REDUCTION NUMBERS
OF PLANAR IDEALS
FALL 2008

e This is joint work with Claudia Polini and Bernd Ulrich.
e We get to work:
A reduction of an ideal I is an ideal J C I with JI? = I'*! for all large i.

Reductions were introduced by Northcott and Rees in 1954 to study multiplicities.
A reduction can be thought of as a simplification of the ideal I. If J C I, then the
following are equivalent:

(a) J is a reduction of I,

(b) 1C7,

(c) The inclusion of rings R(J) = R[Jt] C R[It] = R(I) is an integral extension.

The reduction number of I with respect to the reduction J is
ry(I) =min{i > 0| JI" = I'"'}.

A reduction J of I is minimal if J does not contain any other reduction of I. The
reduction number of I is defined by

r(I) = min{r;(I) | J is a minimal reduction of I}.

Example. Let

B k[Ty, ..., T ,
I ... T.-1 T,
|y ... T. P
where P is some linear form in k[Ty,...,T.]. Let m = (T1,...,T.). We calculate
r(m). Notice that m? C Tym. Indeed,
T2 =T\ Ty

ToTs =TTy

5T, € (Tl)m
T:;)Z =15T, € (Tl)m
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So (T1) € mis a reduction, 7(ry(m) = 1, (T1) is a minimal reduction, so 7(m) < 1;
but r(m) # 0, so r(m) = 1.

e The example is illuminating in the sense that: whenever B = ©;>0B; is a
standard graded algebra over an infinite field k, then every minimal reduction of m
is generated by dim B linear forms in m. Hence, the notions “minimal reduction of
m” and “linear system of parameters of B” coincide. Furthermore, “most” 1.s.0.p.s
give rise to r(m). In other words,

(*) r(m) = tsd B/(general 1.s.0.p.).

e Of course, by general I mean something: Let b1, ...,byx generate B;. Each element
of ANXP corresponds to a D-tuple of linear forms in By. I assert that (*) holds on
a dense Zariski open set in ANXP

e But, what if you would like to know (/) for some non-maximal ideal
I in the local or graded ring (R, m)? Well, it turns out that 7(I) = r(mz()),
where

R I I R(I)
N="p—p—ag.. .= '
F) m®ml@ml2 © mR(I)

It remains true that
R(I)=R[Itj=Rolol*elPao....

(I think this was known already by Northcott and Rees. A more modern version is
due to Trung. It is in Huneke-Swanson.) So, one can study r(I) for arbitrary ideals
I by studying r(m), where m is the maximal ideal in a standard graded k-algebra;
and this question amounts to studying tsd in graded artinian algebras.

e What ideals do we study? We study ideals I C R = k[x,y|, with ht I = 2.
These ideals are minimally generated by m homogeneous forms of degree d. (The
number n satisfies n+m —2 = d.) The other hypothesis on I is one of the following
equivalent statments:

(a) the minimal resolution of I is

0— R(—d—1)""2?®R(—d—n) — R(—d)™ — I,

or

(b) I = L,,—1(¢) for some m x (m — 1) matrix ¢ where every entry in the last
column of ¢ is homogeneous of degree n, every other entry of ¢ is a linear
form and n+m — 2 =d, or



REDUCTION NUMBERS OF PLANAR IDEALS 3

(c) there exist non-negative integers a > b and homogeneous forms F; and Fb,
with a +b=m — 2, deg Iy =d — a, deg F5, = d — b, and

I = (ajay)aFl + (mvy)bF?
The three conditions (a), (b), (c) are equivalent. Take one of them to be the
description of I that you like and lets deal with it.
e Lets find r(I)?
o If b =0, then F(I) is CM; so it is easy to calculate r(I) = [2=1] 4 1.

e If a|(n — 1), then one needs an observation that I am not going to make today
and the words that I will say are not exactly correct in that case, so I'll just tell
you that r(I) = [2=1] 4+ 1.

e Henceforth, we assume b > 0 and a f(n —1). In this case, F(I) = A/ A, where A
is the RNS ring

k[Tl, ce ,Ta+1, Sl, . ,Sb_|_1]

T ... T, S ... S |’
T ... Ta+1 SQ Ce Sb+1

and A = K™ (—1) where K is the ideal of A generated by the first row. (The
isomorphism is explicitly given by multiplication by an element of the quotient
field of A.)

e Furthermore, we have

A= dimA =3

Iy

A
r(l) =r(mzq) =My cm) +1 = tsd ) +1.

K + (2glf
e One observes:

A
MGDK™ —1<,tsd ———— <., MGD K™,
K™ + (2glf)

% holds because m Z Io( ) + (2 forms). One MUST involve K ().

s+ holds because we consider a specific specialization. Set T, 1, = S7.

e The minimal generator degree of K™ is [2]. To calculate the value of the Hilbert

function Hgy rr(n) ([2]), one simply counts the number of monomials of degree [ %]

that appear in the minimal generating set of & (™). This amounts to counting
{G,k)|i+k=[2] and ai<n<ait+a+1-Fk}
U{(,j,k)|i+j+k=T[%] and ai+bj<n<ai+bj+b+1—k},

where 7, 7, and k are non-negative integers.
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Theorem.
(a) Ifb=0 oraln—1, then r(I) = [2=1] + 1.
(b) Otherwise, [%] < r(I) < [2] + 1; furthermore,

T’(I) = [%] e dlm[K(n)][%1 >m — 2.

Some ideas from the proof.

(=) A/(2 forms) has Hilbert function 1, m—2,m—2,.... So the image of [K ™ ]yap

must have dimension m — 2 to make [ A vanish. So, [K (”)]MGD

K () 4(2 forms) :| MGD
must have dimension at least m — 2.

(<) Apply
Socle Lemma of Huneke-Ulrich. Let k be a field of characteristic zero, R be a
polynomial ring over k, and M be graded R-module. Consider the exact sequence

0 — Ker — M(—1) -5 M — M/(¢M) — 0,

with ¢ a general linear form and Ker # 0. Then

MGD(Ker) > MGD <soc <%>) |

We use the Socle Lemma to show that

A

S — — [dim K ™]yap.
(two forms)}MGD [dim hiap

dim [Im K™ in

The Socle Lemma FAILS in characteristic p. Take p = 2, M = % We have
the exact sequence:

M
0= (M(~1) - M(-1) 5 M- — 0.
—_—— ‘M
MGD=2 MGD(soc)=2
The proof of the Socle Lemma uses Characteristic zero because:

m’ is generated by {y* | y € Ry} in characteristic zero.

Of course, mi?l # ({? | y € Ry}) in characteristic 2.
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e We are able to apply the socle lemma in all characteristics because we maneuver
ourselves into the ring

K(T,... T,
T ... T.., T,
T, ... T. S AT

I

where the \; are new variables and £’ is the splitting field of

k({Ai})

(some polynomial with the \'s as coefficients)

e We prove in B that m* = ({¢* | y € R1}).

e Our proof involves simultaneously diagonalizing 7" 1Tj : B — By



