"DIVISORS OVER DETERMINANTAL RINGS DEFINED BY TWO BY TWO MINORS"

ANDREW R. KUSTIN

When I first thought about giving this talk, I was attracted to the topic because I figured I could say something coherent and interesting. As I started to prepare the talk, I realized that there is an extra reason to give it here at Purdue: two of the players in talk were students at Purdue Anna Guerrieri (student of Huneke) and Alex Tchernev (student of Avramov).

Let G be a free module over the ring R. The complex

$$\mathbb{C}_n\colon \cdots \to \operatorname{Sym}_{n-2} G \otimes \bigwedge^2 G \to \operatorname{Sym}_{n-1} G \otimes \bigwedge^1 G \to \operatorname{Sym}_n G \otimes \bigwedge^0 G \to 0$$

is well known and well-understood. This is one graded strand of the Koszul complex. If x_1, \ldots, x_g is a basis for G, then \mathbb{C}_n is the strand from the $R[x_1, \ldots, x_g]$ -resolution of R which consists of the homogeneous elements of total degree n. The homology of \mathbb{C}_0 is R in position zero, and each of the other \mathbb{C}_n are split exact.

The situation is much different if two free modules are involved: E^* and G. In this case, I look at

 $\binom{*}{} \qquad \cdots \to \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p} (E^{*} \otimes G) \to \operatorname{Sym}_{m+1} E^{*} \otimes \operatorname{Sym}_{n+1} G \otimes \bigwedge^{p-1} (E^{*} \otimes G) \to \cdots$

• Many of the complexes (*) have homology.

• The homology of (*) may occur in the middle and not necessarily at the left or right end.

• (*) may have homology in more than one position.

• The homology of (*) is not always a free *R*-module.

• If R is a field, then the dimension of the homology of (*) depends on the characteristic of R.

The first three statements are not particularly shocking. The fourth and fifth statements are eye-opening (I think) and are essentially the same assertion.

The fourth and fifth statements are due to Hashimoto (1990) – representation theory argument. An argument from algebraic topology is given by Björner, Lovász, Verćia, Živaljević (1994). I don't think that [BLVZ] were aware of [H].

Here is the plan of today's talk.

(1) Interpret the homology of (*) in terms of the resolution of divisors over determinantal rings. Bruns and Guerrieri call these divisors $\{M_\ell\}$; so we connect the homology of (*) at (m, n, p) to $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_\ell, R)$. (\mathcal{P} is a polynomial ring to be described later). This is why [H] applies.

- (2) Other contexts in which the homology of (*) arises.
- (a) Resolutions of universal rings (I learned about this from Tchernev).
- (b) Chessboard complexes (here "complex" means "simplicial complex") from [BLVZ].
- (c) Matching graphs.
- (3) The resolution of M_{ℓ} (or the calculation of $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, R)$).
 - (a) Lascoux approach (R is a field of characteristic zero).
 - (b) The beautiful description given by Reiner-Roberts (R is a field of characteristic zero).
 - (c) A consequence of the R-R description at the CM-boundary (This works over all rings. I had established it before I knew about R-R, but R-R gives a very cute proof when it applies!)
 - (d) Repair (*) to make it become exact. (This works over all rings.)

Open Question. $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, R)$ is known when R is a field of characteristic zero. However, $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, R)$ is not known in general (i.e., when $R = \mathbb{Z}$ or R is a field of prime characteristic.)

Amplification.

a. If $\min\{e, g\} = 2$, then $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, \mathbb{Z})$ is known (by Eagon Northcott).

b. If $\min\{e, g\} = 3$, then I have calculated that $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, \mathbb{Z})$ is a free abelian group (and hence is described by R-R).

c. I GUESS that if $\min\{e, g\} = 4$, then $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, \mathbb{Z})$ is a free abelian group (and hence is described by R-R), but I do not know if anyone has established this. d. So the open question "really" is about $\min\{e, g\} \geq 5$.

1. Interpret the homology of (*) in terms of $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, R)$.

• Let S be the R-algebra $\operatorname{Sym}_{\bullet} E^* \otimes \operatorname{Sym}_{\bullet} G$. If we fix bases v_1, \ldots, v_e for E^* , and x_1, \ldots, x_g for G, then one may think of S as the polynomial ring

$$S = R[v_1, \ldots, v_e, x_1, \ldots, x_g].$$

• Let T be the subring

$$T = \sum_{m} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{m} G$$

of S. One may think of T as the subring $R[v_i x_i]$ of S.

• Let \mathcal{P} be the R-algebra $\operatorname{Sym}_{\bullet}(E^* \otimes G)$. One may think of \mathcal{P} as a polynomial ring over R in the eg indeterminates $\{v_i \otimes x_j\}$. It is convenient to let z_{ij} represent the element $v_i \otimes x_j$ of \mathcal{P} .

• The identity map on $E^* \otimes G$ induces a surjective map $\varphi \colon \mathcal{P} \to T$. Let Z be the $e \times g$ matrix whose entry in row *i* column *j* is the indeterminate z_{ij} . The kernel of φ is the ideal $I_2(Z)$ generated by the 2×2 minors of Z; and therefore, T is isomorphic to the determinantal ring $\mathcal{P}/I_2(Z)$.

• Hashimoto proved that if e and g are both at least five, then $\operatorname{Tor}_{3,5}^{\mathcal{P}}(T,\mathbb{Z})$ is not a free \mathbb{Z} -module.

• On the other hand, the Koszul complex $\mathcal{P} \otimes_R \bigwedge^{\bullet} (E^* \otimes G)$ is a homogeneous resolution of the \mathcal{P} -module R. It follows that

$$\operatorname{Tor}_{p,n+p}^{\mathcal{P}}(T,R) = \mathrm{H} \text{ of } (*) \text{ at } (n,n,p).$$

• There is a determinantal interpretation of the complexes (*), even when $m \neq n$. For each integer ℓ , let M_{ℓ} be the *T*-submodule

$$M_{\ell} = \sum_{m-n=\ell} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G$$

of S. View M_{ℓ} as a graded T-module by giving $\operatorname{Sym}_{n+\ell} E^* \otimes \operatorname{Sym}_n G$ grade n. The same reasoning we used before shows that

$$\operatorname{Tor}_{p,n+p}^{\mathcal{P}}(M_{m-n},R) = \mathrm{H} \text{ of } (*) \text{ at } (m,n,p).$$

• Take $R = \mathbb{Z}$. The divisor class group of T is known to be \mathbb{Z} and [BG] shows why $\ell \mapsto [M_{\ell}]$ is an isomorphism from $\mathbb{Z} \to C\ell(T)$. This numbering satisfies $M_0 = T$, M_{g-e} is equal to the canonical class of T, and M_{ℓ} is a Cohen-Macaulay T-module if and only if $1 - e \leq \ell \leq g - 1$.

2. Other contexts in which the homology of (*) arises.

(a) RESOLUTIONS OF UNIVERSAL RINGS. This is how I became interested in the subject.

For any triple of parameters e, f, and g, subject to the obvious constraints, Hochster established the existence of a commutative noetherian ring \mathcal{R} and a universal resolution

$$\mathbb{U}\colon \quad 0\to \mathcal{R}^e\to \mathcal{R}^f\to \mathcal{R}^g,$$

such that for any commutative noetherian ring S and any resolution

$$\mathbb{V}\colon \quad 0\to S^e\to S^f\to S^g,$$

there exists a unique ring homomorphism $\mathcal{R} \to S$ with $\mathbb{V} = \mathbb{U} \otimes_{\mathcal{R}} S$.

In the border case f = e + g (one of the obvious constraints is $g - e + f \ge 0$), \mathcal{R} is \mathfrak{P}/\mathcal{J} , where

 $\mathfrak{P} = \mathbb{Z}[$ the entries of each matrix, and one Buchsbaum-Eisenbud multiplier]

and \mathcal{J} sets the entries of the composition equal to zero and makes the multiplier be a multiplier.

Theorem. If K is a field, then the minimal resolution of $\mathcal{R} \otimes_{\mathbb{Z}} K$ by free $\mathfrak{P} \otimes_{\mathbb{Z}} K$ -modules "is"

$$\begin{cases} \bigoplus_{p,q \ -e \le \ell \le g-1} \mathfrak{P} \otimes_{\mathbf{K}} \operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, \mathbf{K}) \\ \oplus \\ \bigoplus_{p,q} \mathfrak{P} \otimes_{\mathbf{K}} \frac{\bigwedge^{\#}(E^* \otimes G)}{\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_g, \mathbf{K})} \end{cases}$$

(b) CHESSBOARD COMPLEXES. Consider all legal rook configurations an an $e \times g$ chess board – no more than one rook per row, no more than one rook per column. Create a simplicial complex $\Delta_{e,g}$. The vertices are the squares of the Chessboard. The simplicies are the legal rook configurations. [BLVZ] proved that H_2 of $\Delta_{5,5}$ has 3-torsion.

If γ and δ are vectors of non-negative integers, then one can focus on the homogeneous submodule of $\operatorname{Tor}_p^{\mathcal{P}}(M_\ell, \mathbf{K})$ which involves $v_i^{\gamma_i}$ and $x_j^{\delta_j}$ for all i and j. Call this submodule $\operatorname{Tor}_p^{\mathcal{P}}(M_\ell, \mathbf{K})_{\gamma,\delta}$. One can also focus on the "chessboard with multiplicities" (named by Bruns and Herzog) $\Delta_{\gamma,\delta}$ where no more than γ_i squares from row i and no more than δ_j squares from column j are used (so, $\Delta_{e,g} = \Delta_{\gamma,\delta}$ where each γ_i and each δ_j is 1). A fairly straightforward calculation about modules defined over semigroup rings (this result was published by Bruns-Herzog, Stanley, Reiner-Roberts, and Sturmfels) shows that

$$\operatorname{Tor}_{p}^{\mathcal{P}}(M_{\ell}, \boldsymbol{K})_{\gamma, \delta} = \operatorname{H}_{p-1}(\Delta_{\gamma, \delta}, \boldsymbol{K}).$$

(c) The matching complex of a complete bipartite graph.

Let G be a graph. The matching complex of G is the simplicial complex whose vertex set is the set of edges of G and whose faces are sets of edges with no two edges meeting at a vertex. For example, if G is the complete bipartite graph on $\{1, 2, 3\}$ and $\{a, b, c\}$, then the simplicies of the corresponding matching complex exactly correspond to legal rook configurations on the chessboard labeled $\{1, 2, 3\}$ down the side and $\{a, b, c\}$ across the top. We conclude that the matching complex of a complete bipartite graph is a chessboard complex.

3. The resolution of M_{ℓ} (i.e., the calculation of $\operatorname{Tor}_{p,a}^{\mathcal{P}}(M_{\ell}, \mathbf{K})$.

(a) THE LASCOUX APPROACH. Lascoux knows how to resolve determinantal rings over fields of characteristic zero. Resolve the singularity. Now the resolution is given by a Koszul complex. Use the Bott isomorphism Theorem to push the Koszul complex back to the original polynomial ring. Weyman's book shows how to use the same basic approach to resolve M_{ℓ} for all ℓ .

Weyman and I used the Lascoux approach to resolve the Universal rings \mathcal{R} when K is a field of characteristic zero. So, in fact we resolved the M_{ℓ} ; although we did not stop and circle: here is our formula for the resolution of M_{ℓ} . We did tidy our answer a great deal; nonetheless, we did not get an answer that is nearly as pretty

as the Reiner-Roberts answer. (As soon as I saw the R-R answer, I saw how to tidy the KW answer into their form.)

(b) THE BEAUTIFUL DESCRIPTION OF $\operatorname{Tor}_{p,q}^{\mathcal{P}}(M_{\ell}, \mathbf{K})$ GIVEN BY REINER-ROBERTS. **Theorem.** Let \mathbf{K} be a field of characteristic zero. For each integer ℓ ,

$$\operatorname{Tor}_{\bullet,\bullet}^{\mathcal{P}}(M_{\ell},\boldsymbol{K}) = \bigoplus_{(\lambda,\mu)} S_{\lambda} E^* \otimes_{\boldsymbol{K}} S_{\mu} G,$$

where (λ, μ) have the form

$$\left(\begin{bmatrix} & & \\ \alpha & \\ \alpha & \\ \end{array}^{(s+1-\ell)\times s} \beta & , & \begin{bmatrix} & & \\ \beta' & \\ \end{array}^{(s+1)\times(s-\ell)} \alpha' \right),$$

for some integer s and partitions α and β .

We use $S_{\lambda}G = L_{\lambda'}G = K_{\lambda}G$.

(c) A CONSEQUENCE OF THE R-R DESCRIPTION AT THE CM-BOUNDARY.

Return to (*) with m-n = -e or m-n = g. It turns out that the only homology in

$$0 \to \operatorname{Sym}_0 E^* \otimes \operatorname{Sym}_e G \otimes \bigwedge^p (E^* \otimes G) \to \dots \to \operatorname{Sym}_p E^* \otimes \operatorname{Sym}_{p+e} G \otimes \bigwedge^0 (E^* \otimes G) \to 0$$

and

$$0 \to \operatorname{Sym}_g E^* \otimes \operatorname{Sym}_0 G \otimes \bigwedge^p (E^* \otimes G) \to \cdots \to \operatorname{Sym}_{g+p} E^* \otimes \operatorname{Sym}_p G \otimes \bigwedge^0 (E^* \otimes G) \to 0$$

occurs at the left side and that $\bigwedge^{e+p}(E^*\otimes G)$ (and $\bigwedge^{g+p}(E^*\otimes G)$) maps onto to this homology and if one pairs one of these complexes with the dual of the appropriate other complex one creates a split exact complex

$$\cdots \to D_g E \otimes D_0 G^* \otimes \bigwedge^{p'} (E \otimes G^*) \to \bigwedge^{e+p} (E^* \otimes G) \to \operatorname{Sym}_0 E^* \otimes \operatorname{Sym}_e G \otimes \bigwedge^p (E^* \otimes G) \to \ldots,$$

where p + p' = eg - e - g. (I proved this. It works over every ring.)

It turns out that one can deduce the numerical consequences of the above fact, when R is a field of characteristic zero, from R-R:

$$\dim \operatorname{Tor}_{p,p+e}(M_{-e}, \mathbf{K}) + \dim \operatorname{Tor}_{p',p'}(M_g, \mathbf{K}) = \dim \bigwedge^{e+p} (E^* \otimes G).$$

Proof. Use the R-R description to see that

$$\dim \operatorname{Tor}_{p,p+e}(M_{-e}, \mathbf{K}) = \sum_{\substack{\beta \subseteq e \times g \\ |\beta| = p+e \\ \beta'_1 = e}} \dim \left(S_{\beta} E^* \otimes S_{\beta'} G \right) \quad s = 0$$

and

$$\dim \operatorname{Tor}_{p',p'}(M_g, \mathbf{K}) = \sum_{\substack{\alpha \subseteq e \times g \\ |\alpha| = p' + g \\ \alpha_1 = g}} \dim \left(S_{\alpha} E^* \otimes S_{\alpha'} G \right) \quad s = g.$$

The dual of $S_{\alpha}E^*$ is

$$S_{-\alpha_e,\dots,-\alpha_1}E = S_{g-\alpha_e,\dots,g-\alpha_1}E \otimes \underbrace{(\bigwedge^e E^*)^{\otimes g}}_{\dim=1}$$

Let $\beta = g - \alpha_e, \dots, g - \alpha_1$. Observe that $\beta \subseteq e \times g$, $|b| = eg - |\alpha|$, and $\alpha_1 = g \iff \beta'_1 < e$. We conclude that

 $\dim \operatorname{Tor}_{p,p+e}(M_{-e}, \mathbf{K}) + \dim \operatorname{Tor}_{p',p'}(M_g, \mathbf{K}) = \sum_{\substack{\beta \subseteq e \times g \\ |\beta| = p+e}} \dim \left(S_{\beta} E^* \otimes S_{\beta'} G \right) = \dim \bigwedge^{e+p} (E^* \otimes G).$

(The last equality is the Cauchy Formula.) \Box

(d) Repair (*) to make it become split exact.

Let the homology of (*) at (m, n, p) be called $H_{m,n,p}$ and let the cohomology of the dual of (*):

$$\cdots \to D_m E \otimes D_n G^* \otimes \bigwedge^p (E \otimes G^*) \to \dots$$

at (m, n, p) be called $\mathbf{H}^{m,n,p}$. It turns out that in the Cohen-Macaulay range $1-e \leq m-n \leq g-1$,

$$\mathbf{H}_{m,n,p} \cong \mathbf{H}^{m',n',p'}$$

provided m + m' = g - 1, n + n' = e - 1 and p + p' = (e - 1)(g - 1). Furthermore, there exists a map of complexes

$$\dots \longrightarrow D_{m'}E \otimes D_{n'}G^* \otimes \bigwedge^{p'}(E \otimes G^*) \longrightarrow \dots$$
$$\downarrow$$
$$\dots \longrightarrow \operatorname{Sym}_m E^* \otimes \operatorname{Sym}_n G \otimes \bigwedge^p(E^* \otimes G) \longrightarrow \dots$$

For example, the complex

 $\dots \to S_{g-1}E^* \otimes S_{e-1}G \otimes \bigwedge^{(e-1)(g-1)}(E^* \otimes G) \to \dots \to S_{(g-1)e}E^* \otimes S_{(e-1)g}G \otimes \bigwedge^0(E^* \otimes G) \to 0$ has free homology of rank one concentrated in position (g-1, e-1, (e-1)(g-1)).