
Socle degrees of Frobenius powers
Lecture 1 — January 18, 2006

talk by A. Kustin

I will talk about recent joint work with Adela Vraciu. A preprint is available if
you want all of the details. I will only talk about parts of the proofs. The rings
that we study all have the form S = k[x1, . . . , xn]/(f1, . . . , fm), where k is a field
of positive characteristic p and each fi is a homogeneous polynomial. Often S will
be finite dimensional as a vector space over k.

Definition. If the ring S is a finite dimensional vector space over k, then the socle

of S is the set of elements in S that are killed by the maximal ideal m = (x1, . . . , xn).

Remark. According to Eisenbud, “socle” is an architectural term. It refers to the
base of a column.

Examples. A. If S = k[x, y]/(x2, y2), then the socle of S has basis xy.

B. If S = k[x, y]/(x2, xy, y2), then the socle of S has basis x, y.

C. If S = k[x, y, z]/(x2, xz, xy + z2, yz, y2), then the socle of S has basis xy.

Comment. If one thinks about the socle of S, then one is viewing S in some up-
side-down (i.e., dual) sense. Each (homogeneous) element in S is reached from
the top by multiplication (and addition) starting at 1. On the other hand, if you
start with an arbitrary (homogeneous) element of S, then by multiplying by the
appropriate sequence of generators of m, then you will land in the socle of S.

The question. Let R = P/C, where C is a homogeneous ideal in the polynomial
ring P = k[x1, . . . , xn], and let J be a homogeneous ideal of R, with R/J a finite
dimensional vector space over k. Adela asked, how do the degrees of the basis for
the socle of R/J [pe] vary as e increases? Adela is especially interested in asymptotic
behavior. (Note: If the ideal J is generated by a1, . . . , at, then J [q] is the ideal
generated by aq

1, . . . , a
q
t . We see that the ideal J [q] depends on the ideal J and not

the particular generating set, provided q is a power of the characteristic p of k.)

Examples. 1. If P = k[x, y], C = 0, R = P/C = P , and J = (x2, y2), then
J [q] = (x2q, y2q), and x2q−1y2q−1 is a basis for the socle of R/J [q], where q = pe.
We see

e socle degree of R/J [q]

0 2
1 2(2p − 1)
2 2(2p2 − 1)
3 2(2p3 − 1).
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There is a very pretty pattern. If the socle degree of R/J [q] is d, then the socle
degree of R/J [pq] is pd + 2(p − 1):

p2 + 2(p − 1)=4p − 2
p(4p − 2) + 2(p − 1)=4p2 − 2

p(4p2 − 2) + 2(p − 1)=4p3 − 2.

2. If P = k[x, y], C = (x2), R = k[x, y]/(x2), and J = (x2, y2)R, then J [q] =
(x2q, y2q)R = (x2, y2q)R, and xy2q−1 is a basis for the socle of R/J [q], where q = pe.
We see

e socle degree of R/J [q]

0 2
1 2p
2 2p2

3 2p3.

There is a very pretty pattern. If the socle degree of R/J [q] is d, then the socle
degree of R/J [pq] is pd.

3. If P = k[x, y], C = (x2, y2), R = k[x, y]/(x2, y2), and J = (x2, y2)R = (0), then
J [q] = (x2, y2), and xy is a basis for the socle of R/J [q], where q = pe. We see

e socle degree of R/J [q]

0 2
1 2
2 2
3 2.

There is a very pretty pattern. If the socle degree of R/J [q] is d, then the socle
degree of R/J [pq] is d.

4. We calculate the socle degrees of R/J [pe] for R = Z/2[x, y, z]/(f), where
J = (x2, xz, y2, yz, xy + z2) and f = x3 + y3 + z3. We learn

e socle degrees
0 2: 1
1 4: 7
2 9: 12
3 19: 12
4 39: 12.
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A Macaulay session which gave this information may be viewed from the seminar
webpage. After a while: if the socle degrees of R/J [q] are {di}, then the socle
degree of R/J [pq] are {pdi + 1}.

5. We calculate the socle degrees of R/J [pe] for R = Z/2[x, y, z]/(f), where f =
x3 + y3 + z3 and J = (x, y, z). We learn

e socle degrees
0 0: 1
1 3: 1
2 6: 2
3 12: 2
4 24: 2.

A Macaulay session which gave this information may be viewed from the seminar
webpage. After a while: if the socle degrees of R/J [q] are {di}, then the socle
degree of R/J [pq] are {pdi}.

6. We calculate the socle degrees of R/J [pe] for for R = Z/2[x, y, z]/(f), where
f = x5 + y5 + z5 and J = (x, y, z). We learn

e socle degrees
0 0: 1
1 3: 1
2 9: 1
3 12: 1 16: 1
4 22: 1 30: 1
5 42: 1 58: 1.

A Macaulay session which gave this information may be viewed from the seminar
webpage. After a while: if the socle degrees of R/J [q] are {di}, then the socle
degree of R/J [pq] are {pdi − (p − 1)2}.

7. One of the first things that Adela told me about this game is that if S = R/J has
finite projective dimension as an R-module, then then the socle degrees of R/J [p]

are {pdi − (p − 1)a(R)} where the socle degrees of S = R/J are {di} and a(R) is
the a-invariant of R; furthermore, if R = k[x1, . . . , xn]/(f1, . . . , fm) and the f ’s are
a regular sequence, then

a(R) =
∑

|fi| −
∑

|xi|.
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In particular, in

Example a(R) Does Di = pdi − (p − 1)a(R)? Proj. dim. of R/J [q] over R

1 −2 yes Of course, finite.

2 0 yes In fact, finite.

3 2 Actually, yes finite, since R = S!

4 0 eventually, off by 1 infinite, maybe the
resolution stabalizes
as e varies! This is

too crazy a thought to be
called a conjecture.

5 0 eventually, yes Macaulay says finite
at the moment that the
formula starts to hold.

6 2 eventually, yes Macaulay says finite
at the moment that the
formula starts to hold.

Examples like the above caused Adela and me to wonder if the converse to
Example 7 might possibly be try. That is:

Question. Let R be P/C, where P is a polynomial ring k[x1, . . . , xn] and C is

a homogeneous ideal in P . Let J be a homogeneous ideal in R with R/J a finite

dimensional vector space over k. Suppose that socle degrees of R/J are d1 ≤ · · · ≤ d`

and that the socle degrees of R/J [p] are D1 ≤ · · · ≤ D`. Suppose further that

Di = pdi − (p − 1)a(R)

for all i. Does it follow that R/J has finite projective dimension over R?

The answer is yes, provided C is generated by a regular sequence. (Notice:
One still might ask what happens if C is a Gorenstein ideal but not a complete
intersection!?!)

Theorem. Let R be P/C, where P is a polynomial ring k[x1, . . . , xn] and C is a

homogeneous complete intersection ideal in P . Let J be a homogeneous ideal in R
with R/J a finite dimensional vector space over k. Suppose that socle degrees of

R/J are d1 ≤ · · · ≤ d` and that the socle degrees of R/J [p] are D1 ≤ · · · ≤ DL.

Then the following statements are equivalent:

1. L = ` and Di = pdi − (p − 1)a(R) for all i, and
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2. The ring R/J has finite projective dimension as an R-module.

In these lectures, I will

1. prove a special case of (2) =⇒ (1) (this is Example 7), and

2. prove parts of (1) =⇒ (2).
You might find the order in which we established the result to be interesting. In

May 2004, we proved the result when C had one generator and J = IR where I is
a Gorenstein ideal of P . (So, the socle of P/I had dimension one. In this situation
there is the maximum amount of duality.) We stayed focused on the hypersurface
case (C has one generator) but we were interested in what happens when the magic
formula misses by one. We made no progress there and drifted to other projects.

Eventually, in Fall 05, we proved the above result when C is an arbitrary complete
intersection, but J was still IR for some Gorenstein ideal I. Finally, after the Fall
2005 semester ended we learned how to remove the I is Gorenstein hypothesis. The
funny thing is the proof is easier without the extraneous Gorenstein hypothesis.
With the extra hypothesis we had to keep dualizing to go from one step to the
next step. Once we removed the extra hypothesis, what we proved at one step was
exactly what we needed at the next step.

Proposition. Let J be a homogeneous ideal of the polynomial ring P = k[x1, . . . ,
xn], with P/J a finite dimensional vector space over k, and the characteristic of k
equal to p > 0. Then, the socles of R/J and R/J [p] have the same dimension and

if the socle degrees of R/J are d1 ≤ · · · ≤ d`, then the socle degrees of R/J [p] are

D1 ≤ · · · ≤ D` with Di = pdi − (p − 1)a(R).

Proof. The ring P is regular. Every P -module has a finite resolution by free P -
modules. Let

F : 0 → Fn → Fn−1 → · · · → F1 → F0

be the minimal homogeneous resolution of P/J by free P -modules, with Fn =
⊕

i P (−bi). There are two ingredients to the proof.

(1) The number of back twists in F is exactly equal to the dimension of the socle
of P/J ; furthermore, bi and di = bi + a(P ).

(2) One obtains the minimal free resolution of P/J [p] by applying the Frobenius
functor to F.

As soon as you buy (1) and (2), then the proof is complete. Ingredient (2) tells us
that the back twists in the P -resolution of P/J are pbi, with 1 ≤ i ≤ `. Thus, by
(1):

Di = pbi + a(P ) = p(bi + a(P )) − (p − 1)a(P ) = pdi − (p − 1)a(P ).
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A quick illustration. Let P = k[x, y] and J = (x2, xy, y2). The P -resolution of
P/J is

0 → P (−3)2

2

6

6

4

x 0
y x
0 y

3

7

7

5

−−−−−−→ P (−2)3
[y2 −xy x2 ]
−−−−−−−−−−−−→ P.

The resolution of P/J [p] is

0 → P (−3p)2

2

6

6

4

xp 0
yp xp

0 yp

3

7

7

5

−−−−−−−−→ P (−2p)3
[y2p −xpyp x2p ]
−−−−−−−−−−−−−−−→ P.

We have a(P ) = −2. We saw that x and y form a basis for the socle of P/J . So
the socle degrees of P/J are d1 = 1 ≤ d2 = 1. The back twists in the resolution
of P/J are b1 = 3 ≤ b2 = 3. We see that 3 − 2 = 1, so bi + a(P ) = di. We also
see that xp−1y2p−1 and x2p−1yp−1 are in the socle of P/J [p]. One can show that
xp−1y2p−1 and x2p−1yp−1 are a basis for the socle of P/J [p]. So the socle degrees of
P/J [p] are D1 = 3p − 2 ≤ D2 = 3p − 2; the back twists in the resolution of P/J [p]

are B1 = 3p ≤ B2 = 3p; and a(P ) is still −2. We have Di = Bi + a(P ) and also
Di = pdi − (p − 1)a(P ), for both i.

Ingredient (2), in the present form, is due to Kunz (1969) – this is the paper that
got commutative algebraists (especially Peskine, Spziro, Hochster) using Frobenius
methods. One could also think of this assertion as an application of “What makes
a complex exact?” (John Olmo lectured on this last Fall). The complex F is a
resolution, so the ranks of its matrices behave correctly and the grade of the ideals
of matrix minors grow correctly. If one raises each entry of each matrix to the pth

power, then the ranks of the new matrices are the same as the ranks of the old
matrices (since det M [p] = (detM)p because the characteristic of the ring is p), and
the grade of the ideals of minors also remains unchanged!

I will give two explanations for ingredient (1). The quick argument is that one may

commute TorP
n (P/J, k) using either coordinate. If one resolves P/J , then applies

⊗P k, and then computes homology, then one sees that

TorP
n (P/J, k) =

⊕

i

k(−bi).

In other words, the generators of Tor have degrees b1 ≤ . . . . On the other hand, if
one resolves k, then applies P/J ⊗P , and then computes homology, then one sees
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that

TorP
n (P/J, k) =

⊕

i

J :m

J
(a(P )).

In other words, the the generators of Tor have degrees d1 − a(P ), . . . (where the
socle degrees of P/J are d1, . . . ). So di = bi + a(P ) as claimed.

My second argument is exactly the same as my first, except, instead of stating the
abstract result that Tor may computed in either coordinate, I reprove this result,
giving a construction which associates an element of the socle of P/J to each basis
vector at the back of the resolution of of P/J . The constructive argument takes
longer, but shows what is really happening. Let F be a resolution of P/J , as above.
Let G be the Koszul complex which resolves k. One can directly show that there
is an isomorphism

(*) Hn(F ⊗ k) ∼= Hn(Tot(F ⊗ G)) ∼= Hn(P
J
⊗ G).

Note to my audience. Lucho Avramov (UNL) taught me the trick of replacing
a module with its resolution. Furthermore, this is the first thought about “trian-
gulated categories”. That is, rather than look at a category of modules, one looks
at a category of complexes mod quasi-isomorphisms.

Anyhow, I think that the best way to convey the idea of (*) is to work out the
example where J = (x2, xy, y2). In this case, F is

0 → P (−3)2
︸ ︷︷ ︸

F2

f2=

2

6

6

4

x 0
y x
0 y

3

7

7

5

−−−−−−−−−→ P (−2)3
︸ ︷︷ ︸

F1

f1=[y2 −xy x2 ]
−−−−−−−−−−−−−−→ P

︸︷︷︸

F0

,

G is

0 → P (−2)
︸ ︷︷ ︸

G2

g2=

"

y
−x

#

−−−−−−−→ P (−1)2
︸ ︷︷ ︸

G1

g1=[x y ]
−−−−−−−−→ P

︸︷︷︸

G0

,
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and F ⊗ G is

0 0 0


y



y



y

0 −−−−→ F2 ⊗ G2
f2⊗1

−−−−→ F1 ⊗ G2
f1⊗1

−−−−→ F0 ⊗ G2

1⊗g2



y 1⊗g2



y 1⊗g2



y

0 −−−−→ F2 ⊗ G1
f2⊗1

−−−−→ F1 ⊗ G1
f1⊗1

−−−−→ F0 ⊗ G1

1⊗g1



y 1⊗g1



y 1⊗g1



y

0 −−−−→ F2 ⊗ G0
f2⊗1

−−−−→ F1 ⊗ G0
f1⊗1

−−−−→ F0 ⊗ G0.

Start with

[
1
0

]

⊗ 1 in F2 ⊗ G0 in the lower left hand corner. We see that this

element represents an element of the homology of H2(F ⊗ k). One can extend this
element to get an element of the homology of H2(Tot(F ⊗ G)):

1 ⊗ y


y





1
0
0



 ⊗

[
1
0

]

+





0
1
0



 ⊗

[
0
1

]

−−−−→ 1 ⊗

[
y2

−xy

]



y

[
1
0

]

−−−−→





x
y
0





The indicated element of H2(Tot(F ⊗ G)) gives rise to the element y of the socle
of P/J . To answer the question that our freshman ask: “Yes, it always works like
that.” We can use the idea of the snaky game to prove both isomorphisms in (*).


