots, a_{b_{1}}$ generate I in P; so,

$$
d_{1}=\left[\begin{array}{lll}
a_{1} & \ldots & a_{b_{1}}
\end{array}\right]
$$

and

$$
d_{1}^{[p]}=\left[\begin{array}{lll}
a_{1}^{p} & \ldots & a_{b_{1}}^{p}
\end{array}\right] .
$$

We think of d_{2} as having two pieces:

$$
d_{2}=\left[\begin{array}{ll}
d_{2}^{\prime} & d_{2}^{\prime \prime}
\end{array}\right]
$$

where

$$
P^{b_{2}^{\prime}} \xrightarrow{d_{2}^{\prime}} P^{b_{1}} \xrightarrow{d_{1}} P
$$

is exact (and $d_{2}^{\prime \prime}$ is all of the extra columns that describe elements of I which are also in C.) Recall that Kunz's Theorem (ingredient (B) of the other direction) tells us that

$$
P^{b_{2}^{\prime}} \xrightarrow{\left(d_{2}^{\prime}\right)^{[p]}} P^{b_{1}} \xrightarrow{d_{1}^{[p]}} P
$$

is exact.
Suppose v is in $P^{b_{1}}$ with $d_{1}^{[p]}(v) \in C$. In other words,

$$
d_{1}^{[p]}(v) \in I^{[p]} \cap C=(I \cap C)^{[p]}+I^{[p]} C .
$$

So, there exist $s_{1}, \ldots, s_{t} \in I \cap C ; \alpha_{1}, \ldots, \alpha_{t}$ in P; and $c_{1}, \ldots c_{b_{1}}$ in C so that

$$
d_{1}^{[p]}(v)=\sum_{i=1}^{t} \alpha_{i} s_{i}^{p}+\sum_{i=1}^{b_{1}} a_{i}^{p} c_{i} .
$$

Of course, there exists $v_{i} \in P^{b_{1}}$ with $d_{1}\left(v_{i}\right)=s_{i}$ (and therefore also $d_{1}^{[p]} v_{1}^{[p]}=s_{i}^{p}$). So,

$$
d_{1}^{[p]}(v)=d_{1}^{[p]}\left(\sum_{i=1}^{t} \alpha_{i} v_{i}^{[p]}+\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{b_{1}}
\end{array}\right]\right)
$$

So,

$$
v-\sum_{i=1}^{t} \alpha_{i} v_{i}^{[p]}-\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{b_{1}}
\end{array}\right]
$$

is killed by $d_{1}^{[p]}$; hence is in the image of $\left(d_{2}^{\prime}\right)^{[p]}$. Finally, $d_{1}\left(v_{i}\right)=s_{i} \in I \cap C$, so $v_{i}=d_{2}^{\prime \prime}\left(w_{i}\right)$ for some w_{i}; hence, $v_{i}^{[p]}=\left(d_{2}^{\prime \prime}\right)^{[p]}\left(w_{i}^{[p]}\right)$. Thus,

$$
v \in \operatorname{im} d_{2}^{[p]}+C P^{b_{1}}
$$

as desired.
To be continued ...

