SOCLE DEGREES, RESOLUTIONS, AND FROBENIUS POWERS

The set up.

- k is a field of characteristic $p>0$.
- R is a graded ring over k.
- \mathfrak{m} is the maximal homogeneous ideal of R.
- J is a homogeneous \mathfrak{m}-primary ideal of R.

The question.

- Adela asked "How are the socle degrees of $R / J^{[q]}$ related to the socle degrees of R / J ?

The notation of the question.

- The socle of the ring S is $\left\{s \in S \mid \mathfrak{m}_{S} s=0\right\}$.
- $q=p^{e}$ for some exponent e.
- $J^{[q]}=\left(\left\{j^{q} \mid j \in J\right\}\right)$.

Example. We calculate the socle degrees of $R / J^{\left[p^{e}\right]}$ for for $R=\mathbb{Z} / 2[x, y, z] /(f)$, where $f=x^{5}+y^{5}+z^{5}$ and $J=(x, y, z)$. We learn

$$
\begin{array}{lll}
e & \text { socle degrees } & \text { socle basis } \\
0 & 0: 1 & 1 \\
1 & 3: 1 & x y z \\
2 & 9: 1 & x^{3} y^{3} z^{3} \\
3 & 12: 116: 1 & x^{4} y^{4} z^{4}, x^{2} y^{7} z^{7} \\
4 & 22: 130: 1 & x^{4} y^{14} z^{4}+x^{4} y^{9} z^{9}+x^{4} y^{4} z^{14}, y^{15} z^{15} \\
5 & 42: 158: 1 & x^{4} y^{29} z^{9}+x^{4} y^{19} z^{19}+x^{4} y^{9} z^{29}, x y^{26} z^{31}
\end{array}
$$

After a while: if the socle degrees of $R / J^{[q]}$ are $\left\{d_{i}\right\}$, then the socle degree of $R / J^{[p q]}$ are $\left\{p d_{i}-(p-1) 2\right\}$.

Folklore. If $\operatorname{pd}_{R} R / J<\infty$, then the socles of R / J and $R / J^{[q]}$ have the same dimension and if the socle degrees of R / J are $d_{1} \leq \cdots \leq d_{s}$ then the socle degrees of $R / J^{[q]}$ are $D_{1} \leq \cdots \leq D_{s}$ with $D_{i}=q d_{i}-(q-1) a$.

Reason. In the above notation, the generator degrees of the canonical module ω of R / J are

$$
-d_{s} \leq \cdots \leq-d_{1}
$$

The canonical module is

$$
\operatorname{Ext}_{R}^{\operatorname{top}}\left(R / J, \omega_{R}\right),
$$

and $\omega_{R}=R(a(R))$ if R is Gorenstein; thus, the degrees of the generators of ω are given by the back twists in the R-resolution \mathbb{F} of R / J. The resolution of $R / J^{[q]}$ is $\mathbb{F}^{[q]}$.

Theorem [K,V]. If R is a complete intersection, then the converse of folklore is true.

Moral.

1. At least sometimes, if you know the socle degrees of R / J, then you know the graded betti numbers in the tail of the resolution of R / J.
2. At least sometimes, if the socle degrees grow "correctly" as you apply the Frobenius homomorphism, then the tail of the resolution of $R / J^{\left[p^{e}\right]}$ is independent of e.

Example. Adela and I found other examples in which the numbers made it look like the tail of the resolution of $R / J^{\left[p^{e}\right]}$ is independent of e

Let P be the polynomial ring $\frac{\mathbb{Z}}{(5)}[x, y, z], f$ be the element $x^{3}+y^{3}+z^{3}$ of P, R be the hypersurface ring $P /(f)$, and J be the ideal $\left(x^{5}, y^{5}, z^{5}\right)$ of R. The graded betti numbers in the R-resolution of $R / J^{\left[p^{e}\right]}$ are:

$$
\begin{aligned}
& \cdots \rightarrow \stackrel{R(-9)^{1}}{\oplus} \rightarrow \stackrel{R(-8)^{3}}{\oplus} \rightarrow R(-5)^{3} \rightarrow R \rightarrow R / J^{\left[5^{0}\right]} \rightarrow 0 . \\
& R(-10)^{3} \quad R(-9)^{1}
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \rightarrow \underset{\underset{~ R(-190)^{3}}{ } \rightarrow \stackrel{R(-188)^{3}}{R(-189)^{1}} \rightarrow R(-125)^{3} \rightarrow R \rightarrow R / J^{\left[5^{2}\right]} \rightarrow 0 .}{ } \rightarrow \\
& \cdots \rightarrow \underset{\underset{~}{\oplus}+(-940)^{3}}{R(-939)^{1}} \rightarrow \stackrel{R(-938)^{3}}{R(-939)^{1}} \rightarrow R(-625)^{3} \rightarrow R \rightarrow R / J^{\left[5^{3}\right]} \rightarrow 0 . \\
& \cdots \rightarrow \underset{\underset{\sim}{\oplus}}{R(-4690)^{3}} \rightarrow \stackrel{R(-4688)^{3}}{\underset{R}{\oplus}} \rightarrow \stackrel{R(-4689)^{1}}{ } \rightarrow R(-3125)^{3} \rightarrow R \rightarrow R / J^{\left[5^{4}\right]} \rightarrow 0 .
\end{aligned}
$$

It looks like there is a resolution

$$
\mathbb{F}: \quad \cdots \rightarrow \underset{\stackrel{R(-1)^{1}}{\oplus}}{R(-2)^{3}} \rightarrow \stackrel{R^{3}}{\oplus} \rightarrow \stackrel{\text { en }}{R(-1)^{1}} \text {, }
$$

which is independent of e so that for each e there exists t_{e} so that the resolution of $R / J^{\left[p^{e}\right]}$ is

$$
\mathbb{F}\left(-t_{e}\right) \rightarrow R\left(-5^{e+1}\right) \rightarrow R \rightarrow R / J^{\left[5^{e}\right]} \rightarrow 0 .
$$

In these examples I did row and column operations to the matrix in position 3. Each matrix can be transformed into

$$
\left[\begin{array}{cccc}
0 & -x^{2} & -y^{2} & -2 z \\
x^{2} & 0 & -z^{2} & 2 y \\
y^{2} & z^{2} & 0 & -2 x \\
2 z & -2 y & 2 x & 0
\end{array}\right]
$$

The purpose of my talk.

1. I will show a situation where the graded betti numbers in the tail of the resolution of R / J are completely determined the socle degrees of R / J.
2. I will apply apply (1) twice and obtain a situation where the tail of the resolution of $R / J^{\left[p^{e}\right]}$ is a shift of the tail of the resolution of R / J as a graded module I make no claim about the differential at this point.
Theorem [K,U]. Let $P=k[x, y, z], f \in P$ homogeneous, $R=P /(f)$, and $a=a(R)=|f|-3$. Let I be a homogeneous grade three Gorenstein ideal in P, b_{0} be the back twist in the P-resolution of $\frac{P}{I}$, and $J=I R$. Let

$$
\mathbb{F}_{0, \bullet}: \quad \ldots \xrightarrow{d_{0,4}} \mathbb{F}_{0,3} \xrightarrow{d_{0,3}} \mathbb{F}_{0,2} \xrightarrow{d_{0,2}} \mathbb{F}_{0,1} \xrightarrow{d_{0,1}} R \rightarrow R / J \rightarrow 0
$$

be the graded minimal R-resolution of R / J, and $\left\{\sigma_{0, i} \mid 1 \leq i \leq s_{0}\right\}$ be the socle degrees of $\frac{R}{J}$. Assume
(1) $\mu(I)=\mu(J)$,
(2) $\operatorname{rank} \mathbb{F}_{0,2}=\operatorname{dim}_{k} \operatorname{soc} \frac{R}{J}$, and
(3) $\sigma_{0, i}+\sigma_{0, j} \neq b_{0}+2 a$ for any pair (i, j). Then

$$
\begin{aligned}
& \mathbb{F}_{0,2}=\bigoplus_{i=1}^{s_{0}} R\left(-\left(b_{0}+a-\sigma_{0, i}\right)\right) \\
& \mathbb{F}_{0,3}=\bigoplus_{i=1}^{s_{0}} R\left(-\left(\sigma_{0, i}+3\right)\right), \text { and } \\
& \mathbb{F}_{0, i+2}=\mathbb{F}_{0, i}(-|f|)
\end{aligned}
$$

Corollary [K,U]. Assume all of the above and that $\mu\left(J^{[q]}\right)=\mu(I)$. If $\operatorname{soc} R / J^{[q]}=$ $\operatorname{soc} R / J\left[-\frac{b_{0}(q-1)}{2}\right]$, then

$$
\mathbb{F}_{e, i}=\mathbb{F}_{0, i}\left[-\frac{b_{0}(q-1)}{2}\right], \quad \forall i \geq 2
$$

Proof of Corollary. The Corollary follows quickly from the Theorem. Make sure that all of the hypothesis apply to J and $J^{[q]}$.

Example. In the earlier example, $b_{0}=15, a=0$, and the shift from J to $J^{\left[p^{e}\right]}$ is $\frac{15\left(5^{e}-1\right)}{2}$ and this is $30,180,930$, and 4680 for e equal to $1,2,3$, and 4.
Outline of the proof of the Theorem. Let $Z=\operatorname{im} d_{0,2}$. There are three parts to the proof.

Part 1. There exists $Z^{\prime} \subset Z$ such that

$$
\omega\left(-b_{0}-a\right) \cong \frac{I: f}{I}(-|f|) \cong \frac{Z}{Z^{\prime}}
$$

- Knowledge of the generator degrees of ω is equivalent to knowledge of the socle degrees.
- The generators of Z have the same degrees as the generators of $\mathbb{F}_{0,2}$.
- The hypothesis $\operatorname{rank} \mathbb{F}_{0,2}=\operatorname{dim}_{k} \operatorname{soc} \frac{R}{J}$ tells us that Z and $\frac{Z}{Z^{\prime}}$ have the same generators.
- This finishes the $\mathbb{F}_{0,2}$ part of the argument.

Part 2. Eisenbud proved that if $R=P /(f)$ is a hypersurface ring and M is a maximal Cohen-Macaulay module over with no free summands, then M has a periodic resolution of period two given by a matrix factorization of " f ". Our Z is $Z_{\text {periodic }} \oplus Z_{\text {freee }}$. The maps $\mathbb{F}_{0,3} \rightarrow \mathbb{F}_{0,2} \rightarrow Z$ decompose as

- Now one makes 2 fairly easy homological calculations:

$$
\begin{gathered}
Z^{*}(a) \rightarrow \omega \text { and } \\
\mathbb{F}_{0,3}^{*}(|f|) \text { and } \quad\left(Z_{\text {periodic }}\right)^{*} \text { have the same generator degrees }
\end{gathered}
$$

- At this point we know

$$
\begin{aligned}
\mu\left(Z^{*}\right)=\mu\left(\left(Z_{\text {periodic }}\right)^{*}\right)+\mu\left(\left(Z_{\text {free }}\right)^{*}\right) & =\operatorname{rank} \mathbb{F}_{0,2, \text { periodic }}+\operatorname{rank} \mathbb{F}_{0,2, \text { free }} \\
& =\operatorname{rank} \mathbb{F}_{0,2}
\end{aligned}=\mu(\omega) . ~ .
$$

- So, $Z^{*}(a)$ and ω have the same generator degrees.
- As soon as we show that $Z_{\text {periodic }}=Z$, then we know the the relationship between the generator degrees of $\mathbb{F}_{0,3}^{*}$ and the generator degrees of ω. This completes the proof of the Theorem.

Part 3. If \mathfrak{z} generates a free summand of Z, then

- the degree of the corresponding element in $Z^{*}(a)$ is a generator degree of ω, and
- the degree of \mathfrak{z} is a generator degree of $\omega\left(-b_{0}-a\right)$; however,
- the hypothesis $\sigma_{0, i}+\sigma_{0, j} \neq b_{0}+2 a$ for any pair (i, j) prohibits the existence of such a \mathfrak{z}.

- We prove the homological assertions of Part 2.

- We produce $Z^{*}(a) \rightarrow \omega$.

The surjection $R \rightarrow R / J$ tells me that

$$
\omega_{R / J}=\operatorname{Ext}_{R}^{\operatorname{dim} R-\operatorname{dim} R / J}\left(R / J, \omega_{R}\right)=\operatorname{Ext}_{R}^{2}(R / J, R(a))=\operatorname{Ext}_{R}^{1}(J, R(a)) .
$$

Apply $\operatorname{Hom}_{R}(\ldots, R(a))$ to

$$
0 \rightarrow Z \rightarrow \mathbb{F}_{0,1} \rightarrow J \rightarrow 0
$$

to get

$$
0 \rightarrow J^{*}(a) \rightarrow \mathbb{F}_{0,1}^{*}(a) \rightarrow Z^{*}(a) \rightarrow \operatorname{Ext}_{R}^{1}(J, R(a)) \rightarrow 0
$$

- We prove that $\mathbb{F}_{0,3}^{*}(|f|)$ and $\left(Z_{\text {periodic }}\right)^{*}$ have the same generator degrees.
- There are two steps. The first is routine. Apply $\operatorname{Hom}(\ldots, R)$ to the exact sequence

$$
F_{0,3} \xrightarrow{d_{0,3, \text { periodic }}} \mathbb{F}_{0,2, \text { periodic }} \rightarrow Z_{\text {periodic }} \rightarrow 0
$$

to see that $\left(Z_{\text {periodic }}\right)^{*}=\operatorname{ker}\left(d_{0,3, \text { periodic }}^{*}\right)$.

- The other step is sneaky. Extend the periodic resolution one step to the right:
$\rightarrow \mathbb{F}_{0,4} \xrightarrow{d_{0,4}} \mathbb{F}_{0,3} \xrightarrow{d_{0,3, \text { periodic }}} \mathbb{F}_{0,2, \text { periodic }} \xrightarrow{d_{0,4}(|f|)} \mathbb{F}_{0,3}(|f|) \xrightarrow{d_{0,3, \text { periodic }}(|f|)} \mathbb{F}_{0,2, \text { periodic }}(|F|) \longrightarrow Z_{\text {periodic }}(|f|) \rightarrow 0$.

The module $Z_{\text {periodic }}$ is a maximal Cohen-Macaulay module; so, $\operatorname{Ext}_{R}^{i}\left(Z_{\text {periodic }}, R\right)=0$ for all positive i, hence,
$0 \rightarrow\left(Z_{\text {periodic }}(|f|)\right)^{*} \rightarrow\left(\mathbb{F}_{0,2, \text { periodic }}(|F|)\right)^{*} \xrightarrow{\left(d_{0,3, \text { periodic }}(|f|)\right)^{*}}\left(\mathbb{F}_{0,3}(|f|)\right)^{*} \xrightarrow{\left(d_{0,4}(|f|)\right)^{*}}\left(\mathbb{F}_{0,2, \text { periodic }}\right)^{*} \xrightarrow{\left(d_{0,3, \text { periodic }}\right)^{*}}\left(\mathbb{F}_{0,3}\right)^{*}$
is exact and

$$
\left(Z_{\text {periodic }}\right)^{*}=\operatorname{ker}\left(d_{0,3, \text { periodic }}^{*}\right)=\frac{\left(\mathbb{F}_{0,3}(|f|)\right)^{*}}{\operatorname{im}\left(\left(d_{0,3, \text { periodic }}(|f|)\right)^{*}\right)} .
$$

- We prove the assertions of Part 1.

- We connect ω and $\frac{I: f}{I}$.

The surjection $P / I \rightarrow R / J$ gives
$\omega_{R / J}=\mathrm{Ext}^{\operatorname{dim} P / I-\operatorname{dim} R / J}\left(R / J, \omega_{P / I}\right)=\operatorname{Hom}\left(P /(I, f), P / I(a(P / I))=\frac{I: f}{I}\left(b_{0}-3\right)\right.$.

- We connect $\frac{I: f}{I}$ and Z.

Let $d_{1,0}=\left[\bar{g}_{1}, \ldots, \bar{g}_{n}\right]$, where $\left(g_{1}, \ldots, g_{n}\right)$ is a minimal generating set for I in P. Of course, Z is the kernel of $d_{1,0}$. If $u \in I: f$, then $u f=\sum_{i=1}^{n} A_{i} g_{i}$ for some A_{i} in P. The association

$$
u \mapsto\left[\begin{array}{c}
\bar{A}_{1} \\
\vdots \\
\bar{A}_{n}
\end{array}\right]
$$

induces an isomorphism

$$
\frac{I: f}{I}(-|f|) \rightarrow \frac{Z}{Z^{\prime}}
$$

where Z^{\prime} is the submodule of Z which comes from relations on $\left[g_{1}, \ldots, g_{n}\right]$ in P.
One Final Remark. The isomorphism $\frac{Z}{Z^{\prime}} \cong \omega\left(-b_{0}-a\right)$ shows that

$$
\operatorname{dim} \operatorname{soc} R / J \leq \operatorname{rank} \mathbb{F}_{0,2}
$$

automatically happens and equality occurs if and only if $Z^{\prime} \subseteq \mathfrak{m} Z$. If $Z^{\prime} \subseteq \mathfrak{m} Z$ occurs at J, then the corresponding statement for $J^{[q]}$ is even more true. This explains why we did not include

$$
\operatorname{dim} \operatorname{soc} R / J^{[q]}=\operatorname{rank} \mathbb{F}_{e, 2}
$$

as a hypothesis in the Corollary.

