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Where to find it; '

| have posted this talk on my website. Also, a relevant paper and pre-print
are available on my website.

’ The Set up: '

Let Rbe aring (probably Z or a field K) and E and G be free R-modules
of rank e and g, respectively.




We study: the Koszul complex (1):

o= AN (m-1,n—1,p+1) — Sym E* ®SymnG®/\p(E* ®G)

4

~~

A(mn,p)

- N(m+1,n+1,p-1)—...

and its homology (which I’ll call Hy (m, n, p)). The differential is

OVRAX®(V1®X1) A=A (Vp®Xp))

——

p |
— Z(—l)'“viV@xiX@ (Vi®X1) A (Vi®@X) A+ A (Vp®Xp),
=

forall vq,...,vpIn E*, Xq,...,Xp IN G,V € Sym,E*, and X € Sym,G.




The talk has two parts. '

e Part 1. We describe 3 contexts in which H,(m, n, p) arises.

e Part 2. We “repair” (1) to make it exact.




A first context in which Hy(m,n, p) arises:

Resolutions of Universal Rings.

This is how | became interested in the subject.

For any triple of parameters e, f, and g, subject to the obvious constraints,
Hochster established the existence of a commutative noetherian ring X
and a universal resolution

U: 0-R > R"—> RY,

such that for any commutative noetherian ring Sand any resolution

V: 05858 59
there exists a unique ring homomorphism ® — SwithV=U®4 S

One of the obvious constraints is g—e-+ f > 0. We can say something
about the border case f = e+q.




The universal ring for

U: 05R* >R RY,

when f =e+4g, is R =B/, where

B =Z| the entries of each matrix, and one Buchsbaum-Eisenbud multiplier]

and 7 sets the entries of the composition equal to zero and makes the
multiplier be a multiplier.

Theorem. If K is a field, then every graded summand in the minimal
resolution of R ®zK by free 3 ®z K-modules involves H,(m, n, p) for
some m, n, and p.




A more precise version of the result is:

Theorem. If K is a field, then the minimal resolution of X ®7K by free
B @7 K-modules is

0 — Xeggt1 — - — Xo,

with

(D P @K Hae(mn, p) @k A™ ™K [-m—p,—g—n—p]
B
\m@)K HN(anaeg_e_ I)[_I7 _i]a

where the first sum is taken over all (m,n, p) with —e<m-n<g-—1and
m+n+p+1=I.




A second context where H,(m,n, p) arises:

The connection with divisors of determinantal rings.

o Let ? =Sym,(E*®G), a polynomial ring in the eg variables v; ® x;,
e S=Sym,(E*® G), a polynomial ring in e+ g variables
V1,...,Ve,X1,...,Xg, aNd

e T be the subring 5 ,,Sym,E* ® Sym,G of S (So, T is the subring
R{xVj}] of S=Rv1,...,Ve,X1,...,Xg)).

Notice that v; ® Xj — ViX; gives a ring homomorphism ? — T whose
kernel is I, of the matrix (vi ® Xj). Thus, T is the determinantal ring

defined by the 2 x 2 minors of a generic e x g matrix.




e Hashimoto proved that if e and g are both at least five, then Tor%” s(T,Z)
IS not a free Z-module; so, dimg Tor%’,S(T, K) depends on the
characteristic of the field K.

e On the other hand, the Koszul complex PQrA*(E* ®G) isa
homogeneous resolution of the P-module R. It follows that

Tor p,n+p(T R) Hf?\[(na n, p)-

e There is a determinantal interpretation of H,(m,n, p), even when
m £ n. For each integer s, let Mg be the T-submodule

Mg = Z SymE* ® Sym,G

M—N=S

of S View Mg as a graded T-module by giving Sym,,, sE* ® Sym,,G
grade n. The same reasoning we used before shows that

T p,n_|_p(Mm N R) — H?\[(mv n7 p)




We just saw that Tory . ,(Mm-n, R) = Ha (m,n, p) where T is the
determinantal ring /1, and © is a polynomial ring in eg variables over R

Take R=Z.

The divisor class group of T is known to be Z and s— [Mg] is an
iIsomorphism from Z — C/Z(T). This numbering satisfies

Mo

Mgy—e Is equal to the canonical class of T, and

Ms is a Cohen-Macaulay T-module ifandonly if 1l —e<s<g-—1.

Furthermore, if Mg Is a Cohen-Macaulay, then the projective dimension of
Msisa=(e—1)(g—1).




A third context in which Hg,(m,n, p) arises:

Chessboard complexes.

e Consider all legal rook configurations on an e x g chessboard — no more
than one rook per row, no more than one rook per column.

e Create a simplicial complex A¢ g. The vertices are the squares of the
Chessboard. The simplicies are the legal rook configurations.

e The chain complex that one uses to compute the homology of Ae g IS
exactly the same as one graded strand of complex (1).

e In 1994, Bjorner, Lovasz, Vertia, Zivaljevit proved that Hy of As 5 has
3-torsion. This provides an independent proof of Hashimoto’s Theorem.




Part 2: We “repair” the complex (1) and make it exact.

Apply Homg(_, R) to the complex (1):

o= N (m-1,n—1,p+1) — Sym E* ®SymnG®/\p(E* ®G)

7

~~

A(m,n,p)
— N(m+1,n+1,p-1)—...,

to form its dual, complex (2):

M (m,n,p)

- M(m-1n-1p+1)—....




The differential in complex (2):

7

~~

M (m,n,p)

—M(m—-1n-1p+1)—...,

IS given by

u(m) ®y(n) RZL— u(m_l) ®y(n_1) R (u®y) NZ.

e I’ll call the homology of (2) at (m,n, p), H, (M, N, p).




Class group magic

( basically :  Exty,(Ms,P) = Mg_e_s \
for 1-e<s<g-1 with a=(e—1)(g—1)

l.e., if G resolves Mg over P,
\ then G* =Homgp(G,P) resolves Mg_e s )

says that
Hac(M,n, p) = Hye (1,1, pf)
provided

m+m=g—-1, n+n=e-1, p+p=a, and

l-e<m—-n<g-1

Fix the above relationship for the rest of the talk.




In the presence of

m+m =g-—1,

the complexes

M : cor. —— M(mn,p) — M(m—-1,n-1p+1)

N: ...——ANm,",p) —> AN+, +1,p-1) —— ...

have isomorphic homology. We wonder ...




The Main Question '

Does there exist a quasi-isomorphism

M: .. —— M(mnp — M(m—-1n-1p+1)




Answers .

Answer (a). YES!, even when R=Z.

Answer (b). The quasi-isomorphism of Answer (a), depends on the
choice of basis. Does there exist a coordinate free quasi-isomorphism for
the Main Question when R=Z? NO!

Answer (c). Does there exist a sequence of coordinate-free
quasi-isomorphisms

Y

N <«

when R=7Z7? YES!




We create equivariant quasi-isomorphisms:

¢

Y » M.

et

P=m+p, Q=n+p, P=n+p, Q=n+p,

and /=m—n+e Noticethat1 </<e+g— 1.




We create Y to be (a shift of) the total complex of




| We make Y so that each row of .

Y \
Lo _ ¢ M —n+1,1,0 —1) — 0

A Y ¢ A
» Xo,1 Xo,0 - M (m —

IS split exact; so,

¢:Y—>M

Is automatically a quasi-isomorphism.




We define U so that the total complex of '

. — N({-2,e-20-Q+1) — AN({-1le-1a-Q) — ...
IS split exact.




The module X ¢ Is

DAE 20 NE' @Dy EeD G o\ " (EG),

~~

M (g+r+c,r,a+n —p—r)

where the sum is taken over all ¢-tuples (A1, ...,Ay) with A; > 1 for all i
and A1 +---+Ay=¢+cC.

The horizontal map X — X1 IS

ViRV, ou®d Y ®Z—

S signx(\i >2Vi@ - @uM) @ - aV,eu* VeYeZ.
|




The vertical map

Vou®gyb gz

L
VeueboyP-le (ugy)AZ

The horizontal augmentation

d
Xo0=E*® - ®E*®DE®DyG*® \ (EQRG") = M (P +r,r,Q —r)

-~

14

ViR - QVQURYRZ— VvV (U) QY RZ.




I’ll tell you the vertical augmentation

U

A

Nl—-1-ce—1-coa—-Q +c)
by telling you [(t)](t") for each

t:V1®...®V€®u(9+C)®Y®Z

in \ME*®--- @ A\ME* @ M (g-+c,r,a+n —p) C Xoc and

t'=U'eY®Z eM({l{—-1-ce-1-c,a-Q +c).




(a) The value of [(t)](t") is zero unless every A; <2 and Ay = 1.

(b) Under hypothesis (a), identify i1 < --- <ly_cand j1 < --- < Jc With
Ai, = land A, =2 for all k.

(c) The value of [(t)](t) is

(\/il o 'Viz—c—1>(U,)
: [Z/\Z’ A ((V /\Vg) (wE) mY’) A (u(9> > wgﬂ (WE*wG)

forV =u(Vj,) A---Au(Vj,).

Recallt =V, ®--- 9V, U89 @Y ® Z
in /\’\1E*®---®/\A€E*®M(g+c,r,a+n’— p) C Xo and

t'=U'eYeZ eM({l-1-ce-1-ca—-Q +c).

The orientation elements w and the homomorphism
><i: DaE ® A®G* — A?(E ® G*) are on the next page.




The homomaorphism

D DaE®/\aG* — /\a(E®G*)

satisfies:

U b (Y1 A= AYa) = (UBYL) A+ A (U Ya).

Note for the purposes of this talk, I have pretended that all free modules
are oriented, that is | have chosen a generator wg for A®E. This simplifies
the exposition, allows us to consider only change of bases which have
determinant one, and has no effect on any important idea.




‘ We show an example. '

Take e=g =2 and R= Z. | demonstrate that there does not exist a
coordinate-free quasi-isomorphism

0 — 9(0,0,0) — 0

Y

| will demonstrate that it is impossible to select a cycle zin A(1,1,1),
such that z is invariant under change of basis and the homology class of z
generates all of H,(1,1,1).




It is easy to calculate the cycles of A’(1,1,1) which are invariant under
under change of basis form the free group generated by the cycle

FVI X1 ® (V2 ®@X2) —V1 ®X% ® (V2 ®X1)
FV2 @%@ (VI®X1) — V2 @ X1 ® (VL ®X2)

The given cycle corresponds to 2 in A’(1,1,1). Indeed, each line
represents the same generator of H,(1,1,1).




Note for the purposes of this talk, | have pretended that all free modules
are oriented, that is | have chosen a generator wg for A®E. This simplifies

the exposition, allows us to consider only change of bases which have
determinant one, and has no effect on any important idea.




