SOCLE DEGREES, RESOLUTIONS, AND FROBENIUS POWERS

The set up.

e k is a field of characteristic p > 0.

e R is a graded ring over k.

e m is the maximal homogeneous ideal of R.
e J is a homogeneous m-primary ideal of R.

The question.

o Adela asked “How are the socle degrees of R/J9 related to the socle degrees of
R/J?

The notation of the question.

e The socle of the ring S is {s € S | mgs = 0}.
e ¢ = p° for some exponent e.

o JUl = ({j]j€J})

Example. We calculate the socle degrees of R/JIP’] for for R = Z/2[x,vy, 2]/(f),
where f = 2° +y° + 2° and J = (2,9, 2). We learn

e socle degrees socle basis

0 0:1 1

1 3:1 TYZ

2 9:1 x3y323

3 12:116:1 atytzt a2y 2"

422:130:1  atyMet +aty?2? +atytat ylP0

5 42:158:1 1.4,!/292,9 + $4y192’19 + Ilf4y92’29, Z'y26231

After a while: if the socle degrees of R/Jl are {d;}, then the socle degree of
R/JP4 are {pd; — (p — 1)2}.
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Folklore. If pdp R/J < oo, then the socles of R/J and R/J have the same
dimension and if the socle degrees of R/J are dy < --- < ds then the socle degrees
ofR/J[‘J] are D1 < --- < Dg with D; = qd; — (¢ — 1)a.

Reason. In the above notation, the generator degrees of the canonical module w of
R/J are
—dg < -+ < —dy.

The canonical module is
ExtP(R/J,wr),

and wr = R(a(R)) if R is Gorenstein; thus, the degrees of the generators of w are
given by the back twists in the R-resolution F of R/.J. The resolution of R/.J!4 is
Flal

Theorem [K,V]. If R is a complete intersection, then the converse of folklore is
true.

Moral.

1. At least sometimes, if you know the socle degrees of R/J, then you know the
graded betti numbers in the tail of the resolution of R/J.

2. At least sometimes, if the socle degrees grow “correctly” as you apply the Frobe-
nius homomorphism, then the tail of the resolution of R/J[pe] s independent of
e.
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Example. Adela and I found other examples in which the numbers made it look
like the tail of the resolution of R/.JIP"! is independent of e

Let P be the polynomial ring %[aj, y, 2|, f be the element x® + 3> + 23 of P, R
be the hypersurface ring P/(f), and J be the ideal (z°,9°, 25) of R. The graded
betti numbers in the R-resolution of R/JP"] are:

R(-9)'  R(-8)° .
= ® - @® —R(-5*—-R—-R/JPT 0.

R(-39)'  R(-38)3 )
ce— ® — &) — R(-25)®> = R— R/JPT 0.
R(—40)2  R(-39)!

R(—189)'  R(—188)3 2
= ® — &) — R(-125)> = R — R/JPT = 0.
R(-190)3  R(—189)!

R(—939)'  R(—938)3 3
= ® — &) — R(-625)®> = R — R/JPT — 0.
R(—940)*  R(—939)!

R(—4689)"  R(—4688)3 4
e & — <) — R(-3125)> = R— R/JP1 = 0.
R(—4690)  R(—4689)!

It looks like there is a resolution

which is independent of e so that for each e there exists t. so that the resolution of
R/JP" is
F(—t.) — R(—=5"Y) - R — R/JPT — 0.



In these examples I did row and column operations to the matrix in position 3.
Each matrix can be transformed into
0 —22 —y? -2z
x? 0 -2 2
y? 22 0 —2x
2z 2y 2x 0

The purpose of my talk.

1. I will show a situation where the graded betti numbers in the tail of the resolution
of R/J are completely determined the socle degrees of R/J.

2. T will apply apply (1) twice and obtain a situation where the tail of the resolution
of R/ JP") is a shift of the tail of the resolution of R/.J as a graded module —
I make no claim about the differential at this point.

Theorem [K,U]. Let P = k[z,y,z], f € P homogeneous , R = P/(f), and
a=a(R) = |f| —3. Let I be a homogeneous grade three Gorenstein ideal in P, by
be the back twist in the P-resolution of ?, and J =IR. Let

do,4 do,3 do,2 do,1
]FO’.: ...—>F0’3—>F0,2%F0’1—>R—>R/J—>O

be the graded minimal R-resolution of R/J, and {oo; | 1 < i < so} be the socle
degrees of ?. Assume

(1) u(I) = pu(J), .

(2) rankFg o = dimg soc 5, and

(3) 00,i + 00, # bo + 2a for any pair (i,7). Then
S0
Fo2 = @ R(—(bo + a — 00.4)),
i=1

S0
Fo,3 = @ R(—(00,i +3)), and
i=1
Fo,ive = Foi(—|f])-
Corollary [K,U]. Assume all of the above and that u(J4) = pu(I). Ifsoc R/ J4 =
socR/J [—W}, then

Foi=Fo; [-240), vi>2

)

Proof of Corollary. The Corollary follows quickly from the Theorem. Make sure
that all of the hypothesis apply to J and J4l.
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Example. In the earlier example, by = 15, a = 0, and the shift from J to JP! is
@ and this is 30, 180, 930, and 4680 for e equal to 1, 2, 3, and 4.

Outline of the proof of the Theorem. Let Z = imdy 2. There are three parts to the
proof.

Part 1. There exists Z/ C Z such that

w(—=by — a)

gI:f
T

(-1fh = 2

e Knowledge of the generator degrees of w is equivalent to knowledge of the socle
degrees.

e The generators of Z have the same degrees as the generators of Fy ».

e The hypothesis rankFy o = dimy soc ? tells us that Z and % have the same
generators.

e This finishes the Fy o part of the argument.

Part 2. Eisenbud proved that if R = P/(f) is a hypersurface ring and M is
a maximal Cohen-Macaulay module over with no free summands, then M has a
periodic resolution of period two given by a matrix factorization of “f”. Our Z is
Zperiodic @ Zree- The maps Fo 3 — Fo 2 — Z decompose as

dO,B,periodic d0,2,periodic 0
0 IE?0,2,periodic 0 iso Zperiodic
Fo,3 ®
]FO,2,free Zfree-

e Now one makes 2 fairly easy homological calculations:

Z*(a) » w and
IFS’?,(] fl) and (Zperiodic)” have the same generator degrees

e At this point we know

M(Z*) - ﬂ((Zperiodic>*) + N((Zfree>*) = rank IFO,Z,periodic + rank ]FO,Z,free
= rank[Fp o = p(w).



e So, Z*(a) and w have the same generator degrees.

e As soon as we show that Z,eriodic = Z, then we know the the relationship between
the generator degrees of Fj ;5 and the generator degrees of w. This completes the
proof of the Theorem.

Part 3. If 3 generates a free summand of Z, then

e the degree of the corresponding element in Z*(a) is a generator degree of w, and
e the degree of 3 is a generator degree of w(—by — a); however,

e the hypothesis 0o ; + 0¢,; # by + 2a for any pair (4, j) prohibits the existence of
such a 3.

e We prove the homological assertions of Part 2.
e We produce Z*(a) - w.
The surjection R — R/J tells me that

wryy = Bxty ™ TN (R) T wp) = Bxth(R/J, R(a)) = Bxtj(J, R(a)).
Apply Hompg(__, R(a)) to
0—=2—=Fp1—J—0

to get
0 — J*(a) — F}1(a) — Z*(a) — Extk(J, R(a)) — 0.

e We prove that Fj (| f|) and (Zperiodic)* have the same generator degrees.

e There are two steps. The first is routine. Apply Hom(__, R) to the exact
sequence

dO,S,periodic

F0,3 ]FO,2,periodic — Zperiodic 0
* *
to see that (Zperiodic)” = ker(dg 3 periodic)-

e The other step is sneaky. Extend the periodic resolution one step to the
right:

d0,4 dO,S,periodic d0,4(|f‘) d0,3,peri0dic(|f‘>
—Fo,a Fo,3 FO,Q,pcriodic Fo,3(1fD FO,Q,pcriodic(lpl) chriodic(lf‘)_'o‘




The module Zerioqic is a maximal Cohen-Macaulay module; so,
Exth (Zperiodic; ) = 0 for all positive i; hence,

(dO,B,periodic(‘fl))* (d0,4(‘f|)>* ("lO,B,periodic))k
Oﬁ(zperiodic(lf‘))*—>(]FO,2,periodic(|F|))* (FO,S(‘fl))* (]F(),Q,periodi(:>A< (]FO,S)*
is exact and
*
(Fo,s(1/1))

Z eriodic * = ker d* eriodic = 3 .
Gmiodi) (%3 peicac) im((do,3 periodic (|.f1))*)

e We prove the assertions of Part 1.

e We connect w and ¥

The surjection P/I — R/J gives

im —dim I:
wryy = Extim PI=dm B (R 7 p 1) = Hom(P/(I, f), P/I(a(P/I)) = Tf(bo—s).
e We connect % and Z.
Let dio = [G1,---,0n], where (¢1,...,9,) is a minimal generating set for I in

P. Of course, Z is the kernel of dy o. If w € I': f, then uf = 2?21 A;g; for some A;
in P. The association

A
u— |
A,
induces an isomorphism ; 2
Bl -2
where Z’ is the submodule of Z which comes from relations on [g1,...,¢,|in P. O

One Final Remark. The isomorphism Z 2 w(—by — a) shows that
dimsoc R/J < rank[Fy o

automatically happens and equality occurs if and only if Z/ C mZ. If Z/ C mZ
occurs at J, then the corresponding statement for J9 is even more true. This
explains why we did not include

dimsoc R/J4 = rankF, ,
as a hypothesis in the Corollary.



