
SOCLE DEGREES, RESOLUTIONS, AND FROBENIUS POWERS

The set up.
• k is a field of characteristic p > 0.
• R is a graded ring over k.
• m is the maximal homogeneous ideal of R.
• J is a homogeneous m-primary ideal of R.

The question.
• Adela asked “How are the socle degrees of R/J [q] related to the socle degrees of
R/J?

The notation of the question.
• The socle of the ring S is {s ∈ S | mSs = 0}.
• q = pe for some exponent e.
• J [q] = ({jq | j ∈ J}).
Example. We calculate the socle degrees of R/J [pe] for for R = Z/2[x, y, z]/(f),
where f = x5 + y5 + z5 and J = (x, y, z). We learn

e socle degrees socle basis
0 0: 1 1
1 3: 1 xyz
2 9: 1 x3y3z3

3 12: 1 16: 1 x4y4z4, x2y7z7

4 22: 1 30: 1 x4y14z4 + x4y9z9 + x4y4z14, y15z15

5 42: 1 58: 1 x4y29z9 + x4y19z19 + x4y9z29, xy26z31

After a while: if the socle degrees of R/J [q] are {di}, then the socle degree of
R/J [pq] are {pdi − (p− 1)2}.
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Folklore. If pdR R/J < ∞, then the socles of R/J and R/J [q] have the same
dimension and if the socle degrees of R/J are d1 ≤ · · · ≤ ds then the socle degrees
of R/J [q] are D1 ≤ · · · ≤ Ds with Di = qdi − (q − 1)a.

Reason. In the above notation, the generator degrees of the canonical module ω of
R/J are

−ds ≤ · · · ≤ −d1.

The canonical module is
ExttopR (R/J, ωR),

and ωR = R(a(R)) if R is Gorenstein; thus, the degrees of the generators of ω are
given by the back twists in the R-resolution F of R/J . The resolution of R/J [q] is
F

[q].

Theorem [K,V]. If R is a complete intersection, then the converse of folklore is
true.

Moral.
1. At least sometimes, if you know the socle degrees of R/J, then you know the

graded betti numbers in the tail of the resolution of R/J.
2. At least sometimes, if the socle degrees grow “correctly” as you apply the Frobe-

nius homomorphism, then the tail of the resolution of R/J [pe] is independent of
e.
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Example. Adela and I found other examples in which the numbers made it look
like the tail of the resolution of R/J [pe] is independent of e

Let P be the polynomial ring Z

(5) [x, y, z], f be the element x3 + y3 + z3 of P , R

be the hypersurface ring P/(f), and J be the ideal (x5, y5, z5) of R. The graded
betti numbers in the R-resolution of R/J [pe] are:

· · · →
R(−9)1

⊕
R(−10)3

→
R(−8)3

⊕
R(−9)1

→ R(−5)3 → R → R/J [50] → 0.

· · · →
R(−39)1

⊕
R(−40)3

→
R(−38)3

⊕
R(−39)1

→ R(−25)3 → R → R/J [51] → 0.

· · · →
R(−189)1

⊕
R(−190)3

→
R(−188)3

⊕
R(−189)1

→ R(−125)3 → R → R/J [52] → 0.

· · · →
R(−939)1

⊕
R(−940)3

→
R(−938)3

⊕
R(−939)1

→ R(−625)3 → R → R/J [53] → 0.

· · · →
R(−4689)1

⊕
R(−4690)3

→
R(−4688)3

⊕
R(−4689)1

→ R(−3125)3 → R → R/J [54] → 0.

It looks like there is a resolution

F : · · · →
R(−1)1

⊕
R(−2)3

→
R3

⊕
R(−1)1

,

which is independent of e so that for each e there exists te so that the resolution of
R/J [pe] is

F(−te) → R(−5e+1) → R → R/J [5e] → 0.
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In these examples I did row and column operations to the matrix in position 3.
Each matrix can be transformed into


0 −x2 −y2 −2z
x2 0 −z2 2y
y2 z2 0 −2x
2z −2y 2x 0


 .

The purpose of my talk.
1. I will show a situation where the graded betti numbers in the tail of the resolution

of R/J are completely determined the socle degrees of R/J.
2. I will apply apply (1) twice and obtain a situation where the tail of the resolution

of R/J [pe] is a shift of the tail of the resolution of R/J as a graded module –
I make no claim about the differential at this point.

Theorem [K,U]. Let P = k[x, y, z], f ∈ P homogeneous , R = P/(f), and
a = a(R) = |f | − 3. Let I be a homogeneous grade three Gorenstein ideal in P , b0

be the back twist in the P -resolution of P
I , and J = IR. Let

F0,• : . . .
d0,4−−→ F0,3

d0,3−−→ F0,2
d0,2−−→ F0,1

d0,1−−→ R → R/J → 0

be the graded minimal R-resolution of R/J, and {σ0,i | 1 ≤ i ≤ s0} be the socle
degrees of R

J . Assume
(1) µ(I) = µ(J),
(2) rank F0,2 = dimk soc R

J , and
(3) σ0,i + σ0,j 6= b0 + 2a for any pair (i, j). Then

F0,2 =
s0⊕

i=1

R(−(b0 + a− σ0,i)),

F0,3 =
s0⊕

i=1

R(−(σ0,i + 3)), and

F0,i+2 = F0,i(−|f |).
Corollary [K,U]. Assume all of the above and that µ(J [q]) = µ(I). If socR/J [q] =
socR/J

[
− b0(q−1)

2

]
, then

Fe,i = F0,i

[
− b0(q−1)

2

]
, ∀i ≥ 2.

Proof of Corollary. The Corollary follows quickly from the Theorem. Make sure
that all of the hypothesis apply to J and J [q].
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Example. In the earlier example, b0 = 15, a = 0, and the shift from J to J [pe] is
15(5e−1)

2 and this is 30, 180, 930, and 4680 for e equal to 1, 2, 3, and 4.

Outline of the proof of the Theorem. Let Z = im d0,2. There are three parts to the
proof.

Part 1. There exists Z ′ ⊂ Z such that

ω(−b0 − a) ∼= I : f
I

(−|f |) ∼= Z

Z ′ .

• Knowledge of the generator degrees of ω is equivalent to knowledge of the socle
degrees.
• The generators of Z have the same degrees as the generators of F0,2.
• The hypothesis rank F0,2 = dimk soc R

J tells us that Z and Z
Z′ have the same

generators.
• This finishes the F0,2 part of the argument.

Part 2. Eisenbud proved that if R = P/(f) is a hypersurface ring and M is
a maximal Cohen-Macaulay module over with no free summands, then M has a
periodic resolution of period two given by a matrix factorization of “f”. Our Z is
Zperiodic ⊕ Zfree. The maps F0,3 → F0,2 → Z decompose as

F0,3

[
d0,3,periodic

0

]
−−−−−−−−−−→

F0,2,periodic

⊕
F0,2,free

[
d0,2,periodic 0

0 iso

]
−−−−−−−−−−−−−−→

Zperiodic

⊕
Zfree.

• Now one makes 2 fairly easy homological calculations:

Z∗(a) � ω and
F
∗
0,3(|f |) and (Zperiodic)∗ have the same generator degrees

• At this point we know

µ(Z∗) = µ((Zperiodic)∗) + µ((Zfree)∗) = rank F0,2,periodic + rank F0,2,free

= rank F0,2 = µ(ω).
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• So, Z∗(a) and ω have the same generator degrees.
• As soon as we show that Zperiodic = Z, then we know the the relationship between
the generator degrees of F

∗
0,3 and the generator degrees of ω. This completes the

proof of the Theorem.

Part 3. If z generates a free summand of Z, then
• the degree of the corresponding element in Z∗(a) is a generator degree of ω, and
• the degree of z is a generator degree of ω(−b0 − a); however,
• the hypothesis σ0,i + σ0,j 6= b0 + 2a for any pair (i, j) prohibits the existence of
such a z.

• We prove the homological assertions of Part 2.

• We produce Z∗(a) � ω.

The surjection R � R/J tells me that

ωR/J = Extdim R−dim R/J
R (R/J, ωR) = Ext2R(R/J,R(a)) = Ext1R(J,R(a)).

Apply HomR( , R(a)) to

0 → Z → F0,1 → J → 0

to get
0 → J∗(a) → F

∗
0,1(a) → Z∗(a) → Ext1R(J,R(a)) → 0.

• We prove that F
∗
0,3(|f |) and (Zperiodic)∗ have the same generator degrees.

• There are two steps. The first is routine. Apply Hom( , R) to the exact
sequence

F0,3
d0,3,periodic−−−−−−−→ F0,2,periodic → Zperiodic → 0

to see that (Zperiodic)∗ = ker(d∗0,3,periodic).

• The other step is sneaky. Extend the periodic resolution one step to the
right:

→F0,4

d0,4−−−→F0,3

d0,3,periodic−−−−−−−−→F0,2,periodic

d0,4(|f|)−−−−−−→F0,3(|f|)
d0,3,periodic(|f|)−−−−−−−−−−−→F0,2,periodic(|F |)−→Zperiodic(|f|)→0.



7

The module Zperiodic is a maximal Cohen-Macaulay module; so,
Exti

R(Zperiodic, R) = 0 for all positive i; hence,

0→(Zperiodic(|f|))∗→(F0,2,periodic(|F |))∗
(d0,3,periodic(|f|))∗−−−−−−−−−−−−−→(F0,3(|f|))∗

(d0,4(|f|))∗−−−−−−−−→(F0,2,periodic)
∗

(d0,3,periodic)
∗

−−−−−−−−−−→(F0,3)∗

is exact and

(Zperiodic)∗ = ker(d∗0,3,periodic) =
(F0,3(|f |))∗

im((d0,3,periodic(|f |))∗) .

• We prove the assertions of Part 1.

• We connect ω and I : f
I .

The surjection P/I → R/J gives

ωR/J = Extdim P/I−dim R/J(R/J, ωP/I) = Hom(P/(I, f), P/I(a(P/I)) =
I : f
I

(b0−3).

• We connect I : f
I and Z.

Let d1,0 = [ ḡ1, . . . , ḡn ], where (g1, . . . , gn) is a minimal generating set for I in
P . Of course, Z is the kernel of d1,0. If u ∈ I : f , then uf =

∑n
i=1 Aigi for some Ai

in P . The association

u 7→

 Ā1

...
Ān




induces an isomorphism
I : f
I

(−|f |) → Z

Z ′ ,

where Z ′ is the submodule of Z which comes from relations on [ g1, . . . , gn ] in P . �
One Final Remark. The isomorphism Z

Z′ ∼= ω(−b0 − a) shows that

dim socR/J ≤ rankF0,2

automatically happens and equality occurs if and only if Z ′ ⊆ mZ. If Z ′ ⊆ mZ
occurs at J , then the corresponding statement for J [q] is even more true. This
explains why we did not include

dim socR/J [q] = rankFe,2

as a hypothesis in the Corollary.


