“DIVISORS OVER DETERMINANTAL RINGS
DEFINED BY TWO BY TWO MINORS”

ANDREW R. KUSTIN

When I first thought about giving this talk, I was attracted to the topic because
I figured I could say something coherent and interesting. As I started to prepare
the talk, I realized that there is an extra reason to give it here at Purdue: two of
the players in talk were students at Purdue Anna Guerrieri (student of Huneke)
and Alex Tchernev (student of Avramov).

Let G be a free module over the ring R. The complex

C,,: ..._>Symn_2G®/\2G—>Symn_1G®/\1G—>SymnG®/\0G_>O

is well known and well-understood. This is one graded strand of the Koszul complex.
If x1,..., 2,4 is a basis for G, then C,, is the strand from the R[x1, ..., z4]-resolution
of R which consists of the homogeneous elements of total degree n. The homology
of Cy is R in position zero, and each of the other C,, are split exact.

The situation is much different if two free modules are involved: E* and G. In
this case, I look at

* —1
( ) ... —Sym,, E*®Sym,, G®/\p(E*®G)~>Syn1m+l B*®Sym,, 41 G®/\p (E*®G)—... .

e Many of the complexes (*) have homology.

e The homology of (*) may occur in the middle and not necessarily at the left or
right end.

e (*) may have homology in more than one position.

e The homology of (*) is not always a free R-module.

e If R is a field, then the dimension of the homology of (*) depends on the charac-
teristic of R.



The first three statements are not particularly shocking. The fourth and fifth
statements are eye-opening (I think) and are essentially the same assertion.

The fourth and fifth statements are due to Hashimoto (1990) — representation
theory argument. An argument from algebraic topology is given by Bjorner, Lovasz,
Veréia, Zivaljevié (1994). T don’t think that [BLVZ] were aware of [H].

Here is the plan of today’s talk.

(1) Interpret the homology of (*) in terms of the resolution of divisors over de-
terminantal rings. Bruns and Guerrieri call these divisors {M,}; so we connect
the homology of (*) at (m,n,p) to TOI"Zq(Mg, R). (P is a polynomial ring to be
described later). This is why [H] applies.

(2) Other contexts in which the homology of (*) arises.

(a) Resolutions of universal rings (I learned about this from Tchernev).

(b) Chessboard complexes (here “complex” means “simplicial complex”) from
[BLVZ].

(c) Matching graphs.

(3) The resolution of M, (or the calculation of Torzq(Mg, R)).

(a) Lascoux approach (R is a field of characteristic zero).

(b) The beautiful description given by Reiner-Roberts (R is a field of characteristic
Z€ero).

(c) A consequence of the R-R description at the CM-boundary (This works over
all rings. I had established it before I knew about R-R, but R-R gives a very
cute proof when it applies!)

(d) Repair (*) to make it become exact. (This works over all rings.)

Open Question. TOTZiq(Mg, R) is known when R is a field of characteristic zero.

Howewver, Torzq(Mg,R) is not known in general (i.e., when R =7 or R is a field
of prime characteristic.)

Amplification.

a. If min{e, g} = 2, then TOI'Ziq(Mg, Z) is known (by Eagon Northcott).

b. If min{e, g} = 3, then I have calculated that Torz,j,q(Mg,Z) is a free abelian
group (and hence is described by R-R).

c. I GUESS that if min{e, g} = 4, then TorZiq(Mg, Z) is a free abelian group (and
hence is described by R-R), but I do not know if anyone has established this.

d. So the open question “really” is about min{e, g} > 5.



1. Interpret the homology of (*) in terms of TorZiq(Mg,R).

e Let S be the R-algebra Sym, £* ® Sym, G. If we fix bases vy, ...,v. for E*, and
Z1,...,24 for G, then one may think of S as the polynomial ring

S =Rvi,...,Ve, Z1,...,2q].

e Let T be the subring

T = ZSymm E* ®Sym,, G

of §. One may think of T" as the subring R[v;z;] of S.

e Let P be the R-algebra Sym,(E* ® G). One may think of P as a polynomial ring
over R in the eg indeterminates {v; ® z;}. It is convenient to let z;; represent the
element v; ® x; of P.

e The identity map on E* ® GG induces a surjective map ¢: P — T. Let Z be the
e X g matrix whose entry in row ¢ column j is the indeterminate z;;. The kernel
of ¢ is the ideal I5(Z) generated by the 2 x 2 minors of Z; and therefore, T is
isomorphic to the determinantal ring P/I2(Z).

e Hashimoto proved that if e and g are both at least five, then Torz;5(T ,Z) is not
a free Z-module.

e On the other hand, the Koszul complex P @z A*(E* ® G) is a homogeneous
resolution of the P-module R. It follows that

TorZiner(T, R) =H of (*) at (n,n,p).

e There is a determinantal interpretation of the complexes (*), even when m # n.
For each integer ¢, let M, be the T-submodule

M, = Z Sym,, E* ® Sym,, G

m—n=4~{



of S§. View M, as a graded T-module by giving Sym,  , E* ® Sym, G grade
n. The same reasoning we used before shows that

P
Torp,ner

(Mp,—n, R) =H of (*) at (m,n,p).

e Take R = Z. The divisor class group of T is known to be Z and [BG] shows why
¢ — [M,] is an isomorphism from Z — C¢(T'). This numbering satisfies My = T,
M,_. is equal to the canonical class of T', and M, is a Cohen-Macaulay T-module
ifand onlyif 1 —e</¢<g—1.

2. Other contexts in which the homology of (*) arises.

(a) RESOLUTIONS OF UNIVERSAL RINGS. This is how I became interested in the
subject.

For any triple of parameters e, f, and g, subject to the obvious constraints,
Hochster established the existence of a commutative noetherian ring R and a uni-
versal resolution

U: 0—-R*—R —RY,
such that for any commutative noetherian ring S and any resolution
V: 0—8°— 8/ -89

there exists a unique ring homomorphism R — S with V=U®x S.
In the border case f = e+ g (one of the obvious constraints is g —e+ f > 0), R
is B/J, where

B = Z|[ the entries of each matrix, and one Buchsbaum-Eisenbud multiplier]

and J sets the entries of the composition equal to zero and makes the multiplier
be a multiplier.

Theorem. If K is a field, then the minimal resolution of R @z K by free P @7z K -

modules “is” »
( @D Pk Tor, (M, K)

) ®

#(x
Ered
69;’]3 Ok /'\I‘orz(iq(Mg,K))

\ D,q




(b) CHESSBOARD COMPLEXES. Consider all legal rook configurations an an e X g
chess board — no more than one rook per row, no more than one rook per column.
Create a simplicial complex A, 4. The vertices are the squares of the Chessboard.
The simplicies are the legal rook configurations. [BLVZ| proved that Hy of Aj 5
has 3-torsion.

If v and 6 are vectors of non-negative integers, then one can focus on the ho-
mogeneous submodule of Torf(Mg,K ) which involves v;" and xj-j for all ¢ and j.

Call this submodule Toer(Mg,K )~,6. One can also focus on the “chessboard with
multiplicities” (named by Bruns and Herzog) A, s where no more than -; squares
from row ¢ and no more than J; squares from column j are used (so, A. 4 = Ay s
where each ~; and each §; is 1). A fairly straightforward calculation about modules
defined over semigroup rings (this result was published by Bruns-Herzog, Stanley,
Reiner-Roberts, and Sturmfels) shows that

Tor! (Mg, K). 5 = H, (A5 K).

(c) THE MATCHING COMPLEX OF A COMPLETE BIPARTITE GRAPH.

Let G be a graph. The matching complex of G is the simplicial complex whose
vertex set is the set of edges of G and whose faces are sets of edges with no two
edges meeting at a vertex. For example, if G is the complete bipartite graph on
{1,2,3} and {a,b,c}, then the simplicies of the corresponding matching complex
exactly correspond to legal rook configurations on the chessboard labeled {1, 2, 3}
down the side and {a, b, ¢} across the top. We conclude that the matching complex
of a complete bipartite graph is a chessboard complex.

3. The resolution of M, (i.e., the calculation of Torzq(Mg,K) .

(a) THE LASCOUX APPROACH. Lascoux knows how to resolve determinantal rings
over fields of characteristic zero. Resolve the singularity. Now the resolution is
given by a Koszul complex. Use the Bott isomorphism Theorem to push the Koszul
complex back to the original polynomial ring. Weyman’s book shows how to use
the same basic approach to resolve M, for all /.

Weyman and I used the Lascoux approach to resolve the Universal rings R when
K is a field of characteristic zero. So, in fact we resolved the My; although we did
not stop and circle: here is our formula for the resolution of M,. We did tidy our
answer a great deal; nonetheless, we did not get an answer that is nearly as pretty



as the Reiner-Roberts answer. (As soon as I saw the R-R answer, I saw how to tidy
the KW answer into their form.)

(b) THE BEAUTIFUL DESCRIPTION OF TOI"Z)D’q(Mg,K ) GIVEN BY REINER-ROBERTS.
Theorem. Let K be a field of characteristic zero. For each integer ¢,

Torl (M, K) = @P SyE* @k S,.G,
(Am)

where (A, 1) have the form

!
<|:|(s+1—e)><s g , |:|(8+1)><(s—€) @ ) ,
Qo o4

for some integer s and partitions o and (.
We use S\G = Ly G = K,)\G.
(c) A CONSEQUENCE OF THE R-R DESCRIPTION AT THE CM-BOUNDARY.
Return to (*) with m—n = —e or m—n = g. It turns out that the only homology
in
0 — Symy E* ® Sym, G® \P(E* ® G) — -+ — Sym, E* ® Sym,,, . G® \°(E* ® G) — 0
and

0 — Sym, E* ® Symy G @ \P(E* ® G) — --- — Sym E*®SympG®/\0(E*®G)—>O

g+p

occurs at the left side and that A°*?(E*®G) (and A?TP(E*®G)) maps onto to this
homology and if one pairs one of these complexes with the dual of the appropriate
other complex one creates a split exact complex

- = DaE®@DoG* @ NP (E®G*) — N“TP(E* ® G) — Symy B* ® Sym, G AP (E* ®G) — ...,

where p+ p’ = eg — e — g. (I proved this. It works over every ring.)
It turns out that one can deduce the numerical consequences of the above fact,
when R is a field of characteristic zero, from R-R:

dim Tor,, 1 o(M_., K) + dim Tor, ,(M,, K) = dim A“"P(E* ® G).



Proof. Use the R-R description to see that
dimTory pre(M_e, K) = ) dim(S3E*® SpG) s=0

BCexg
|Bl=p+e
Bl =e
and
dim Tor, ,»(M,, K) = Z dim (So B* ® So¢G)  s=g.
I;E%Z;g
The dual of S, E* is
e * ®
S—a ...... —alE—Sg—oz ...... g—a1E®(/\ E ) g
—_——
dim=1

Let B = g — @e,...,g — aj. Observe that 8 C e x g, |b] = eg — |a], and
a; =g <= [} < e. We conclude that
dim Torp pye(M—c, K)+dim Tory (Mg, K) = > dim (SgE* ® Sp/G) = dim A“TP(E*®G).
BCexg

|Bl=p+e

(The last equality is the Cauchy Formula.) O

(d) REPAIR (*) TO MAKE IT BECOME SPLIT EXACT.

Let the homology of (*) at (m,n,p) be called H,, 5, and let the cohomology of
the dual of (*):
= DnE®D,G"@ \N"(E®G*) — ...
at (m,n,p) be called H™"™". It turns out that in the Cohen-Macaulay range 1 —e <
m—-n<g-—1,
Hyp,p = H™

provided m+m’ =g—1,n4+n’"=e—1and p+p = (e —1)(g — 1). Furthermore,
there exists a map of complexes

. ——— DpE®D G N (E®G) —s ...

|

. — Sym,, E*®Sym,, G NP(E*® G) —— ...



For example, the complex
= Sg 1 E* ©8e1GONCTHIT(E*RG) — - — Sy 1) E*®S(e_1),GON(E*®G) — 0

has free homology of rank one concentrated in position (¢ —1,e—1,(e—1)(g—1)).



