An explicit, characteristic-free, equivariant homology equivalence between Koszul complexes

(aka: Divisors over determinantal rings defined by two by two minors)

Andy Kustin University of South Carolina (visiting Purdue University)

October, 2007

Where to find it:

I have posted this talk on my website. Also, a relevant paper and pre-print are available on my website.

The Set up:

Let *R* be a ring (probably \mathbb{Z} or a field *K*) and *E* and *G* be free *R*-modules of rank *e* and *g*, respectively.

We study: the Koszul complex (1):

$$\cdots \to \mathcal{N}(m-1, n-1, p+1) \to \underbrace{\operatorname{Sym}_{m}E^{*} \otimes \operatorname{Sym}_{n}G \otimes \bigwedge^{p}(E^{*} \otimes G)}_{\mathcal{N}(m, n, p)}$$

$$\rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \dots$$

and its homology (which I'll call $H_{\mathcal{N}}(m, n, p)$). The differential is

$$\partial(V \otimes X \otimes (v_1 \otimes x_1) \wedge \cdots \wedge (v_p \otimes x_p))$$

$$=\sum_{i=1}^{p}(-1)^{i+1}v_iV\otimes x_iX\otimes (v_1\otimes x_1)\wedge\ldots(\widehat{v_i\otimes x_i})\wedge\cdots\wedge(v_p\otimes x_p),$$

for all v_1, \ldots, v_p in E^*, x_1, \ldots, x_p in $G, V \in \text{Sym}_m E^*$, and $X \in \text{Sym}_n G$.

The talk has two parts.

- **Part 1.** We describe 3 contexts in which $H_{\mathcal{N}}(m, n, p)$ arises.
- Part 2. We "repair" (1) to make it exact.

A first context in which $H_{\mathcal{N}}(m,n,p)$ arises:

Resolutions of Universal Rings.

This is how I became interested in the subject.

For any triple of parameters e, f, and g, subject to the obvious constraints, Hochster established the existence of a commutative noetherian ring \mathcal{R} and a universal resolution

$$\mathbb{U}: \quad 0 \to \mathcal{R}^e \to \mathcal{R}^f \to \mathcal{R}^g,$$

such that for any commutative noetherian ring *S* and any resolution

$$\mathbb{V}: \quad 0 \to S^e \to S^f \to S^g,$$

there exists a unique ring homomorphism $\mathcal{R} \to S$ with $\mathbb{V} = \mathbb{U} \otimes_{\mathcal{R}} S$. One of the obvious constraints is $g - e + f \ge 0$. We can say something about the border case f = e + g. The universal ring for

$$\mathbb{U}: \quad 0 \to \mathcal{R}^e \to \mathcal{R}^f \to \mathcal{R}^g,$$

when f = e + g, is $\mathcal{R} = \mathfrak{P}/\mathcal{I}$, where

 $\mathfrak{P} = \mathbb{Z}[$ the entries of each matrix, and one Buchsbaum-Eisenbud multiplier]

and \mathcal{I} sets the entries of the composition equal to zero and makes the multiplier be a multiplier.

Theorem. If *K* is a field, then every graded summand in the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} K$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} K$ -modules involves $H_{\mathcal{N}}(m,n,p)$ for some *m*, *n*, and *p*.

A more precise version of the result is:

Theorem. If *K* is a field, then the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} K$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} K$ -modules is

$$0 \to \mathbb{X}_{eg+1} \to \cdots \to \mathbb{X}_0,$$

with

$$\mathbb{X}_{i} = \begin{cases} \bigoplus \mathfrak{P} \otimes_{\mathbf{K}} \mathrm{H}_{\mathcal{N}}(m,n,p) \otimes_{\mathbf{K}} \bigwedge^{m-n+e} \mathbf{K}^{f}[-m-p,-g-n-p] \\ \oplus \\ \mathfrak{P} \otimes_{\mathbf{K}} \mathrm{H}_{\mathcal{N}}(0,e,eg-e-i)[-i,-i], \end{cases}$$

where the first sum is taken over all (m, n, p) with $-e \le m - n \le g - 1$ and m + n + p + 1 = i.

A second context where $H_{\mathcal{N}}(m,n,p)$ arises: The connection with divisors of determinantal rings.

- Let $\mathcal{P} = \text{Sym}_{\bullet}(E^* \otimes G)$, a polynomial ring in the *eg* variables $v_i \otimes x_j$,
- $S = \text{Sym}_{\bullet}(E^* \oplus G)$, a polynomial ring in e + g variables $v_1, \dots, v_e, x_1, \dots, x_g$, and
- *T* be the subring $\sum_{m} \text{Sym}_{m} E^* \otimes \text{Sym}_{m} G$ of *S*. (So, *T* is the subring $R[\{x_i v_j\}]$ of $S = R[v_1, \dots, v_e, x_1, \dots, x_g]$).

Notice that $v_i \otimes x_j \mapsto v_i x_j$ gives a ring homomorphism $\mathcal{P} \to T$ whose kernel is I_2 of the matrix $(v_i \otimes x_j)$. Thus, T is the determinantal ring defined by the 2 × 2 minors of a generic $e \times g$ matrix.

• Hashimoto proved that if *e* and *g* are both at least five, then $\operatorname{Tor}_{3,5}^{\mathcal{P}}(T,\mathbb{Z})$ is not a free \mathbb{Z} -module; so, $\dim_{\mathbf{K}} \operatorname{Tor}_{3,5}^{\mathcal{P}}(T,\mathbf{K})$ depends on the characteristic of the field *K*.

• On the other hand, the Koszul complex $\mathcal{P} \otimes_R \bigwedge^{\bullet} (E^* \otimes G)$ is a homogeneous resolution of the \mathcal{P} -module R. It follows that

$$\operatorname{Tor}_{p,n+p}^{\mathcal{P}}(T,R) = \operatorname{H}_{\mathcal{N}}(n,n,p).$$

• There is a determinantal interpretation of $H_{\mathcal{N}}(m,n,p)$, even when $m \neq n$. For each integer *s*, let M_s be the *T*-submodule

$$M_s = \sum_{m-n=s} \operatorname{Sym}_m E^* \otimes \operatorname{Sym}_n G$$

of *S*. View M_s as a graded *T*-module by giving $\text{Sym}_{n+s} E^* \otimes \text{Sym}_n G$ grade *n*. The same reasoning we used before shows that

$$\operatorname{Tor}_{p,n+p}^{\mathscr{P}}(M_{m-n},R) = \operatorname{H}_{\mathscr{N}}(m,n,p).$$

We just saw that $\operatorname{Tor}_{p,n+p}^{\mathcal{P}}(M_{m-n},R) = \operatorname{H}_{\mathcal{N}}(m,n,p)$ where *T* is the determinantal ring \mathcal{P}/I_2 and \mathcal{P} is a polynomial ring in *eg* variables over *R*.

Take $R = \mathbb{Z}$.

The divisor class group of *T* is known to be \mathbb{Z} and $s \mapsto [M_s]$ is an isomorphism from $\mathbb{Z} \to C\ell(T)$. This numbering satisfies

 $M_0=T,$

 M_{g-e} is equal to the canonical class of T, and

 M_s is a Cohen-Macaulay *T*-module if and only if $1 - e \le s \le g - 1$.

Furthermore, if M_s is a Cohen-Macaulay, then the projective dimension of M_s is $\alpha = (e-1)(g-1)$.

A third context in which $H_{\mathcal{N}}(m,n,p)$ arises: Chessboard complexes.

• Consider all legal rook configurations on an $e \times g$ chessboard – no more than one rook per row, no more than one rook per column.

• Create a simplicial complex $\Delta_{e,g}$. The vertices are the squares of the Chessboard. The simplicies are the legal rook configurations.

• The chain complex that one uses to compute the homology of $\Delta_{e,g}$ is **exactly the same** as one graded strand of complex (1).

• In 1994, Björner, Lovász, Verćia, Živaljević proved that H_2 of $\Delta_{5,5}$ has 3-torsion. This provides an independent proof of Hashimoto's Theorem.

Part 2: We "repair" the complex (1) and make it exact.

Apply $\operatorname{Hom}_{R}(\underline{\ }, R)$ to the complex (1):

$$\cdots \to \mathcal{N}(m-1, n-1, p+1) \to \underbrace{\operatorname{Sym}_{m}E^{*} \otimes \operatorname{Sym}_{n}G \otimes \bigwedge^{p}(E^{*} \otimes G)}_{\mathcal{N}(m, n, p)}$$

$$\rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \dots,$$

to form its dual, complex (2):

$$\cdots \to \mathcal{M}(m+1, n+1, p-1) \to \underbrace{D_m E \otimes D_n G^* \otimes \bigwedge^p (E \otimes G^*)}_{\mathcal{M}(m, n, p)}$$

$$\rightarrow \mathcal{M}(m-1,n-1,p+1) \rightarrow \dots$$

The differential in complex (2):

$$\cdots \to \mathcal{M}(m+1, n+1, p-1) \to \underbrace{D_m E \otimes D_n G^* \otimes \bigwedge^p (E \otimes G^*)}_{\mathcal{M}(m, n, p)}$$

$$\rightarrow \mathcal{M}(m-1, n-1, p+1) \rightarrow \dots,$$

is given by

$$u^{(m)} \otimes y^{(n)} \otimes Z \mapsto u^{(m-1)} \otimes y^{(n-1)} \otimes (u \otimes y) \wedge Z.$$

• I'll call the homology of (2) at (m, n, p), $H_{\mathcal{M}}(m, n, p)$.

Class group magic

basically:
$$\operatorname{Ext}_{\mathscr{P}}^{\alpha}(M_{s},\mathscr{P}) \cong M_{g-e-s}$$

for $1-e \leq s \leq g-1$ with $\alpha = (e-1)(g-1)$
i.e., if \mathbb{G} resolves M_{s} over \mathscr{P} ,
then $\mathbb{G}^{*} = \operatorname{Hom}_{\mathscr{P}}(\mathbb{G},\mathscr{P})$ resolves M_{g-e-s}

says that

$$\mathbf{H}_{\mathcal{N}}(m,n,p) \cong \mathbf{H}_{\mathcal{M}}(m',n',p')$$

provided

$$m + m' = g - 1$$
, $n + n' = e - 1$, $p + p' = \alpha$, and
 $1 - e \le m - n \le g - 1$.

Fix the above relationship for the rest of the talk.

In the presence of

$$m+m' = g-1, \quad n+n' = e-1, \quad p+p' = \alpha,$$
 and
 $1-e \le m-n \le g-1,$

the complexes

 $\mathbb{M}: \quad \dots \longrightarrow \mathcal{M}(m,n,p) \longrightarrow \mathcal{M}(m-1,n-1,p+1) \longrightarrow \dots$

$$\mathbb{N}: \dots \longrightarrow \mathcal{N}(m',n',p') \longrightarrow \mathcal{N}(m'+1,n'+1,p'-1) \longrightarrow \dots$$

have isomorphic homology. We wonder ...

The Main Question

Does there exist a quasi-isomorphism

Answers

Answer (a). YES!, even when $R = \mathbb{Z}$.

Answer (b). The quasi-isomorphism of Answer (a), depends on the choice of basis. Does there exist a **coordinate free** quasi-isomorphism for the Main Question when $R = \mathbb{Z}$? NO!

Answer (c). Does there exist a sequence of coordinate-free quasi-isomorphisms

$$\mathbb{N} \xleftarrow{\psi} \mathbb{Y} \xrightarrow{\phi} \mathbb{M}$$

when $R = \mathbb{Z}$? **YES!**

We create equivariant quasi-isomorphisms: $\mathbb{N} \xleftarrow{\Psi} \mathbb{Y} \xrightarrow{\phi} \mathbb{M}.$

Let

$$P = m + p$$
, $Q = n + p$, $P' = m' + p'$, $Q' = n' + p'$,

and $\ell = m - n + e$. Notice that $1 \le \ell \le e + g - 1$.

The **module** $X_{r,c}$ is

$$\bigoplus \bigwedge^{\lambda_1} E^* \otimes \cdots \otimes \bigwedge^{\lambda_\ell} E^* \otimes \underbrace{D_{g+r+c} E \otimes D_r G^* \otimes \bigwedge^{\alpha+n'-p-r} (E \otimes G^*)}_{\mathcal{M}(g+r+c,r,\alpha+n'-p-r)},$$

where the sum is taken over all ℓ -tuples $(\lambda_1, \ldots, \lambda_\ell)$ with $\lambda_i \ge 1$ for all iand $\lambda_1 + \cdots + \lambda_\ell = \ell + c$.

The horizontal map $\mathbb{X}_{r,c} \to \mathbb{X}_{r,c-1}$ is

$$V_1 \otimes \cdots \otimes V_\ell \otimes u^{(a)} \otimes Y \otimes Z \mapsto$$

 $\sum_{i} \operatorname{sign}_{i} \chi(\lambda_{i} \geq 2) V_{1} \otimes \cdots \otimes u(V_{i}) \otimes \cdots \otimes V_{\ell} \otimes u^{(a-1)} \otimes Y \otimes Z.$

The vertical map

The horizontal augmentation

$$X_{r,0} = \underbrace{E^* \otimes \cdots \otimes E^*}_{\ell} \otimes D_a E \otimes D_b G^* \otimes \bigwedge^d (E \otimes G^*) \to \mathcal{M}(P' + r, r, Q' - r)$$

is

$$v_1 \otimes \cdots \otimes v_\ell \otimes U \otimes Y \otimes Z \mapsto v_1 \cdots v_\ell(U) \otimes Y \otimes Z.$$

I'll tell you the **vertical augmentation**

by telling you $[\psi(t)](t')$ for each

$$t = V_1 \otimes \cdots \otimes V_\ell \otimes u^{(g+c)} \otimes Y \otimes Z$$

in
$$\wedge^{\lambda_1} E^* \otimes \cdots \otimes \wedge^{\lambda_\ell} E^* \otimes \mathcal{M}(g+c,r,\alpha+n'-p) \subset \mathbb{X}_{0,c}$$
 and
$$t' = U' \otimes Y' \otimes Z' \in \mathcal{M}(\ell-1-c,e-1-c,\alpha-Q'+c).$$

- (a) The value of $[\psi(t)](t')$ is zero unless every $\lambda_i \leq 2$ and $\lambda_\ell = 1$.
- (b) Under hypothesis (a), identify $i_1 < \cdots < i_{\ell-c}$ and $j_1 < \cdots < j_c$ with $\lambda_{i_k} = 1$ and $\lambda_{j_k} = 2$ for all *k*.
- (c) The value of $[\psi(t)](t')$ is

$$(V_{i_1} \cdots V_{i_{\ell-c-1}})(U') \cdot \left[Z \wedge Z' \wedge \left(\left(V \wedge V_{\ell} \right) (\omega_E) \bowtie Y' \right) \wedge \left(u^{(g)} \bowtie \omega_{G^*} \right) \right] (\omega_{E^* \otimes G})$$

for
$$V = u(V_{j_1}) \wedge \cdots \wedge u(V_{j_c})$$
.

Recall $t = V_1 \otimes \cdots \otimes V_\ell \otimes u^{(g+c)} \otimes Y \otimes Z$ in $\bigwedge^{\lambda_1} E^* \otimes \cdots \otimes \bigwedge^{\lambda_\ell} E^* \otimes \mathcal{M}(g+c,r,\alpha+n'-p) \subset \mathbb{X}_{0,c}$ and

$$t' = U' \otimes Y' \otimes Z' \in \mathcal{M}(\ell - 1 - c, e - 1 - c, \alpha - Q' + c).$$

The orientation elements ω and the homomorphism $\bowtie: D_a E \otimes \bigwedge^a G^* \to \bigwedge^a (E \otimes G^*)$ are on the next page.

The homomorphism

$$\bowtie: D_a E \otimes \bigwedge^a G^* \to \bigwedge^a (E \otimes G^*)$$

satisfies:

$$u^{(a)} \bowtie (y_1 \land \cdots \land y_a) = (u \otimes y_1) \land \cdots \land (u \otimes y_a).$$

Note for the purposes of this talk, I have pretended that all free modules are oriented, that is I have chosen a generator ω_E for $\bigwedge^e E$. This simplifies the exposition, allows us to consider only change of bases which have determinant one, and has no effect on any important idea.

We show an example.

Take e = g = 2 and $R = \mathbb{Z}$. I demonstrate that there does not exist a **coordinate-free** quasi-isomorphism

$$0 \longrightarrow \mathcal{M}(0,0,0) \longrightarrow 0$$

$$\downarrow$$

$$0 \longrightarrow \mathcal{N}(0,0,2) \longrightarrow \mathcal{N}(1,1,1) \longrightarrow \mathcal{N}(0,0,2) \longrightarrow 0$$

I will demonstrate that it is impossible to select a cycle z in $\mathcal{N}(1,1,1)$, such that z is invariant under change of basis and the homology class of z generates all of $H_{\mathcal{N}}(1,1,1)$. It is easy to calculate the cycles of $\mathcal{N}(1,1,1)$ which are invariant under under change of basis form the free group generated by the cycle

$$\begin{cases} +v_1 \otimes x_1 \otimes (v_2 \otimes x_2) - v_1 \otimes x_2 \otimes (v_2 \otimes x_1) \\ +v_2 \otimes x_2 \otimes (v_1 \otimes x_1) - v_2 \otimes x_1 \otimes (v_1 \otimes x_2) \end{cases}$$

The given cycle corresponds to 2 in $\mathcal{N}(1,1,1)$. Indeed, each line represents the same generator of $H_{\mathcal{N}}(1,1,1)$.

Note for the purposes of this talk, I have pretended that all free modules are oriented, that is I have chosen a generator ω_E for $\bigwedge^e E$. This simplifies the exposition, allows us to consider only change of bases which have determinant one, and has no effect on any important idea.