An explicit, characteristic-free, equivariant homology equivalence between Koszul complexes
(aka: Divisors over determinantal rings defined by two by two minors)

Andy Kustin
University of South Carolina
(visiting Purdue University)
October, 2007

Where to find it:

I have posted this talk on my website. Also, a relevant paper and pre-print are available on my website.

The Set up:

Let R be a ring (probably \mathbb{Z} or a field \boldsymbol{K}) and E and G be free R-modules of rank e and g, respectively.

We study: the Koszul complex (1):

$$
\begin{gathered}
\cdots \rightarrow \mathcal{N}(m-1, n-1, p+1) \rightarrow \underbrace{\operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right)}_{\mathcal{N}(m, n, p)} \\
\rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \ldots
\end{gathered}
$$

and its homology (which I'll call $\mathrm{H}_{\mathfrak{N}}(m, n, p)$). The differential is

$$
\begin{gathered}
\partial\left(V \otimes X \otimes\left(v_{1} \otimes x_{1}\right) \wedge \cdots \wedge\left(v_{p} \otimes x_{p}\right)\right) \\
=\sum_{i=1}^{p}(-1)^{i+1} v_{i} V \otimes x_{i} X \otimes\left(v_{1} \otimes x_{1}\right) \wedge \ldots\left(\widehat{v_{i} \otimes x_{i}}\right) \wedge \cdots \wedge\left(v_{p} \otimes x_{p}\right)
\end{gathered}
$$

for all v_{1}, \ldots, v_{p} in $E^{*}, x_{1}, \ldots, x_{p}$ in $G, V \in \operatorname{Sym}_{m} E^{*}$, and $X \in \operatorname{Sym}_{n} G$.

The talk has two parts.

- Part 1. We describe 3 contexts in which $\mathrm{H}_{\mathcal{X}}(m, n, p)$ arises.
- Part 2. We "repair" (1) to make it exact.

A first context in which $\mathrm{H}_{\mathcal{N}}(m, n, p)$ arises:

Resolutions of Universal Rings.

This is how I became interested in the subject.
For any triple of parameters e, f, and g, subject to the obvious constraints, Hochster established the existence of a commutative noetherian ring \mathcal{R} and a universal resolution

$$
\mathbb{U}: \quad 0 \rightarrow \mathcal{R}^{e} \rightarrow \mathcal{R}^{f} \rightarrow \mathcal{R}^{g}
$$

such that for any commutative noetherian ring S and any resolution

$$
\mathbb{V}: \quad 0 \rightarrow S^{e} \rightarrow S^{f} \rightarrow S^{g}
$$

there exists a unique ring homomorphism $\mathcal{R} \rightarrow S$ with $\mathbb{V}=\mathbb{U} \otimes_{\mathcal{R}} S$.
One of the obvious constraints is $g-e+f \geq 0$. We can say something about the border case $f=e+g$.

The universal ring for

$$
\mathbb{U}: \quad 0 \rightarrow \mathcal{R}^{e} \rightarrow \mathcal{R}^{f} \rightarrow \mathcal{R}^{g}
$$

when $f=e+g$, is $\mathcal{R}=\mathfrak{P} / \mathcal{I}$, where
$\mathfrak{P}=\mathbb{Z}[$ the entries of each matrix, and one Buchsbaum-Eisenbud multiplier]
and \mathcal{I} sets the entries of the composition equal to zero and makes the multiplier be a multiplier.

Theorem. If \boldsymbol{K} is a field, then every graded summand in the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} \boldsymbol{K}$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} \boldsymbol{K}$-modules involves $\mathrm{H}_{\mathcal{X}}(m, n, p)$ for some m, n, and p.

A more precise version of the result is:
Theorem. If \boldsymbol{K} is a field, then the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} \boldsymbol{K}$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} \boldsymbol{K}$-modules is

$$
0 \rightarrow \mathbb{X}_{e g+1} \rightarrow \cdots \rightarrow \mathbb{X}_{0}
$$

with

$$
\mathbb{X}_{i}=\left\{\begin{array}{c}
\oplus \mathfrak{P} \otimes_{\boldsymbol{K}} \mathrm{H}_{\mathcal{N}}(m, n, p) \otimes_{\boldsymbol{K}} \bigwedge^{m-n+e} \boldsymbol{K}^{f}[-m-p,-g-n-p] \\
\oplus \\
\mathfrak{P} \otimes_{\boldsymbol{K}} \mathrm{H}_{\mathfrak{N}}(0, e, e g-e-i)[-i,-i]
\end{array}\right.
$$

where the first sum is taken over all (m, n, p) with $-e \leq m-n \leq g-1$ and $m+n+p+1=i$.

A second context where $\mathrm{H}_{\mathcal{N}}(m, n, p)$ arises:

The connection with divisors of determinantal rings.

- Let $\mathcal{P}=\operatorname{Sym}_{\bullet}\left(E^{*} \otimes G\right)$, a polynomial ring in the $e g$ variables $v_{i} \otimes x_{j}$,
- $S=\operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right)$, a polynomial ring in $e+g$ variables $v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}$, and
- T be the subring $\sum_{m} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{m} G$ of S. (So, T is the subring $R\left[\left\{x_{i} v_{j}\right\}\right]$ of $\left.S=R\left[v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}\right]\right)$.

Notice that $v_{i} \otimes x_{j} \mapsto v_{i} x_{j}$ gives a ring homomorphism $\mathcal{P} \rightarrow T$ whose kernel is I_{2} of the matrix $\left(v_{i} \otimes x_{j}\right)$. Thus, T is the determinantal ring defined by the 2×2 minors of a generic $e \times g$ matrix.

- Hashimoto proved that if e and g are both at least five, then $\operatorname{Tor}_{3,5}^{\mathcal{P}}(T, \mathbb{Z})$ is not a free \mathbb{Z}-module; so, $\operatorname{dim}_{\boldsymbol{K}} \operatorname{Tor}_{3,5}^{P}(T, \boldsymbol{K})$ depends on the characteristic of the field K.
- On the other hand, the Koszul complex $\mathcal{P} \otimes_{R} \Lambda^{\bullet}\left(E^{*} \otimes G\right)$ is a homogeneous resolution of the \mathcal{P}-module R. It follows that

$$
\operatorname{Tor}_{p, n+p}^{\mathcal{P}}(T, R)=\mathrm{H}_{\mathcal{N}}(n, n, p)
$$

- There is a determinantal interpretation of $\mathrm{H}_{\mathcal{N}}(m, n, p)$, even when $m \neq n$. For each integer s, let M_{s} be the T-submodule

$$
M_{s}=\sum_{m-n=s} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G
$$

of S. View M_{s} as a graded T-module by giving $\operatorname{Sym}_{n+s} E^{*} \otimes \operatorname{Sym}_{n} G$ grade n. The same reasoning we used before shows that

$$
\operatorname{Tor}_{p, n+p}^{\mathcal{P}}\left(M_{m-n}, R\right)=\mathrm{H}_{\mathcal{X}}(m, n, p)
$$

We just saw that $\operatorname{Tor}_{p, n+p}^{\mathcal{P}}\left(M_{m-n}, R\right)=\mathrm{H}_{\mathcal{X}}(m, n, p)$ where T is the determinantal ring \mathcal{P} / I_{2} and \mathcal{P} is a polynomial ring in $e g$ variables over R.

Take $R=\mathbb{Z}$.

The divisor class group of T is known to be \mathbb{Z} and $s \mapsto\left[M_{s}\right]$ is an isomorphism from $\mathbb{Z} \rightarrow \mathrm{C} \ell(T)$. This numbering satisfies
$M_{0}=T$,
M_{g-e} is equal to the canonical class of T, and
M_{s} is a Cohen-Macaulay T-module if and only if $1-e \leq s \leq g-1$.
Furthermore, if M_{s} is a Cohen-Macaulay, then the projective dimension of M_{s} is $\alpha=(e-1)(g-1)$.

A third context in which $\mathrm{H}_{\mathcal{N}}(m, n, p)$ arises:

Chessboard complexes.

- Consider all legal rook configurations on an $e \times g$ chessboard - no more than one rook per row, no more than one rook per column.
- Create a simplicial complex $\Delta_{e, g}$. The vertices are the squares of the Chessboard. The simplicies are the legal rook configurations.
- The chain complex that one uses to compute the homology of $\Delta_{e, g}$ is exactly the same as one graded strand of complex (1).
- In 1994, Björner, Lovász, Verćia, Živaljević proved that H_{2} of $\Delta_{5,5}$ has 3-torsion. This provides an independent proof of Hashimoto's Theorem.

Part 2: We "repair" the complex (1) and make it exact.

Apply $\operatorname{Hom}_{R}(\ldots, R)$ to the complex (1):

$$
\begin{gathered}
\cdots \rightarrow \mathcal{N}(m-1, n-1, p+1) \rightarrow \underbrace{\operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right)}_{\mathcal{N}(m, n, p)} \\
\rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \ldots,
\end{gathered}
$$

to form its dual, complex (2):

$$
\begin{gathered}
\cdots \rightarrow \mathcal{M}(m+1, n+1, p-1) \rightarrow \underbrace{D_{m} E \otimes D_{n} G^{*} \otimes \bigwedge^{p}\left(E \otimes G^{*}\right)}_{\mathscr{M}(m, n, p)} \\
\rightarrow \mathcal{M}(m-1, n-1, p+1) \rightarrow \ldots
\end{gathered}
$$

The differential in complex (2):

$$
\begin{gathered}
\cdots \rightarrow \mathcal{M}(m+1, n+1, p-1) \rightarrow \underbrace{D_{m} E \otimes D_{n} G^{*} \otimes \bigwedge^{p}\left(E \otimes G^{*}\right)}_{\mathcal{M}(m, n, p)} \\
\rightarrow \mathcal{M}(m-1, n-1, p+1) \rightarrow \ldots,
\end{gathered}
$$

is given by

$$
u^{(m)} \otimes y^{(n)} \otimes Z \mapsto u^{(m-1)} \otimes y^{(n-1)} \otimes(u \otimes y) \wedge Z
$$

- I'll call the homology of (2) at $(m, n, p), \mathrm{H}_{\mathcal{M}}(m, n, p)$.

Class group magic

$$
\left(\begin{array}{c}
\text { basically : } \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{s}, \mathcal{P}\right) \cong M_{g-e-s} \\
\text { for } \quad 1-e \leq s \leq g-1 \quad \text { with } \alpha=(e-1)(g-1) \\
\\
\text { i.e., if } \mathbb{G} \quad \text { resolves } \quad M_{s} \text { over } \mathcal{P}, \\
\text { then } \quad \mathbb{G}^{*}=\operatorname{Hom}_{\mathcal{P}}(\mathbb{G}, \mathcal{P}) \quad \text { resolves } M_{g-e-s}
\end{array}\right)
$$

says that

$$
\mathrm{H}_{\mathfrak{N}}(m, n, p) \cong \mathrm{H}_{\mathcal{M}}\left(m^{\prime}, n^{\prime}, p^{\prime}\right)
$$

provided

$$
\begin{gathered}
m+m^{\prime}=g-1, \quad n+n^{\prime}=e-1, \quad p+p^{\prime}=\alpha, \quad \text { and } \\
1-e \leq m-n \leq g-1
\end{gathered}
$$

Fix the above relationship for the rest of the talk.

In the presence of

$$
\begin{gathered}
m+m^{\prime}=g-1, \quad n+n^{\prime}=e-1, \quad p+p^{\prime}=\alpha, \quad \text { and } \\
1-e \leq m-n \leq g-1
\end{gathered}
$$

the complexes
\mathbb{M} :

$$
\ldots \longrightarrow \mathcal{M}(m, n, p) \longrightarrow \mathcal{M}(m-1, n-1, p+1)
$$

\qquad
$\mathbb{N}:$ $\mathcal{N}\left(m^{\prime}, n^{\prime}, p^{\prime}\right) \longrightarrow \mathcal{N}\left(m^{\prime}+1, n^{\prime}+1, p^{\prime}-1\right)$ \qquad
have isomorphic homology. We wonder...

The Main Question

Does there exist a quasi-isomorphism
\mathbb{M} :
$\ldots \longrightarrow \mathcal{M}(m, n, p) \longrightarrow$ $\mathcal{M}(m-1, n-1, p+1)$

$\mathbb{N}: \quad \cdots \longrightarrow \mathcal{N}\left(m^{\prime}, n^{\prime}, p^{\prime}\right) \longrightarrow \mathcal{N}\left(m^{\prime}+1, n^{\prime}+1, p^{\prime}-1\right) \longrightarrow \ldots ?$

Answers

Answer (a). YES!, even when $R=\mathbb{Z}$.

Answer (b). The quasi-isomorphism of Answer (a), depends on the choice of basis. Does there exist a coordinate free quasi-isomorphism for the Main Question when $R=\mathbb{Z}$? NO!

Answer (c). Does there exist a sequence of coordinate-free quasi-isomorphisms

$$
\mathbb{N} \stackrel{\psi}{\Psi} \mathbb{Y} \xrightarrow{\varphi} \mathbb{M}
$$

when $R=\mathbb{Z}$? YES!

We create equivariant quasi-isomorphisms:

Let

$$
P=m+p, \quad Q=n+p, \quad P^{\prime}=m^{\prime}+p^{\prime}, \quad Q^{\prime}=n^{\prime}+p^{\prime},
$$

and $\ell=m-n+e$. Notice that $1 \leq \ell \leq e+g-1$.

We create \mathbb{Y} to be (a shift of) the total complex of

We make \mathbb{Y} so that each row of

is split exact; so,

$$
\varphi: \mathbb{Y} \rightarrow \mathbb{M}
$$

is automatically a quasi-isomorphism.

is split exact.

The module $\mathbb{X}_{r, c}$ is

$$
\bigoplus \bigwedge^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \underbrace{D_{g+r+c} E \otimes D_{r} G^{*} \otimes \bigwedge^{\alpha+n^{\prime}-p-r}\left(E \otimes G^{*}\right)}_{\mathcal{M}\left(g+r+c, r, \alpha+n^{\prime}-p-r\right)}
$$

where the sum is taken over all ℓ-tuples $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ with $\lambda_{i} \geq 1$ for all i and $\lambda_{1}+\cdots+\lambda_{\ell}=\ell+c$.

The horizontal map $\mathbb{X}_{r, c} \rightarrow \mathbb{X}_{r, c-1}$ is

$$
\begin{gathered}
V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(a)} \otimes Y \otimes Z \mapsto \\
\sum_{i} \operatorname{sign}_{i} \chi\left(\lambda_{i} \geq 2\right) V_{1} \otimes \cdots \otimes u\left(V_{i}\right) \otimes \cdots \otimes V_{\ell} \otimes u^{(a-1)} \otimes Y \otimes Z .
\end{gathered}
$$

The vertical map
$\mathbb{X}_{r, c}$
$\downarrow \quad$ is
$\mathbb{X}_{r-1, c}$

$$
\begin{gathered}
V \otimes u^{(a)} \otimes y^{(b)} \otimes Z \\
\downarrow \\
V \otimes u^{(a-1)} \otimes y^{(b-1)} \otimes(u \otimes y) \wedge Z .
\end{gathered}
$$

The horizontal augmentation

$$
X_{r, 0}=\underbrace{E^{*} \otimes \cdots \otimes E^{*}}_{\ell} \otimes D_{a} E \otimes D_{b} G^{*} \otimes \bigwedge^{d}\left(E \otimes G^{*}\right) \rightarrow \mathcal{M}\left(P^{\prime}+r, r, Q^{\prime}-r\right)
$$

is

$$
v_{1} \otimes \cdots \otimes v_{\ell} \otimes U \otimes Y \otimes Z \mapsto v_{1} \cdots v_{\ell}(U) \otimes Y \otimes Z
$$

I'll tell you the vertical augmentation

by telling you $[\psi(t)]\left(t^{\prime}\right)$ for each

$$
t=V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(g+c)} \otimes Y \otimes Z
$$

in $\bigwedge^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \mathscr{M}\left(g+c, r, \alpha+n^{\prime}-p\right) \subset \mathbb{X}_{0, c}$ and

$$
t^{\prime}=U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime} \in \mathscr{M}\left(\ell-1-c, e-1-c, \alpha-Q^{\prime}+c\right) .
$$

(a) The value of $[\psi(t)]\left(t^{\prime}\right)$ is zero unless every $\lambda_{i} \leq 2$ and $\lambda_{\ell}=1$.
(b) Under hypothesis (a), identify $i_{1}<\cdots<i_{\ell-c}$ and $j_{1}<\cdots<j_{c}$ with $\lambda_{i_{k}}=1$ and $\lambda_{j_{k}}=2$ for all k.
(c) The value of $[\psi(t)]\left(t^{\prime}\right)$ is

$$
\begin{aligned}
\left(V_{i_{1}} \cdots\right. & \left.V_{i_{\ell-c-1}}\right)\left(U^{\prime}\right) \\
& \cdot\left[Z \wedge Z^{\prime} \wedge\left(\left(V \wedge V_{\ell}\right)\left(\omega_{E}\right) \bowtie Y^{\prime}\right) \wedge\left(u^{(g)} \bowtie \omega_{G^{*}}\right)\right]\left(\omega_{E^{*} \otimes G}\right) \\
\text { for } V= & u\left(V_{j_{1}}\right) \wedge \cdots \wedge u\left(V_{j_{c}}\right) .
\end{aligned}
$$

Recall $t=V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(g+c)} \otimes Y \otimes Z$ in $\Lambda^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \mathscr{M}\left(g+c, r, \alpha+n^{\prime}-p\right) \subset \mathbb{X}_{0, c}$ and

$$
t^{\prime}=U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime} \in \mathcal{M}\left(\ell-1-c, e-1-c, \alpha-Q^{\prime}+c\right)
$$

The orientation elements ω and the homomorphism
$\bowtie: D_{a} E \otimes \bigwedge^{a} G^{*} \rightarrow \bigwedge^{a}\left(E \otimes G^{*}\right)$ are on the next page.

The homomorphism

$$
\bowtie: D_{a} E \otimes \bigwedge^{a} G^{*} \rightarrow \bigwedge^{a}\left(E \otimes G^{*}\right)
$$

satisfies:

$$
u^{(a)} \bowtie\left(y_{1} \wedge \cdots \wedge y_{a}\right)=\left(u \otimes y_{1}\right) \wedge \cdots \wedge\left(u \otimes y_{a}\right)
$$

Note for the purposes of this talk, I have pretended that all free modules are oriented, that is I have chosen a generator ω_{E} for $\bigwedge^{e} E$. This simplifies the exposition, allows us to consider only change of bases which have determinant one, and has no effect on any important idea.

We show an example.

Take $e=g=2$ and $R=\mathbb{Z}$. I demonstrate that there does not exist a coordinate-free quasi-isomorphism

I will demonstrate that it is impossible to select a cycle z in $\mathcal{N}(1,1,1)$, such that z is invariant under change of basis and the homology class of z generates all of $\mathrm{H}_{\mathcal{N}}(1,1,1)$.

It is easy to calculate the cycles of $\mathcal{N}(1,1,1)$ which are invariant under under change of basis form the free group generated by the cycle

$$
\left\{\begin{array}{l}
+v_{1} \otimes x_{1} \otimes\left(v_{2} \otimes x_{2}\right)-v_{1} \otimes x_{2} \otimes\left(v_{2} \otimes x_{1}\right) \\
+v_{2} \otimes x_{2} \otimes\left(v_{1} \otimes x_{1}\right)-v_{2} \otimes x_{1} \otimes\left(v_{1} \otimes x_{2}\right)
\end{array}\right.
$$

The given cycle corresponds to 2 in $\mathcal{N}(1,1,1)$. Indeed, each line represents the same generator of $\mathrm{H}_{\mathcal{N}}(1,1,1)$.

Note for the purposes of this talk, I have pretended that all free modules are oriented, that is I have chosen a generator ω_{E} for $\bigwedge^{e} E$. This simplifies the exposition, allows us to consider only change of bases which have determinant one, and has no effect on any important idea.

