
DIVISORS OVER DETERMINANTAL RINGS

DEFINED BY TWO BY TWO MINORS

I have posted this talk on my website. Also, a relevant paper and pre-print are
available on my website.

Let R be a ring (probably Z or a field K) and E and G be free R-modules of
rank e and g, respectively. We study the (Koszul) complex

(0.1) ···→N (m−1,n−1,p+1)→Symm E∗⊗Symn G⊗
∧p(E∗ ⊗ G)

︸ ︷︷ ︸

N(m,n,p)

→N (m+1,n+1,p−1)→...,

its homology (which I’ll call HN (m,n, p)), its dual

(0.2) ···→M(m+1,n+1,p−1)→DmE ⊗ DnG∗
⊗

∧p(E ⊗ G∗)
︸ ︷︷ ︸

M(m,n,p)

→M(m−1,n−1,p+1)→...,

and the homology of its dual (which I’ll call HM(m,n, p)).

The plan of my talk:

Topic 1 The complex (0.1) can have interesting homology.

Topic 2 The complex (0.1) really is a Koszul complex.

Topic 3 The connection with divisors of determinantal rings.
Topic 3.a The homology of (0.1) depends on characteristic.
Topic 3.b Duality

Topic 4 Does there exist a quasi-isomorphism from (0.2) to (0.1), for the appropriate
choice of parameters?

Topic 5 A brand new example.

Topic 6 One step beyond the Cohen-Macaulay range.

Topic 7 Why I first become interested in (0.1).

Topic 8 A pep talk on Divided powers.
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Topic 1. The complex (0.1) can have interesting homology.

Consider

0 → N (0, 0, 2)
︸ ︷︷ ︸
∧2(E∗⊗G)

→ N (1, 1, 1)
︸ ︷︷ ︸

E∗⊗G⊗(E∗⊗G)

→ N (2, 2, 0)
︸ ︷︷ ︸

Sym2 E∗⊗Sym2 G

→ 0

The homology is concentrated in spot (1, 1, 1). If v1, v2, . . . is part of a basis for E∗

and x1, x2, . . . is part of a basis for G, then

v1 ⊗ x1 ⊗ (v2 ⊗ x2) − v1 ⊗ x2 ⊗ (v2 ⊗ x1)

is a cycle which represents a non-zero element of homology.
In light of duality, (HN (m,n, p) ∼= HM(m′, n′, p′), provided m + m′ = g − 1,

n + n′ = e − 1 and p + p′ = (e − 1)(g − 1) and 1 − e ≤ m − n ≤ g − 1), the only
homology of

· · · → M(g − 1, e − 1, α − 2) → M(g − 2, e − 2, α − 1) → M(g − 3, e − 3, α) → . . .

occurs at (g − 2, e − 2, α − 1) (write α for (e − 1)(g − 1)). Of course, Topic 4 asks
if there is a map of complexes

. . . −−−−−→ M(g−1,e−1,α−2) −−−−−→ M(g−2,e−2,α−1) −−−−−→ M(g−3,e−3,α) −−−−−→ . . .


y



y



y

0 −−−−−→ N(0,0,2) −−−−−→ N(1,1,1) −−−−−→ N(2,2,0) −−−−−→ 0,

so that the mapping cone of the resulting picture is exact.

Topic 2. The complex (0.1) really is a Koszul complex.

Consider the identity map

(0.3) E∗ ⊗ G → E∗ ⊗ G.

Well,

E∗ ⊗ G = Sym1 E∗ ⊗ Sym1 G ⊆ Sym2(E
∗ ⊕ G) ⊆ Sym•(E

∗ ⊕ G),
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so (0.3) induces

Sym•(E
∗ ⊕ G) ⊗ E∗ ⊗ G → Sym•(E

∗ ⊕ G) ⊗ E∗ ⊗ G
mult
−−−→ Sym•(E

∗ ⊕ G).

We have a map from a free module to a ring, it makes sense to form the usual
Koszul complex

∧•
(free module) and it makes sense to look at graded strands of

this Koszul complex.
If v1, . . . , ve is a basis for E∗ and x1, . . . , xg is a basis for G, then

S = Sym•(E
∗ ⊕ G) is the polynomial ring R[v1, . . . , ve, x1, . . . , xg] and (0.1) is a

graded strand of the Koszul complex on {vixj}.

Topic 3. The connection with divisors of determinantal rings.

Let

P = Sym•(E
∗ ⊗ G) a polynomial ring in eg variables vi ⊗ xj ,

S = Sym•(E
∗ ⊕ G) a polynomial ring in e + g variables v1, . . . , ve, x1, . . . , xg,

and T be the subring
∑

m Symm E∗⊗Symm G of S. (So, T is the subring R[{xivj}]
of S = R[v1, . . . , ve, x1, . . . , xg]).

Notice that vi ⊗ xj 7→ vixj gives a ring homomorphism P � T whose kernel is
I2 of the matrix (vi ⊗ xj). Thus, T is the determinantal ring defined by the 2 × 2
minors of a generic e × g matrix.

The class group of T is Z with the integer ` associated to the divisor M` =
∑

m−n=`

Symm E∗ ⊗ Symn G. (Notice that M` is a T -submodule of S.)

One can resolve R as a P-module. The resolution is the Koszul complex

P ⊗
•∧

(E∗ ⊗ G).

Apply M` ⊗P :

· · · →
∑

m−n=`

Symm E∗ ⊗ Symn G ⊗

p
∧

(E∗ ⊗ G) → . . .
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Take one graded strand:

· · · → Symm E∗ ⊗ Symn G ⊗

p
∧

(E∗ ⊗ G) → . . .

We conclude that
HN (m,n, p) = TorPp,?(Mm−n, R).

(The grading on M` is defined so that ? = n + p.) Thus,

HN (m,n, p) = TorPp,n+p(Mm−n, R).

Topic 3.a. The homology of (0.1) depends on characteristic.

If R = Z, then HN (m,n, p) is not always free! (If e, g ≥ 5, then HN (2, 2, 3) has
3-torsion.)

If R is a field, then the dimension of HN (m,n, p) depends on the characteristic of
R. In particular, HN (2, 2, 3) has larger dimension in characteristic 3, when e, g ≥ 5,
than it has in other characteristics.

Topic 3.b. Duality.

Theorem. Assume that 1− e ≤ m−n ≤ g− 1. If m + m′ = g− 1, n + n′ = e− 1,
and p + p′ = α, then

HN (m,n, p) ∼= HM(m′, n′, p′).

There are three steps to the proof. In this version of the proof, I assume that R =
K, but that is not needed ultimately. I also only speak about ` = m − n with
1 − e ≤ ` ≤ g − 1.
Step 1. If 1 − e ≤ ` ≤ g − 1, then M` is Cohen-Macaulay and

M`
∼= Extα

P(Mg−e−`,P).

Step 2. If F resolves M`, then F∗[−α, g − eg] resolves Mg−e−`. (I won’t justify

the internal shift g − eg in public.)
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Step 3. Do the calculation.

I do step 3 first. Suppose P(−q)βpq is a summand of the resolution F of M` in
position p. Then P(+q)βpq is a summand of F∗[−α] in position α − p and
P(−(eg − g − q))βpq is a summand the resolution of Mg−e−` in position α − p. So,

dimHN (m, n, p) = dim TorPp,q(M`, K) = dimTorα−p,eg−g−q(Mg−e−`, K) = dimHN (m′n′, p′)

where

m−n = ` n+p = q p′ = α−p m′−n′ = g− e− ` n′ +p′ = eg−g− q.

Add to learn

p + p′ = α n + n′ + α = (e − 1)g
︸ ︷︷ ︸

n+n′=e−1

m + m′ − (e − 1) = g − e
︸ ︷︷ ︸

m+m′=g−1

. �

The proof of Step 1. The canonical class is Mg−e. The class group arithmetic tells
us that

M`
∼= HomT (Mg−e−`,Mg−e) ∼= HomT (Mg−e−`,Extα

P(T,P))

= Ext0P(Mg−e−`,Extα
P(T,P)) ∼=F Ext0P(T,Extα

P(Mg−e−`,P))

= HomP(T,Extα
P(Mg−e−`,P)) = Extα

P(Mg−e−`,P).

I justify the isomorphism F. Let M and N be perfect P modules of projective
dimension c and let F and G be free resolutions of M and N , respectively. The
complex

Hom(F, G∗) = Hom(F ⊗ G,P) = Hom(G, F∗)

shows that

Extj
P(M,Extc

P(N,P)) ∼= Extj
P(N,Extc

P(M,P))

for all j.
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Topic 4. Does there exist a quasi-isomorphism from
(0.2) to (0.1), for the appropriate choice of parameters?

Question 0.4. Suppose 1 − e ≤ m − n ≤ g − 1. Choose m′, n′, p′ to satisfy

m+m′ = g−1, n+n′ = e−1, and p+p′ = α. Does there exist a quasi-isomorphism

. . . −−−−→ M(m,n, p) −−−−→ M(m − 1, n − 1, p + 1) −−−−→ . . .


y



y

. . . −−−−→ N (m′, n′, p′) −−−−→ N (m′ + 1, n′ + 1, p′ − 1) −−−−→ . . . ?

Answer 1. Yes, even when R = Z.

Answer 2. The quasi-isomorphism of answer 1, depends on the choice of basis. Does
there exist a coordinate free quasi-isomorphism for Question 0.4 when R = Z? NO!

Further question 3. Does there exist a coordinate free quasi-isomorphism for Ques-
tion 0.4 when R = Q? Probably!

Further question 4. Does there exist a sequence of coordinate-free
quasi-isomorphisms which connect the two complexes of Question 0.4 when R = Z?
I don’t know.

Topic 5. We show an example for Answer 2.

Take e = g = 2 and R = Z. I demonstrate that there does not exist a coordinate
free quasi-isomorphism

0 −−−−→ M(0, 0, 0) −−−−→ 0


y

0 −−−−→ N (0, 0, 2) −−−−→ N (1, 1, 1) −−−−→ N (0, 0, 2) −−−−→ 0

I will demonstrate that it is impossible to select a cycle z in N (1, 1, 1), such that
z is invariant under change of basis and the homology class of z generates all of
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HN (1, 1, 1). It is easy to calculate the cycles of N (1, 1, 1) which are invariant under
under change of basis. These cycles form the free group generated by the cycle

{
+v1 ⊗ x1 ⊗ (v2 ⊗ x2) − v1 ⊗ x2 ⊗ (v2 ⊗ x1)
+v2 ⊗ x2 ⊗ (v1 ⊗ x1) − v2 ⊗ x1 ⊗ (v1 ⊗ x2)

The given cycle corresponds to 2 in N (1, 1, 1).

Topic 6. What happens if one looks at M`, where
` is OUTSIDE of the Cohen-Macaulay range?

In general, I do not know. However, I do know how to glue

N (0, e, p) −→ N (1, e + 1, p − 1) −→ . . .

together with
. . . −→ M(g + 1, 1, p′ − 1) −→ M(g, 0, p′)

to get a coordinate free resolution (for the appropriate choice of p and p′):

...−→M(g+1,1,p′−1)−→M(g,0,p′)
“./”
−−−→

∧
g+p′

(E⊗G∗)
the dual of “./”

−−−−−−−−−−−→N(0,e,p)−→N(1,e+1,p−1)−→...

For this to make sense, we must have g + p′ + e + p = eg; i.e., p + p′ = α − 1.

Topic 7. Why I first become interested in (0.1).

Given e and g, there exists a Universal ring U and a universal resolution

U : 0 → Ue → Ue+g → Ug,

so that if V is any ring and

V : 0 → Ve → Ve+g → Vg

is any resolution then there exists a unique ring homomorphism U → V such that
V = U⊗UV. The ring U is equal to a P/I, where P is a polynomial ring in (e+g)2+1
variables. I set out to find the P -resolution of U . It turns out that every module
in the minimal P ⊗ K-resolution of U ⊗ K is of the form HM(m,n, p) ⊗ P ⊗ K or
HN (m,n, p) ⊗ P ⊗ K for some m,n, p.
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Topic 8. A pep talk on Divided powers.

The idea is to make D•G
∗ be a ring with DnG∗ equal to HomR(Symn G,R).

Let x1, . . . , xg be a basis for G and y1, . . . , yg be the corresponding dual basis for
G∗. Now we look for the natural basis for HomR(Sym2 G,R) which is dual to
x1x2, x

2
1, . . . . It is reasonable to think of y1y2 as a product. It is NOT reasonable

to think of the element of (Sym2 G)∗ which is dual to x2
1 as a product! If y

(2)
1 is the

name of the dual of x2
1, then y2

1 = 2y
(2)
1 .

I have seen people define divided powers by saying that y(n) = 1
n!y

n. This
makes me shudder. One should say something like: figure out all of the rules that
y(n) = 1

n!y
n satisfies and define divided powers to be the algebraic object which

satisfies all of those rules. In particular,

(y1 + y2)
(n) =

∑

a+b=n

y
(a)
1 y

(b)
2 NO Binomial coefficients

and

y(n)y(m) =

(
n + m

n

)

y(n+m) Unexpected binomial coefficients

In summary, the multiplication in D•G
∗ is unpleasant:

(

y
(a1)
1 . . . y(ag)

g

)(

y
(b1)
1 . . . y(bg)

g

)

=

(
a1 + b1

a1

)

. . .

(
ag + bg

ag

)

y
(a1+b1)
1 . . . y(ag+bg)

g ,

but co-multiplication

∆ : DnG∗ →
∑

a+b=n

DaG∗ ⊗ DbG
∗

is awesome. In particular,

∆ : DnG∗ → D1G
∗ ⊗ Dn−1G

∗

sends
y
(a1)
1 . . . y(ag)

g 7→
∑

i

yi ⊗ y
(a1)
1 . . . y

(ai−1)
i . . . y(ag)

g .


