"DIVISORS OVER DETERMINANTAL RINGS DEFINED BY TWO BY TWO MINORS"

Andrew R. Kustin

When I first thought about giving this talk, I was attracted to the topic because I figured I could say something coherent and interesting. As I started to prepare the talk, I realized that there is an extra reason to give it here at Purdue: two of the players in talk were students at Purdue Anna Guerrieri (student of Huneke) and Alex Tchernev (student of Avramov).

Let G be a free module over the ring R. The complex

$$
\mathbb{C}_{n}: \quad \cdots \rightarrow \operatorname{Sym}_{n-2} G \otimes \bigwedge^{2} G \rightarrow \operatorname{Sym}_{n-1} G \otimes \bigwedge^{1} G \rightarrow \operatorname{Sym}_{n} G \otimes \bigwedge^{0} G \rightarrow 0
$$

is well known and well-understood. This is one graded strand of the Koszul complex. If x_{1}, \ldots, x_{g} is a basis for G, then \mathbb{C}_{n} is the strand from the $R\left[x_{1}, \ldots, x_{g}\right]$-resolution of R which consists of the homogeneous elements of total degree n. The homology of \mathbb{C}_{0} is R in position zero, and each of the other \mathbb{C}_{n} are split exact.

The situation is much different if two free modules are involved: E^{*} and G. In this case, I look at
$\cdots \rightarrow \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \operatorname{Sym}_{m+1} E^{*} \otimes \operatorname{Sym}_{n+1} G \otimes \bigwedge^{p-1}\left(E^{*} \otimes G\right) \rightarrow \ldots$.

- Many of the complexes $\left(^{*}\right)$ have homology.
- The homology of $\left({ }^{*}\right)$ may occur in the middle and not necessarily at the left or right end.
- (*) may have homology in more than one position.
- The homology of $\left({ }^{*}\right)$ is not always a free R-module.
- If R is a field, then the dimension of the homology of $\left(^{*}\right)$ depends on the characteristic of R.

The first three statements are not particularly shocking. The fourth and fifth statements are eye-opening (I think) and are essentially the same assertion.

The fourth and fifth statements are due to Hashimoto (1990) - representation theory argument. An argument from algebraic topology is given by Björner, Lovász, Verćia, Živaljević (1994). I don't think that [BLVZ] were aware of [H].

Here is the plan of today's talk.

(1) Interpret the homology of $(*)$ in terms of the resolution of divisors over determinantal rings. Bruns and Guerrieri call these divisors $\left\{M_{\ell}\right\}$; so we connect the homology of $\left({ }^{*}\right)$ at (m, n, p) to $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, R\right)$. (\mathcal{P} is a polynomial ring to be described later). This is why $[\mathrm{H}]$ applies.
(2) Other contexts in which the homology of $(*)$ arises.
(a) Resolutions of universal rings (I learned about this from Tchernev).
(b) Chessboard complexes (here "complex" means "simplicial complex") from [BLVZ].
(c) Matching graphs.
(3) The resolution of M_{ℓ} (or the calculation of $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, R\right)$).
(a) Lascoux approach (R is a field of characteristic zero).
(b) The beautiful description given by Reiner-Roberts (R is a field of characteristic zero).
(c) A consequence of the R-R description at the CM-boundary (This works over all rings. I had established it before I knew about R-R, but R-R gives a very cute proof when it applies!)
(d) Repair $\left(^{*}\right)$ to make it become exact. (This works over all rings.)

Open Question. $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, R\right)$ is known when R is a field of characteristic zero. However, $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, R\right)$ is not known in general (i.e., when $R=\mathbb{Z}$ or R is a field of prime characteristic.)

Amplification.
a. If $\min \{e, g\}=2$, then $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \mathbb{Z}\right)$ is known (by Eagon Northcott).
b. If $\min \{e, g\}=3$, then I have calculated that $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \mathbb{Z}\right)$ is a free abelian group (and hence is described by R-R).
c. I GUESS that if $\min \{e, g\}=4$, then $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \mathbb{Z}\right)$ is a free abelian group (and hence is described by R-R), but I do not know if anyone has established this.
d. So the open question "really" is about $\min \{e, g\} \geq 5$.

1. Interpret the homology of $\left({ }^{*}\right)$ in terms of $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, R\right)$.

- Let S be the R-algebra $\operatorname{Sym}_{\bullet} E^{*} \otimes \operatorname{Sym}_{\mathbf{\bullet}} G$. If we fix bases v_{1}, \ldots, v_{e} for E^{*}, and x_{1}, \ldots, x_{g} for G, then one may think of S as the polynomial ring

$$
S=R\left[v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}\right] .
$$

- Let T be the subring

$$
T=\sum_{m} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{m} G
$$

of S. One may think of T as the subring $R\left[v_{i} x_{j}\right]$ of S.

- Let \mathcal{P} be the R-algebra $\operatorname{Sym}_{\mathbf{~}}\left(E^{*} \otimes G\right)$. One may think of \mathcal{P} as a polynomial ring over R in the eg indeterminates $\left\{v_{i} \otimes x_{j}\right\}$. It is convenient to let $z_{i j}$ represent the element $v_{i} \otimes x_{j}$ of \mathcal{P}.
- The identity map on $E^{*} \otimes G$ induces a surjective map $\varphi: \mathcal{P} \rightarrow T$. Let Z be the $e \times g$ matrix whose entry in row i column j is the indeterminate $z_{i j}$. The kernel of φ is the ideal $I_{2}(Z)$ generated by the 2×2 minors of Z; and therefore, T is isomorphic to the determinantal ring $\mathcal{P} / I_{2}(Z)$.
- Hashimoto proved that if e and g are both at least five, then $\operatorname{Tor}_{3,5}^{\mathcal{P}}(T, \mathbb{Z})$ is not a free \mathbb{Z}-module.
- On the other hand, the Koszul complex $\mathcal{P} \otimes_{R} \Lambda^{\bullet}\left(E^{*} \otimes G\right)$ is a homogeneous resolution of the \mathcal{P}-module R. It follows that

$$
\operatorname{Tor}_{p, n+p}^{P}(T, R)=\mathrm{H} \text { of }\left({ }^{*}\right) \text { at }(n, n, p) .
$$

- There is a determinantal interpretation of the complexes (${ }^{*}$), even when $m \neq n$. For each integer ℓ, let M_{ℓ} be the T-submodule

$$
M_{\ell}=\sum_{m-n=\ell} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G
$$

of S. View M_{ℓ} as a graded T-module by giving $\operatorname{Sym}_{n+\ell} E^{*} \otimes \operatorname{Sym}_{n} G$ grade n. The same reasoning we used before shows that

$$
\operatorname{Tor}_{p, n+p}^{\mathcal{P}}\left(M_{m-n}, R\right)=\mathrm{H} \text { of }(*) \text { at }(m, n, p) .
$$

- Take $R=\mathbb{Z}$. The divisor class group of T is known to be \mathbb{Z} and [BG] shows why $\ell \mapsto\left[M_{\ell}\right]$ is an isomorphism from $\mathbb{Z} \rightarrow \mathrm{C} \ell(T)$. This numbering satisfies $M_{0}=T$, M_{g-e} is equal to the canonical class of T, and M_{ℓ} is a Cohen-Macaulay T-module if and only if $1-e \leq \ell \leq g-1$.

2. Other contexts in which the homology of $(*)$ arises.

(a) Resolutions of universal Rings. This is how I became interested in the subject.

For any triple of parameters e, f, and g, subject to the obvious constraints, Hochster established the existence of a commutative noetherian ring \mathcal{R} and a universal resolution

$$
\mathbb{U}: \quad 0 \rightarrow \mathcal{R}^{e} \rightarrow \mathcal{R}^{f} \rightarrow \mathcal{R}^{g},
$$

such that for any commutative noetherian ring S and any resolution

$$
\mathbb{V}: \quad 0 \rightarrow S^{e} \rightarrow S^{f} \rightarrow S^{g}
$$

there exists a unique ring homomorphism $\mathcal{R} \rightarrow S$ with $\mathbb{V}=\mathbb{U} \otimes_{\mathcal{R}} S$.
In the border case $f=e+g$ (one of the obvious constraints is $g-e+f \geq 0$), \mathcal{R} is $\mathfrak{P} / \mathcal{J}$, where

$$
\mathfrak{P}=\mathbb{Z}[\text { the entries of each matrix, and one Buchsbaum-Eisenbud multiplier }]
$$

and \mathcal{J} sets the entries of the composition equal to zero and makes the multiplier be a multiplier.
Theorem. If \boldsymbol{K} is a field, then the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} \boldsymbol{K}$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} \boldsymbol{K}$ modules"is"

$$
\left\{\begin{array}{c}
\bigoplus_{\substack{p, q \\
-e \leq \ell \leq g-1}} \mathfrak{P} \otimes_{\boldsymbol{K}} \operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right) \\
\oplus \\
\bigoplus_{p, q} \mathfrak{P} \otimes_{\boldsymbol{K}} \frac{\bigwedge^{\#}\left(E^{*} \otimes G\right)}{\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{g}, \boldsymbol{K}\right)}
\end{array}\right.
$$

(b) Chessboard complexes. Consider all legal rook configurations an an $e \times g$ chess board - no more than one rook per row, no more than one rook per column. Create a simplicial complex $\Delta_{e, g}$. The vertices are the squares of the Chessboard. The simplicies are the legal rook configurations. [BLVZ] proved that H_{2} of $\Delta_{5,5}$ has 3 -torsion.

If γ and δ are vectors of non-negative integers, then one can focus on the homogeneous submodule of $\operatorname{Tor}_{p}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)$ which involves $v_{i}^{\gamma_{i}}$ and $x_{j}^{\delta_{j}}$ for all i and j. Call this submodule $\operatorname{Tor}_{p}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)_{\gamma, \delta}$. One can also focus on the "chessboard with multiplicities" (named by Bruns and Herzog) $\Delta_{\gamma, \delta}$ where no more than γ_{i} squares from row i and no more than δ_{j} squares from column j are used (so, $\Delta_{e, g}=\Delta_{\gamma, \delta}$ where each γ_{i} and each δ_{j} is 1). A fairly straightforward calculation about modules defined over semigroup rings (this result was published by Bruns-Herzog, Stanley, Reiner-Roberts, and Sturmfels) shows that

$$
\operatorname{Tor}_{p}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)_{\gamma, \delta}=\widetilde{\mathrm{H}}_{p-1}\left(\Delta_{\gamma, \delta}, \boldsymbol{K}\right)
$$

(c) The matching complex of a complete bipartite graph.

Let G be a graph. The matching complex of G is the simplicial complex whose vertex set is the set of edges of G and whose faces are sets of edges with no two edges meeting at a vertex. For example, if G is the complete bipartite graph on $\{1,2,3\}$ and $\{a, b, c\}$, then the simplicies of the corresponding matching complex exactly correspond to legal rook configurations on the chessboard labeled $\{1,2,3\}$ down the side and $\{a, b, c\}$ across the top. We conclude that the matching complex of a complete bipartite graph is a chessboard complex.

3. The resolution of M_{ℓ} (i.e., the calculation of $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)$.

(a) The Lascoux approach. Lascoux knows how to resolve determinantal rings over fields of characteristic zero. Resolve the singularity. Now the resolution is given by a Koszul complex. Use the Bott isomorphism Theorem to push the Koszul complex back to the original polynomial ring. Weyman's book shows how to use the same basic approach to resolve M_{ℓ} for all ℓ.

Weyman and I used the Lascoux approach to resolve the Universal rings \mathcal{R} when K is a field of characteristic zero. So, in fact we resolved the M_{ℓ}; although we did not stop and circle: here is our formula for the resolution of M_{ℓ}. We did tidy our answer a great deal; nonetheless, we did not get an answer that is nearly as pretty
as the Reiner-Roberts answer. (As soon as I saw the R-R answer, I saw how to tidy the KW answer into their form.)
(b) The beautiful description of $\operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)$ given by Reiner-Roberts.

Theorem. Let \boldsymbol{K} be a field of characteristic zero. For each integer ℓ,

$$
\operatorname{Tor}_{\bullet, \bullet}^{\mathcal{P}}\left(M_{\ell}, \boldsymbol{K}\right)=\bigoplus_{(\lambda, \mu)} S_{\lambda} E^{*} \otimes_{\boldsymbol{K}} S_{\mu} G
$$

where (λ, μ) have the form

$$
\left(\square_{(s+1-\ell) \times s} \beta \quad, \quad \square_{(s+1) \times(s-\ell)} \alpha^{\prime}\right),
$$

for some integer s and partitions α and β.
We use $S_{\lambda} G=L_{\lambda^{\prime}} G=K_{\lambda} G$.
(c) A consequence of the R-R description at the CM-boundary.

Return to $\left({ }^{*}\right)$ with $m-n=-e$ or $m-n=g$. It turns out that the only homology in

$$
0 \rightarrow \operatorname{Sym}_{0} E^{*} \otimes \operatorname{Sym}_{e} G \otimes \wedge^{p}\left(E^{*} \otimes G\right) \rightarrow \cdots \rightarrow \operatorname{Sym}_{p} E^{*} \otimes \operatorname{Sym}_{p+e} G \otimes \Lambda^{0}\left(E^{*} \otimes G\right) \rightarrow 0
$$

and

$$
0 \rightarrow \operatorname{Sym}_{g} E^{*} \otimes \operatorname{Sym}_{0} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \cdots \rightarrow \operatorname{Sym}_{g+p} E^{*} \otimes \operatorname{Sym}_{p} G \otimes \bigwedge^{0}\left(E^{*} \otimes G\right) \rightarrow 0
$$

occurs at the left side and that $\bigwedge^{e+p}\left(E^{*} \otimes G\right)\left(\right.$ and $\left.\bigwedge^{g+p}\left(E^{*} \otimes G\right)\right)$ maps onto to this homology and if one pairs one of these complexes with the dual of the appropriate other complex one creates a split exact complex
$\cdots \rightarrow D_{g} E \otimes D_{0} G^{*} \otimes \bigwedge^{p^{\prime}}\left(E \otimes G^{*}\right) \rightarrow \bigwedge^{e+p}\left(E^{*} \otimes G\right) \rightarrow \operatorname{Sym}_{0} E^{*} \otimes \operatorname{Sym}_{e} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \ldots$,
where $p+p^{\prime}=e g-e-g$. (I proved this. It works over every ring.)
It turns out that one can deduce the numerical consequences of the above fact, when R is a field of characteristic zero, from $\mathrm{R}-\mathrm{R}$:

$$
\operatorname{dim} \operatorname{Tor}_{p, p+e}\left(M_{-e}, \boldsymbol{K}\right)+\operatorname{dim} \operatorname{Tor}_{p^{\prime}, p^{\prime}}\left(M_{g}, \boldsymbol{K}\right)=\operatorname{dim} \bigwedge^{e+p}\left(E^{*} \otimes G\right)
$$

Proof. Use the R-R description to see that

$$
\operatorname{dim} \operatorname{Tor}_{p, p+e}\left(M_{-e}, \boldsymbol{K}\right)=\sum_{\substack{\beta \subseteq e x g \\|\beta|=p+e \\ \beta_{1}^{\prime}=e}} \operatorname{dim}\left(S_{\beta} E^{*} \otimes S_{\beta^{\prime}} G\right) \quad s=0
$$

and

$$
\operatorname{dim} \operatorname{Tor}_{p^{\prime}, p^{\prime}}\left(M_{g}, \boldsymbol{K}\right)=\sum_{\substack{\alpha \subseteq e \times g \\|\alpha|=p^{\prime}+g \\ \alpha_{1}=g}} \operatorname{dim}\left(S_{\alpha} E^{*} \otimes S_{\alpha^{\prime}} G\right) \quad s=g
$$

The dual of $S_{\alpha} E^{*}$ is

$$
S_{-\alpha_{e}, \ldots,-\alpha_{1}} E=S_{g-\alpha_{e}, \ldots, g-\alpha_{1}} E \otimes \underbrace{\left(\bigwedge^{e} E^{*}\right)^{\otimes g}}_{\operatorname{dim}=1}
$$

Let $\beta=g-\alpha_{e}, \ldots, g-\alpha_{1}$. Observe that $\beta \subseteq e \times g,|b|=e g-|\alpha|$, and $\alpha_{1}=g \Longleftrightarrow \beta_{1}^{\prime}<e$. We conclude that
$\operatorname{dim} \operatorname{Tor}_{p, p+e}\left(M_{-e}, \boldsymbol{K}\right)+\operatorname{dim} \operatorname{Tor}_{p^{\prime}, p^{\prime}}\left(M_{g}, \boldsymbol{K}\right)=\sum_{\substack{\beta \subset e x g \\ \mid \beta=p+e}} \operatorname{dim}\left(S_{\beta} E^{*} \otimes S_{\beta^{\prime}} G\right)=\operatorname{dim} \bigwedge^{e+p}\left(E^{*} \otimes G\right)$.
(The last equality is the Cauchy Formula.)
(d) Repair (*) to make it become split exact.

Let the homology of $(*)$ at (m, n, p) be called $\mathrm{H}_{m, n, p}$ and let the cohomology of the dual of $(*)$:

$$
\cdots \rightarrow D_{m} E \otimes D_{n} G^{*} \otimes \bigwedge^{p}\left(E \otimes G^{*}\right) \rightarrow \ldots
$$

at (m, n, p) be called $\mathrm{H}^{m, n, p}$. It turns out that in the Cohen-Macaulay range $1-e \leq$ $m-n \leq g-1$,

$$
\mathrm{H}_{m, n, p} \cong \mathrm{H}^{m^{\prime}, n^{\prime}, p^{\prime}}
$$

provided $m+m^{\prime}=g-1, n+n^{\prime}=e-1$ and $p+p^{\prime}=(e-1)(g-1)$. Furthermore, there exists a map of complexes

$$
\begin{gathered}
\ldots \longrightarrow D_{m^{\prime}} E \otimes D_{n^{\prime}} G^{*} \otimes \bigwedge^{p^{\prime}}\left(E \otimes G^{*}\right) \quad \longrightarrow \ldots \\
\downarrow \\
\ldots \longrightarrow \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \longrightarrow \ldots
\end{gathered}
$$

For example, the complex

$$
\cdots \rightarrow S_{g-1} E^{*} \otimes S_{e-1} G \otimes \bigwedge^{(e-1)(g-1)}\left(E^{*} \otimes G\right) \rightarrow \cdots \rightarrow S_{(g-1) e} E^{*} \otimes S_{(e-1) g} G \otimes \bigwedge^{0}\left(E^{*} \otimes G\right) \rightarrow 0
$$

has free homology of rank one concentrated in position $(g-1, e-1,(e-1)(g-1))$.

