DIVISORS OVER DETERMINANTAL RINGS
DEFINED BY TWO BY TWO MINORS

I have posted this talk on my website. Also, a relevant paper and pre-print are
available on my website.

Let R be a ring (probably Z or a field K) and E and G be free R-modules of
rank e and g, respectively. We study the (Koszul) complex

(01) >N (m—1,n—1,p+1)—Sym,, E*®Sym,, G® /\p(E* X G)HN(TI’L‘I’l,TL‘Fl,p*l)H.“,

N(m,n,p)
its homology (which I'll call Hpys(m,n, p)), its dual

(0.2) s M(m41,n+1,p—1)—=DmE ® D, G* ® /\p(E ® G*)—>./\/l(m—1,77,—1,p—|—1)—>...7

M(m,n,p)

and the homology of its dual (which I'll call Haq(m,n,p)).
The plan of my talk:

Topic 1 The complex (0.1) can have interesting homology.

Topic 2 The complex (0.1) really is a Koszul complex.

Topic 3 The connection with divisors of determinantal rings.
Topic 3.a The homology of (0.1) depends on characteristic.
Topic 3.b Duality

Topic 4 Does there exist a quasi-isomorphism from (0.2) to (0.1), for the appropriate

choice of parameters?

Topic 5 A brand new example.

Topic 6 One step beyond the Cohen-Macaulay range.

Topic 7 Why I first become interested in (0.1).

Topic 8 A pep talk on Divided powers.



Topic 1. The complex (0.1) can have interesting homology.

Consider
0—N(0,0,2) - N(1,1,1) — N(2,2,00 —0
—— —— ——
A2(E*®G) E*QGR(E*®G) Sym, E*®Sym, G
The homology is concentrated in spot (1,1,1). If v, v9, ... is part of a basis for E*
and x1,Ts,... is part of a basis for GG, then

V1 ®$1®<U2®$2)—Ul ®$2®(U2®$1)

is a cycle which represents a non-zero element of homology.

In light of duality, (Har(m,n,p) = Ha(m/,n',p’), provided m + m’ = g — 1,
n+n =e—landp+p =(e—1)(g—1)and 1 —e <m—n < g—1), the only
homology of

= Mg—-l,e—1l,a—2) > M(g—2,e—2,a—1) > M(g—3,e—3,a) — ...

occurs at (g —2,e — 2, — 1) (write « for (e — 1)(g — 1)). Of course, Topic 4 asks
if there is a map of complexes

. — M(g—l,e—1,a0—2) —> M(g—2,e—2,a—1) —> M(g—3,e—3,a) —> ...

! ! !

0O — N(0,0,2) —_— N(1,1,1) —_— N(2,2,0) — 0,

so that the mapping cone of the resulting picture is exact.

Topic 2. The complex (0.1) really is a Koszul complex.

Consider the identity map
(0.3) EF*eG—E"®dG.
Well,

E*® G =Sym; E* ® Sym; G C Sym,(E* ® G) C Sym,(E* ® G),



so (0.3) induces

mult

Sym,(E*®G) @ E*®G — Sym,(E* & G)® E* @ G — Sym,(E* & G).

We have a map from a free module to a ring, it makes sense to form the usual
Koszul complex /A°(free module) and it makes sense to look at graded strands of
this Koszul complex.

If vi,...,v¢ is a basis for E* and z1,...,z, is a basis for G, then
S = Sym,(E* & G) is the polynomial ring R[vy,...,v.,Z1,...,2,| and (0.1) is a
graded strand of the Koszul complex on {v;x;}.

Topic 3. The connection with divisors of determinantal rings.

Let
P =Sym,(E*® G) a polynomial ring in eg variables v; ® z;,

S =Sym,(E* @ G) a polynomial ring in e 4 ¢ variables vy,...,v¢, 21, ..., Ty,

and T be the subring > Sym,, E*®Sym,, G of S. (So, T is the subring R[{z;v;}]
of S = Rlv1,...,0e,21,...,24]).

Notice that v; ® x; — v;x; gives a ring homomorphism P — T whose kernel is
I5 of the matrix (v; ® x;). Thus, T is the determinantal ring defined by the 2 x 2
minors of a generic e X g matrix.

The class group of T is Z with the integer ¢ associated to the divisor M, =
> Sym,, E* ® Sym,, G. (Notice that M, is a T-submodule of S.)

m—n=~

One can resolve R as a P-module. The resolution is the Koszul complex
Po \E@QG).

Apply M, ®@p _:

p
— Y Sym, E*©Sym, o \(E"0G) — ...

m—n=4~{



Take one graded strand:

P
-—>SymmE*®SymnG®/\(E*®G)—>...

We conclude that
Hp(m,n,p) = Tor;'i?(]\/[m_n, R).

(The grading on M, is defined so that ? = n + p.) Thus,

Hp(m,n,p) = Tor” . (Mp_n, R).

p,n+p

Topic 3.a. The homology of (0.1) depends on characteristic.

If R =7, then Hxr(m,n,p) is not always free! (If e,g > 5, then Hxr(2,2,3) has
3-torsion.)

If R is a field, then the dimension of Hxr(m, n,p) depends on the characteristic of
R. In particular, Har(2, 2, 3) has larger dimension in characteristic 3, when e, g > 5,
than it has in other characteristics.

Topic 3.b. Duality.

Theorem. Assume thatl—e<m-n<g—1. Ifm+m'=¢g—1,n+n' =e—1,
and p+p' = «, then
H/\[(m, n,p) = HM(m/an/ap/>'

There are three steps to the proof. In this version of the proof, I assume that R =
K, but that is not needed ultimately. I also only speak about ¢ = m — n with
l—e<i<g-—1.

Step 1. If 1 —e < /¢ < g —1, then M, is Cohen-Macaulay and

M, = Extp(My_c—¢, P).

Step 2. If I resolves My, then |F*[—a, g — eg] resolves M,_._,. | (I won’t justify

the internal shift g — eg in public.)



Step 3. Do the calculation.

I do step 8 first. Suppose P(—q)Pre is a summand of the resolution F of M, in

position p. Then P(4¢)Pr¢ is a summand of F*[—a] in position o — p and

P(—(eg — g — q))Pre is a summand the resolution of M,_._, in position a — p. So,
dim Hpr(m,n,p) = dim TorZiq(Mg, K) =dimTorq—p,eg—g—q(Mg—e—s, K) = dimHpr(m'n’, p’)

where

m-n=_{ n+tp=gq pP=a-p m'-n'=g—e—t n'+p =eg—g—q.

Add to learn

p+p =a n+n'+a=(e—-1)g m+m —(e—1)=g—ec. O
’I’L+TL7;€71 erm"r:gfl

The proof of Step 1. The canonical class is M,_.. The class group arithmetic tells
us that

Mg = HOIIlT(Mg,G,g, Mg,e) = HOHIT(Mg,e,g,EXt%(T, P))

= BExth (Mo, ExtS (T, P)) g Exth (T, Ext®(My_c_s, P))
= Homp (T, Exth(My—c—0,P)) = Ext®(My_c_s, P).

I justify the isomorphism . Let M and N be perfect P modules of projective
dimension ¢ and let ' and G be free resolutions of M and N, respectively. The
complex

Hom(F,G*) = Hom(F ® G, P) = Hom(G, F*)

shows that . ,
Ext}, (M, Ext% (N, P)) = Ext), (N, Ext (M, P))

for all j.



Topic 4. Does there exist a quasi-isomorphism from
(0.2) to (0.1), for the appropriate choice of parameters?

Question 0.4. Suppose 1 —e < m —n < g — 1. Choose m’,n',p’ to satisfy
m+m’ =g—1,n+n' =e—1, and p+p' = a. Does there exist a quasi-isomorphism

! !

L —— Nm/\np) —— Nm' +1,n +1,p)—1) —— ... 7

Answer 1. Yes, even when R = Z.

Answer 2. The quasi-isomorphism of answer 1, depends on the choice of basis. Does
there exist a coordinate free quasi-isomorphism for Question 0.4 when R = Z? NO!

Further question 3. Does there exist a coordinate free quasi-isomorphism for Ques-
tion 0.4 when R = Q7 Probably!

Further question 4. Does there exist a sequence of coordinate-free
quasi-isomorphisms which connect the two complexes of Question 0.4 when R = Z7?
I don’t know.

Topic 5. We show an example for Answer 2.

Take e = g = 2 and R = Z. 1 demonstrate that there does not exist a coordinate
free quasi-isomorphism

0 —— M(0,0,0) —— 0

l

0 —— N(0,0,2) —— N(1,1,1) —— N(0,0,2) —— 0

I will demonstrate that it is impossible to select a cycle z in N (1,1,1), such that
z is invariant under change of basis and the homology class of z generates all of



7

Hpr(1,1,1). It is easy to calculate the cycles of N (1,1, 1) which are invariant under
under change of basis. These cycles form the free group generated by the cycle

+01 @z ® (V2 ®@x2) — V1 T2 ® (V2 ® 1)
U2 Q2o ® (V1 ®@x1) — V2 ® 21 ® (V1 ® X2)

The given cycle corresponds to 2 in A/ (1,1,1).

Topic 6. What happens if one looks at M,, where
¢ is OUTSIDE of the Cohen-Macaulay range?

In general, I do not know. However, I do know how to glue

N(0,e,p) = N(l,e+1,p—1) — ...

together with
- M(g + 17 17p/ - 1) - M(g707p/)

to get a coordinate free resolution (for the appropriate choice of p and p’):

’ ,o +p’ «,_the dual of “pg”
s M(g+1,1,p" =1)—>M(g,0,p )—’/\g P (EQG*)—————— N (0,e,p) —N(l,e+1l,p—1)—>...

For this to make sense, we must have g +p' +e+p=-eg;ie,p+p =a—1.

Topic 7. Why I first become interested in (0.1).

Given e and g, there exists a Universal ring &/ and a universal resolution
U:0—U*—UTI - U,
so that if V is any ring and
V:0— Ve — Yoty - p9

is any resolution then there exists a unique ring homomorphism & — V such that
V = U®y V. The ring U is equal to a P/I, where P is a polynomial ring in (e+g¢)2+1
variables. I set out to find the P-resolution of ¢. It turns out that every module
in the minimal P ® K-resolution of Y ® K is of the form Hxq(m,n,p) ® P ® K or
Hy (m,n,p) ® P® K for some m,n, p.



Topic 8. A pep talk on Divided powers.

The idea is to make DoG* be a ring with D, G* equal to Homg(Sym,, G, R).

Let x1,...,24 be a basis for G and yi,...,y, be the corresponding dual basis for
G*. Now we look for the natural basis for Hompg(Sym, G, R) which is dual to
T1x9, xl, .... It is reasonable to think of y1y2 as a product. It is NOT reasonable

to think of the element of (Sym2 G)* which is dual to z? as a product! If y§ ) is the

name of the dual of 22, then y? = 2y(2).

I have seen people define divided powers by saying that y() = %y" This
makes me shudder. One should say something like: figure out all of the rules that
y™ = %y” satisfies and define divided powers to be the algebraic object which
satisfies all of those rules. In particular,

(y1 + y2) ( ) = Z y(a) (b) NO Binomial coefficients
a+b=n

and

Z/(n)y(m) = (n i m)y(”+m) Unexpected binomial coefficients
n

In summary, the multiplication in DaG* is unpleasant:

(@) () (1) (b)) _ (@1 T b ag+bg\ (ai4b1)  (a,+by)
(4 oot} (ool ) = () (P Yk gt

but co-multiplication

A:D,G* — Z D,G* @ D,G*
a+b=n

is awesome. In particular,
A:D,G"— DG*®D,,_1G*

sends )
y§a1) ) (“9) — Zy ®y(a1) e (aﬁ ) ...yéag).



