REDUCTION NUMBERS
 OF PLANAR IDEALS

FALL 2008

- This is joint work with Claudia Polini and Bernd Ulrich.
- We get to work:

A reduction of an ideal I is an ideal $J \subseteq I$ with $J I^{i}=I^{i+1}$ for all large i.
Reductions were introduced by Northcott and Rees in 1954 to study multiplicities. A reduction can be thought of as a simplification of the ideal I. If $J \subseteq I$, then the following are equivalent:
(a) J is a reduction of I,
(b) $I \subseteq \bar{J}$,
(c) The inclusion of rings $\mathcal{R}(J)=R[J t] \subseteq R[I t]=\mathcal{R}(I)$ is an integral extension.

The reduction number of I with respect to the reduction J is

$$
r_{J}(I)=\min \left\{i \geq 0 \mid J I^{i}=I^{i+1}\right\}
$$

A reduction J of I is minimal if J does not contain any other reduction of I. The reduction number of I is defined by

$$
r(I)=\min \left\{r_{J}(I) \mid J \text { is a minimal reduction of } I\right\}
$$

Example. Let

$$
B=\frac{k\left[T_{1}, \ldots, T_{c}\right]}{I_{2}\left[\begin{array}{cccc}
T_{1} & \ldots & T_{c-1} & T_{c} \\
T_{2} & \ldots & T_{c} & P
\end{array}\right]},
$$

where P is some linear form in $k\left[T_{1}, \ldots, T_{c}\right]$. Let $\mathfrak{m}=\left(T_{1}, \ldots, T_{c}\right)$. We calculate $r(\mathfrak{m})$. Notice that $\mathfrak{m}^{2} \subseteq T_{1} \mathfrak{m}$. Indeed,

$$
\begin{gathered}
T_{2}^{2}=T_{1} T_{3} \\
T_{2} T_{3}=T_{1} T_{4} \\
\vdots \\
T_{2} T_{c} \in\left(T_{1}\right) \mathfrak{m} \\
T_{3}^{2}=T_{2} T_{4} \in\left(T_{1}\right) \mathfrak{m} \\
\vdots \\
1
\end{gathered}
$$

So $\left(T_{1}\right) \subseteq \mathfrak{m}$ is a reduction, $r_{\left(T_{1}\right)}(\mathfrak{m})=1,\left(T_{1}\right)$ is a minimal reduction, so $r(\mathfrak{m}) \leq 1$; but $r(\mathfrak{m}) \neq 0$, so $r(\mathfrak{m})=1$.

- The example is illuminating in the sense that: whenever $B=\oplus_{i \geq 0} B_{i}$ is a standard graded algebra over an infinite field k, then every minimal reduction of \mathfrak{m} is generated by $\operatorname{dim} B$ linear forms in \mathfrak{m}. Hence, the notions "minimal reduction of \mathfrak{m} " and "linear system of parameters of B " coincide. Furthermore, "most" l.s.o.p.s give rise to $r(\mathfrak{m})$. In other words,

$$
\begin{equation*}
r(\mathfrak{m})=\operatorname{tsd} B /(\text { general l.s.o.p. }) \tag{*}
\end{equation*}
$$

- Of course, by general I mean something: Let b_{1}, \ldots, b_{N} generate B_{1}. Each element of $\mathbb{A}^{N \times D}$ corresponds to a D-tuple of linear forms in B_{1}. I assert that (*) holds on a dense Zariski open set in $\mathbb{A}^{N \times D}$.
- But, what if you would like to know $r(I)$ for some non-maximal ideal I in the local or graded ring (R, \mathfrak{m}) ? Well, it turns out that $r(I)=r\left(\mathfrak{m}_{\mathcal{F}(I)}\right)$, where

$$
\mathcal{F}(I)=\frac{R}{\mathfrak{m}} \oplus \frac{I}{\mathfrak{m} I} \oplus \frac{I^{2}}{\mathfrak{m} I^{2}} \oplus \cdots=\frac{\mathcal{R}(I)}{\mathfrak{m} \mathcal{R}(I)}
$$

It remains true that

$$
\mathcal{R}(I)=R[I t]=R \oplus I \oplus I^{2} \oplus I^{3} \oplus \ldots
$$

(I think this was known already by Northcott and Rees. A more modern version is due to Trung. It is in Huneke-Swanson.) So, one can study $r(I)$ for arbitrary ideals I by studying $r(\mathfrak{m})$, where \mathfrak{m} is the maximal ideal in a standard graded k-algebra; and this question amounts to studying tsd in graded artinian algebras.

- What ideals do we study? We study ideals $I \subseteq R=k[x, y]$, with ht $I=2$. These ideals are minimally generated by m homogeneous forms of degree d. (The number n satisfies $n+m-2=d$.) The other hypothesis on I is one of the following equivalent statments:
(a) the minimal resolution of I is

$$
0 \rightarrow R(-d-1)^{m-2} \oplus R(-d-n) \rightarrow R(-d)^{m} \rightarrow I
$$

or
(b) $I=I_{m-1}(\varphi)$ for some $m \times(m-1)$ matrix φ where every entry in the last column of φ is homogeneous of degree n, every other entry of φ is a linear form and $n+m-2=d$, or
(c) there exist non-negative integers $a \geq b$ and homogeneous forms F_{1} and F_{2}, with $a+b=m-2, \operatorname{deg} F_{1}=d-a, \operatorname{deg} F_{2}=d-b$, and

$$
I=(x, y)^{a} F_{1}+(x, y)^{b} F_{2} .
$$

The three conditions (a), (b), (c) are equivalent. Take one of them to be the description of I that you like and lets deal with it.

- Lets find $r(I)$?
- If $b=0$, then $\mathcal{F}(I)$ is CM; so it is easy to calculate $r(I)=\left\lceil\frac{n-1}{a}\right\rceil+1$.
- If $a \mid(n-1)$, then one needs an observation that I am not going to make today and the words that I will say are not exactly correct in that case, so I'll just tell you that $r(I)=\left\lceil\frac{n-1}{a}\right\rceil+1$.
- Henceforth, we assume $b>0$ and $a X(n-1)$. In this case, $\mathcal{F}(I)=A / \mathcal{A}$, where A is the RNS ring

$$
A=\frac{k\left[T_{1}, \ldots, T_{a+1}, S_{1}, \ldots, S_{b+1}\right]}{I_{2}\left[\begin{array}{cccccc}
T_{1} & \ldots & T_{a} & S_{1} & \ldots & S_{b} \\
T_{2} & \ldots & T_{a+1} & S_{2} & \ldots & S_{b+1}
\end{array}\right]}, \quad \operatorname{dim} A=3
$$

and $\mathcal{A} \cong K^{(n)}(-1)$ where K is the ideal of A generated by the first row. (The isomorphism is explicitly given by multiplication by an element of the quotient field of A.)

- Furthermore, we have

$$
r(I)=r\left(\mathfrak{m}_{\mathcal{F}(I)}\right)=r\left(\mathfrak{m}_{A / K^{(n)}}\right)+1=\operatorname{tsd} \frac{A}{K^{(n)}+(2 \mathrm{glf})}+1
$$

- One observes:

$$
\operatorname{MGD} K^{(n)}-1 \leq_{*} \operatorname{tsd} \frac{A}{K^{(n)}+(2 g \mathrm{lf})} \leq_{* *} \operatorname{MGD} K^{(n)}
$$

* holds because $\mathfrak{m} \nsubseteq I_{2}$ () + (2 forms). One MUST involve $K^{(n)}$.
** holds because we consider a specific specialization. Set $T_{a+1}=S_{1}$.
- The minimal generator degree of $K^{(n)}$ is $\left\lceil\frac{n}{a}\right\rceil$. To calculate the value of the Hilbert function $\operatorname{Hgy}_{K^{(n)}}\left(\left\lceil\frac{n}{a}\right\rceil\right)$, one simply counts the number of monomials of degree $\left\lceil\frac{n}{a}\right\rceil$ that appear in the minimal generating set of $K^{(n)}$. This amounts to counting

$$
\begin{aligned}
& \left\{(i, k) \left\lvert\, i+k=\left\lceil\frac{n}{a}\right\rceil\right. \text { and } a i<n \leq a i+a+1-k\right\} \\
& \cup\left\{(i, j, k) \left\lvert\, i+j+k=\left\lceil\frac{n}{a}\right\rceil \quad\right. \text { and } \quad a i+b j<n \leq a i+b j+b+1-k\right\}
\end{aligned}
$$

where i, j, and k are non-negative integers.

Theorem.

(a) If $b=0$ or $a \mid n-1$, then $r(I)=\left\lceil\frac{n-1}{a}\right\rceil+1$.
(b) Otherwise, $\left\lceil\frac{n}{a}\right\rceil \leq r(I) \leq\left\lceil\frac{n}{a}\right\rceil+1$; furthermore,

$$
r(I)=\left\lceil\frac{n}{a}\right\rceil \Longleftrightarrow \operatorname{dim}\left[K^{(n)}\right]_{\left\lceil\frac{n}{a}\right\rceil} \geq m-2 .
$$

Some ideas from the proof.
$(\Rightarrow) A /(2$ forms $)$ has Hilbert function $1, m-2, m-2, \ldots$ So the image of $\left[K^{(n)}\right]_{\text {MGD }}$ must have dimension $m-2$ to make $\left[\frac{A}{K^{(n)}+(2 \text { forms })}\right]_{\mathrm{MGD}}$ vanish. So, $\left[K^{(n)}\right]_{\mathrm{MGD}}$ must have dimension at least $m-2$.
(\Leftarrow) Apply
Socle Lemma of Huneke-Ulrich. Let k be a field of characteristic zero, R be a polynomial ring over k, and M be graded R-module. Consider the exact sequence

$$
0 \rightarrow \operatorname{Ker} \rightarrow M(-1) \xrightarrow{\ell} M \rightarrow M /(\ell M) \rightarrow 0
$$

with ℓ a general linear form and Ker $\neq 0$. Then

$$
\operatorname{MGD}(\text { Ker })>\operatorname{MGD}\left(\operatorname{soc}\left(\frac{M}{\ell M}\right)\right)
$$

We use the Socle Lemma to show that

$$
\operatorname{dim}\left[\operatorname{Im} K^{(n)} \text { in } \frac{A}{(\text { two forms })}\right]_{\mathrm{MGD}}=\left[\operatorname{dim} K^{(n)}\right]_{\mathrm{MGD}}
$$

The Socle Lemma FAILS in characteristic p. Take $p=2, M=\frac{k[x, y, z]}{\mathfrak{m}^{[2]}}$. We have the exact sequence:

$$
0 \rightarrow \underbrace{\ell M(-1)}_{\mathrm{MGD}=2} \rightarrow M(-1) \stackrel{\ell}{\rightarrow} M \rightarrow \underbrace{\frac{M}{\ell M}}_{\mathrm{MGD}(\mathrm{soc})=2} \rightarrow 0
$$

The proof of the Socle Lemma uses Characteristic zero because:
\mathfrak{m}^{ℓ} is generated by $\left\{y^{\ell} \mid y \in R_{1}\right\}$ in characteristic zero.
Of course, $\mathfrak{m}^{[2]} \neq\left(\left\{y^{2} \mid y \in R_{1}\right\}\right)$ in characteristic 2 .

- We are able to apply the socle lemma in all characteristics because we maneuver ourselves into the ring

$$
B=\frac{k^{\prime}\left[T_{1}, \ldots, T_{c}\right]}{I_{2}\left[\begin{array}{cccc}
T_{1} & \ldots & T_{c-1} & T_{c} \\
T_{2} & \ldots & T_{c} & \sum \lambda_{i} T_{i}
\end{array}\right]}
$$

where the λ_{i} are new variables and k^{\prime} is the splitting field of

$$
\frac{k\left(\left\{\lambda_{i}\right\}\right)}{\text { (some polynomial with the } \lambda^{\prime} s \text { as coefficients) }} \text {. }
$$

- We prove in B that $\mathfrak{m}^{\ell}=\left(\left\{y^{\ell} \mid y \in R_{1}\right\}\right)$.
- Our proof involves simultaneously diagonalizing $T_{1}^{-1} T_{j}: B_{1} \rightarrow B_{1}$

