DIVISORS OVER DETERMINANTAL RINGS DEFINED BY TWO BY TWO MINORS

I have posted this talk on my website. Also, a relevant paper and pre-print are available on my website.

Let R be a ring (probably \mathbb{Z} or a field K) and E and G be free R-modules of rank e and g, respectively. We study the (Koszul) complex

$$
\begin{equation*}
\cdots \rightarrow \mathcal{N}(m-1, n-1, p+1) \rightarrow \underbrace{\operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right)}_{\mathcal{N}(m, n, p)} \rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \ldots \tag{0.1}
\end{equation*}
$$

its homology (which I'll call $\mathrm{H}_{\mathcal{N}}(m, n, p)$), its dual

$$
\begin{equation*}
\cdots \rightarrow \mathcal{M}(m+1, n+1, p-1) \rightarrow \underbrace{D_{m} E \otimes D_{n} G^{*} \otimes \bigwedge^{p}\left(E \otimes G^{*}\right)}_{\mathcal{M}(m, n, p)} \rightarrow \mathcal{M}(m-1, n-1, p+1) \rightarrow \ldots \tag{0.2}
\end{equation*}
$$

and the homology of its dual (which I'll call $\mathrm{H}_{\mathcal{M}}(m, n, p)$).

The plan of my talk:

Topic 1 The complex (0.1) can have interesting homology.
Topic 2 The complex (0.1) really is a Koszul complex.
Topic 3 The connection with divisors of determinantal rings.
Topic 3.a The homology of (0.1) depends on characteristic.
Topic 3.b Duality
Topic 4 Does there exist a quasi-isomorphism from (0.2) to (0.1), for the appropriate choice of parameters?
Topic 5 A brand new example.
Topic 6 One step beyond the Cohen-Macaulay range.
Topic 7 Why I first become interested in (0.1).
Topic 8 A pep talk on Divided powers.

Topic 1. The complex (0.1) can have interesting homology.

Consider

$$
0 \rightarrow \underbrace{\mathcal{N}(0,0,2)}_{\Lambda^{2}\left(E^{*} \otimes G\right)} \rightarrow \underbrace{\mathcal{N}(1,1,1)}_{E^{*} \otimes G \otimes\left(E^{*} \otimes G\right)} \rightarrow \underbrace{\mathcal{N}(2,2,0)}_{\operatorname{Sym}_{2} E^{*} \otimes \operatorname{Sym}_{2} G} \rightarrow 0
$$

The homology is concentrated in spot $(1,1,1)$. If v_{1}, v_{2}, \ldots is part of a basis for E^{*} and x_{1}, x_{2}, \ldots is part of a basis for G, then

$$
v_{1} \otimes x_{1} \otimes\left(v_{2} \otimes x_{2}\right)-v_{1} \otimes x_{2} \otimes\left(v_{2} \otimes x_{1}\right)
$$

is a cycle which represents a non-zero element of homology.
In light of duality, $\left(\mathrm{H}_{\mathcal{N}}(m, n, p) \cong \mathrm{H}_{\mathcal{M}}\left(m^{\prime}, n^{\prime}, p^{\prime}\right)\right.$, provided $m+m^{\prime}=g-1$, $n+n^{\prime}=e-1$ and $p+p^{\prime}=(e-1)(g-1)$ and $\left.1-e \leq m-n \leq g-1\right)$, the only homology of
$\cdots \rightarrow \mathcal{M}(g-1, e-1, \alpha-2) \rightarrow \mathcal{M}(g-2, e-2, \alpha-1) \rightarrow \mathcal{M}(g-3, e-3, \alpha) \rightarrow \ldots$
occurs at $(g-2, e-2, \alpha-1)$ (write α for $(e-1)(g-1)$). Of course, Topic 4 asks if there is a map of complexes

so that the mapping cone of the resulting picture is exact.
Topic 2. The complex (0.1) really is a Koszul complex.

Consider the identity map

$$
\begin{equation*}
E^{*} \otimes G \rightarrow E^{*} \otimes G \tag{0.3}
\end{equation*}
$$

Well,

$$
E^{*} \otimes G=\operatorname{Sym}_{1} E^{*} \otimes \operatorname{Sym}_{1} G \subseteq \operatorname{Sym}_{2}\left(E^{*} \oplus G\right) \subseteq \operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right)
$$

so (0.3) induces

$$
\operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right) \otimes E^{*} \otimes G \rightarrow \operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right) \otimes E^{*} \otimes G \xrightarrow{\text { mult }} \operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right)
$$

We have a map from a free module to a ring, it makes sense to form the usual Koszul complex Λ^{\bullet} (free module) and it makes sense to look at graded strands of this Koszul complex.

If v_{1}, \ldots, v_{e} is a basis for E^{*} and x_{1}, \ldots, x_{g} is a basis for G, then $S=\operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right)$ is the polynomial ring $R\left[v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}\right]$ and (0.1) is a graded strand of the Koszul complex on $\left\{v_{i} x_{j}\right\}$.

Topic 3. The connection with divisors of determinantal rings.

Let

$$
\mathcal{P}=\operatorname{Sym}_{\bullet}\left(E^{*} \otimes G\right) \quad \text { a polynomial ring in } e g \text { variables } v_{i} \otimes x_{j}
$$

$$
S=\operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right) \quad \text { a polynomial ring in } e+g \text { variables } v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}
$$

and T be the subring $\sum_{m} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{m} G$ of S. (So, T is the subring $R\left[\left\{x_{i} v_{j}\right\}\right]$ of $S=R\left[v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}\right]$).

Notice that $v_{i} \otimes x_{j} \mapsto v_{i} x_{j}$ gives a ring homomorphism $\mathcal{P} \rightarrow T$ whose kernel is I_{2} of the matrix $\left(v_{i} \otimes x_{j}\right)$. Thus, T is the determinantal ring defined by the 2×2 minors of a generic $e \times g$ matrix.

The class group of T is \mathbb{Z} with the integer ℓ associated to the divisor $M_{\ell}=$ $\sum_{m-n=\ell} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G$. (Notice that M_{ℓ} is a T-submodule of S.)

One can resolve R as a \mathcal{P}-module. The resolution is the Koszul complex

$$
\mathcal{P} \otimes \grave{\bigwedge}\left(E^{*} \otimes G\right)
$$

Apply $M_{\ell} \otimes_{\mathcal{P}}$ _:

$$
\cdots \rightarrow \sum_{m-n=\ell} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \ldots
$$

Take one graded strand:

$$
\cdots \rightarrow \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \ldots
$$

We conclude that

$$
\mathrm{H}_{\mathcal{N}}(m, n, p)=\operatorname{Tor}_{p, ?}^{\mathcal{P}}\left(M_{m-n}, R\right)
$$

(The grading on M_{ℓ} is defined so that $?=n+p$.) Thus,

$$
\mathrm{H}_{\mathcal{N}}(m, n, p)=\operatorname{Tor}_{p, n+p}^{\mathcal{P}}\left(M_{m-n}, R\right)
$$

Topic 3.a. The homology of (0.1) depends on characteristic.

If $R=\mathbb{Z}$, then $\mathrm{H}_{\mathcal{N}}(m, n, p)$ is not always free! (If $e, g \geq 5$, then $\mathrm{H}_{\mathcal{N}}(2,2,3)$ has 3-torsion.)

If R is a field, then the dimension of $\mathrm{H}_{\mathcal{N}}(m, n, p)$ depends on the characteristic of R. In particular, $\mathrm{H}_{\mathcal{N}}(2,2,3)$ has larger dimension in characteristic 3 , when $e, g \geq 5$, than it has in other characteristics.

Topic 3.b. Duality.

Theorem. Assume that $1-e \leq m-n \leq g-1$. If $m+m^{\prime}=g-1, n+n^{\prime}=e-1$, and $p+p^{\prime}=\alpha$, then

$$
\mathrm{H}_{\mathcal{N}}(m, n, p) \cong \mathrm{H}_{\mathcal{M}}\left(m^{\prime}, n^{\prime}, p^{\prime}\right)
$$

There are three steps to the proof. In this version of the proof, I assume that $R=$ K, but that is not needed ultimately. I also only speak about $\ell=m-n$ with $1-e \leq \ell \leq g-1$.
Step 1. If $1-e \leq \ell \leq g-1$, then M_{ℓ} is Cohen-Macaulay and

$$
M_{\ell} \cong \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-\ell}, \mathcal{P}\right)
$$

Step 2. If \mathbb{F} resolves M_{ℓ}, then $\mathbb{F}^{*}[-\alpha, g-e g]$ resolves $M_{g-e-\ell .}$ (I won't justify the internal shift $g-e g$ in public.)

Step 3. Do the calculation.
I do step 3 first. Suppose $\mathcal{P}(-q)^{\beta_{p q}}$ is a summand of the resolution \mathbb{F} of M_{ℓ} in position p. Then $\mathcal{P}(+q)^{\beta_{p q}}$ is a summand of $\mathbb{F}^{*}[-\alpha]$ in position $\alpha-p$ and $\mathcal{P}(-(e g-g-q))^{\beta_{p q}}$ is a summand the resolution of $M_{g-e-\ell}$ in position $\alpha-p$. So,

$$
\operatorname{dim} \mathrm{H}_{\mathcal{N}}(m, n, p)=\operatorname{dim} \operatorname{Tor}_{p, q}^{\mathcal{P}}\left(M_{\ell}, K\right)=\operatorname{dim} \operatorname{Tor}_{\alpha-p, e g-g-q}\left(M_{g-e-\ell}, K\right)=\operatorname{dim} \mathrm{H}_{\mathcal{N}}\left(m^{\prime} n^{\prime}, p^{\prime}\right)
$$

where
$m-n=\ell \quad n+p=q \quad \quad p^{\prime}=\alpha-p \quad m^{\prime}-n^{\prime}=g-e-\ell \quad n^{\prime}+p^{\prime}=e g-g-q$.
Add to learn

$$
p+p^{\prime}=\alpha \underbrace{n+n^{\prime}+\alpha=(e-1) g}_{n+n^{\prime}=e-1} \quad \underbrace{m+m^{\prime}-(e-1)=g-e}_{m+m^{\prime}=g-1} .
$$

The proof of Step 1. The canonical class is M_{g-e}. The class group arithmetic tells us that

$$
\begin{gathered}
M_{\ell} \cong \operatorname{Hom}_{T}\left(M_{g-e-\ell}, M_{g-e}\right) \cong \operatorname{Hom}_{T}\left(M_{g-e-\ell}, \operatorname{Ext}_{\mathcal{P}}^{\alpha}(T, \mathcal{P})\right) \\
=\operatorname{Ext}_{\mathcal{P}}^{0}\left(M_{g-e-\ell}, \operatorname{Ext}_{\mathcal{P}}^{\alpha}(T, \mathcal{P})\right) \cong \operatorname{Ext}_{\mathcal{P}}^{0}\left(T, \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-\ell}, \mathcal{P}\right)\right) \\
=\operatorname{Hom}_{\mathcal{P}}\left(T, \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-\ell}, \mathcal{P}\right)\right)=\operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-\ell}, \mathcal{P}\right)
\end{gathered}
$$

I justify the isomorphism $\boldsymbol{\star}$. Let M and N be perfect \mathcal{P} modules of projective dimension c and let \mathbb{F} and \mathbb{G} be free resolutions of M and N, respectively. The complex

$$
\operatorname{Hom}\left(\mathbb{F}, \mathbb{G}^{*}\right)=\operatorname{Hom}(\mathbb{F} \otimes \mathbb{G}, \mathcal{P})=\operatorname{Hom}\left(\mathbb{G}, \mathbb{F}^{*}\right)
$$

shows that

$$
\operatorname{Ext}_{\mathcal{P}}^{j}\left(M, \operatorname{Ext}_{\mathcal{P}}^{c}(N, \mathcal{P})\right) \cong \operatorname{Ext}_{\mathcal{P}}^{j}\left(N, \operatorname{Ext}_{\mathcal{P}}^{c}(M, \mathcal{P})\right)
$$

for all j.

Topic 4. Does there exist a quasi-isomorphism from (0.2) to (0.1), for the appropriate choice of parameters?

Question 0.4. Suppose $1-e \leq m-n \leq g-1$. Choose $m^{\prime}, n^{\prime}, p^{\prime}$ to satisfy $m+m^{\prime}=g-1, n+n^{\prime}=e-1$, and $p+p^{\prime}=\alpha$. Does there exist a quasi-isomorphism

Answer 1. Yes, even when $R=\mathbb{Z}$.
Answer 2. The quasi-isomorphism of answer 1, depends on the choice of basis. Does there exist a coordinate free quasi-isomorphism for Question 0.4 when $R=\mathbb{Z}$? NO!

Further question 3. Does there exist a coordinate free quasi-isomorphism for Question 0.4 when $R=\mathbb{Q}$? Probably!

Further question 4. Does there exist a sequence of coordinate-free quasi-isomorphisms which connect the two complexes of Question 0.4 when $R=\mathbb{Z}$? I don't know.

Topic 5. We show an example for Answer 2.

Take $e=g=2$ and $R=\mathbb{Z}$. I demonstrate that there does not exist a coordinate free quasi-isomorphism

I will demonstrate that it is impossible to select a cycle z in $\mathcal{N}(1,1,1)$, such that z is invariant under change of basis and the homology class of z generates all of
$\mathrm{H}_{\mathcal{N}}(1,1,1)$. It is easy to calculate the cycles of $\mathcal{N}(1,1,1)$ which are invariant under under change of basis. These cycles form the free group generated by the cycle

$$
\left\{\begin{array}{l}
+v_{1} \otimes x_{1} \otimes\left(v_{2} \otimes x_{2}\right)-v_{1} \otimes x_{2} \otimes\left(v_{2} \otimes x_{1}\right) \\
+v_{2} \otimes x_{2} \otimes\left(v_{1} \otimes x_{1}\right)-v_{2} \otimes x_{1} \otimes\left(v_{1} \otimes x_{2}\right)
\end{array}\right.
$$

The given cycle corresponds to 2 in $\mathcal{N}(1,1,1)$.

Topic 6. What happens if one looks at M_{ℓ}, where ℓ is OUTSIDE of the Cohen-Macaulay range?

In general, I do not know. However, I do know how to glue

$$
\mathcal{N}(0, e, p) \rightarrow \mathcal{N}(1, e+1, p-1) \rightarrow \ldots
$$

together with

$$
\ldots \rightarrow \mathcal{M}\left(g+1,1, p^{\prime}-1\right) \rightarrow \mathcal{M}\left(g, 0, p^{\prime}\right)
$$

to get a coordinate free resolution (for the appropriate choice of p and p^{\prime}):

$$
. . \rightarrow \mathcal{M}\left(g+1,1, p^{\prime}-1\right) \longrightarrow \mathcal{M}\left(g, 0, p^{\prime}\right) \xrightarrow{" 凶{ }^{\prime}} \bigwedge^{g+p^{\prime}}\left(E \otimes G^{*}\right) \xrightarrow{\text { the dual of "凶" }} \mathcal{N}(0, e, p) \longrightarrow \mathcal{N}(1, e+1, p-1) \longrightarrow \ldots
$$

For this to make sense, we must have $g+p^{\prime}+e+p=e g$; i.e., $p+p^{\prime}=\alpha-1$.

Topic 7. Why I first become interested in (0.1).

Given e and g, there exists a Universal ring \mathcal{U} and a universal resolution

$$
\mathbb{U}: 0 \rightarrow \mathcal{U}^{e} \rightarrow \mathcal{U}^{e+g} \rightarrow \mathcal{U}^{g}
$$

so that if \mathcal{V} is any ring and

$$
\mathbb{V}: 0 \rightarrow \mathcal{V}^{e} \rightarrow \mathcal{V}^{e+g} \rightarrow \mathcal{V}^{g}
$$

is any resolution then there exists a unique ring homomorphism $\mathcal{U} \rightarrow \mathcal{V}$ such that $\mathbb{V}=\mathbb{U} \otimes \mathcal{U} \mathcal{V}$. The ring \mathcal{U} is equal to a P / I, where P is a polynomial ring in $(e+g)^{2}+1$ variables. I set out to find the P-resolution of \mathcal{U}. It turns out that every module in the minimal $P \otimes K$-resolution of $\mathcal{U} \otimes K$ is of the form $\mathrm{H}_{\mathcal{M}}(m, n, p) \otimes P \otimes K$ or $\mathrm{H}_{\mathcal{N}}(m, n, p) \otimes P \otimes K$ for some m, n, p.

Topic 8. A pep talk on Divided powers.

The idea is to make $D_{\bullet} G^{*}$ be a ring with $D_{n} G^{*}$ equal to $\operatorname{Hom}_{R}\left(\operatorname{Sym}_{n} G, R\right)$. Let x_{1}, \ldots, x_{g} be a basis for G and y_{1}, \ldots, y_{g} be the corresponding dual basis for G^{*}. Now we look for the natural basis for $\operatorname{Hom}_{R}\left(\operatorname{Sym}_{2} G, R\right)$ which is dual to $x_{1} x_{2}, x_{1}^{2}, \ldots$. It is reasonable to think of $y_{1} y_{2}$ as a product. It is NOT reasonable to think of the element of $\left(\operatorname{Sym}_{2} G\right)^{*}$ which is dual to x_{1}^{2} as a product! If $y_{1}^{(2)}$ is the name of the dual of x_{1}^{2}, then $y_{1}^{2}=2 y_{1}^{(2)}$.

I have seen people define divided powers by saying that $y^{(n)}=\frac{1}{n!} y^{n}$. This makes me shudder. One should say something like: figure out all of the rules that $y^{(n)}=\frac{1}{n!} y^{n}$ satisfies and define divided powers to be the algebraic object which satisfies all of those rules. In particular,

$$
\left(y_{1}+y_{2}\right)^{(n)}=\sum_{a+b=n} y_{1}^{(a)} y_{2}^{(b)} \quad \text { NO Binomial coefficients }
$$

and

$$
y^{(n)} y^{(m)}=\binom{n+m}{n} y^{(n+m)} \quad \text { Unexpected binomial coefficients }
$$

In summary, the multiplication in $D_{\bullet} G^{*}$ is unpleasant:

$$
\left(y_{1}^{\left(a_{1}\right)} \ldots y_{g}^{\left(a_{g}\right)}\right)\left(y_{1}^{\left(b_{1}\right)} \ldots y_{g}^{\left(b_{g}\right)}\right)=\binom{a_{1}+b_{1}}{a_{1}} \ldots\binom{a_{g}+b_{g}}{a_{g}} y_{1}^{\left(a_{1}+b_{1}\right)} \ldots y_{g}^{\left(a_{g}+b_{g}\right)}
$$

but co-multiplication

$$
\Delta: D_{n} G^{*} \rightarrow \sum_{a+b=n} D_{a} G^{*} \otimes D_{b} G^{*}
$$

is awesome. In particular,

$$
\Delta: D_{n} G^{*} \rightarrow D_{1} G^{*} \otimes D_{n-1} G^{*}
$$

sends

$$
y_{1}^{\left(a_{1}\right)} \ldots y_{g}^{\left(a_{g}\right)} \mapsto \sum_{i} y_{i} \otimes y_{1}^{\left(a_{1}\right)} \ldots y_{i}^{\left(a_{i}-1\right)} \ldots y_{g}^{\left(a_{g}\right)}
$$

