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• This is joint work with Claudia Polini and Bernd Ulrich.

• We get to work:

A reduction of an ideal I is an ideal J ⊆ I with JIi = Ii+1 for all large i.

Reductions were introduced by Northcott and Rees in 1954 to study multiplicities.
A reduction can be thought of as a simplification of the ideal I. If J ⊆ I, then the
following are equivalent:

(a) J is a reduction of I,
(b) I ⊆ J ,
(c) The inclusion of rings R(J) = R[Jt] ⊆ R[It] = R(I) is an integral extension.

The reduction number of I with respect to the reduction J is

rJ(I) = min{i ≥ 0 | JIi = Ii+1}.

A reduction J of I is minimal if J does not contain any other reduction of I. The
reduction number of I is defined by

r(I) = min{rJ(I) | J is a minimal reduction of I}.

Example. Let

B =
k[T1, . . . , Tc]

I2

[
T1 . . . Tc−1 Tc

T2 . . . Tc P

] ,
where P is some linear form in k[T1, . . . , Tc]. Let m = (T1, . . . , Tc). We calculate
r(m). Notice that m2 ⊆ T1m. Indeed,

T 2
2 = T1T3

T2T3 = T1T4
...

T2Tc ∈ (T1)m
T 2

3 = T2T4 ∈ (T1)m
...
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So (T1) ⊆ m is a reduction, r(T1)(m) = 1, (T1) is a minimal reduction, so r(m) ≤ 1;
but r(m) 6= 0, so r(m) = 1.

• The example is illuminating in the sense that: whenever B = ⊕i≥0Bi is a
standard graded algebra over an infinite field k, then every minimal reduction of m
is generated by dimB linear forms in m. Hence, the notions “minimal reduction of
m” and “linear system of parameters of B” coincide. Furthermore, “most” l.s.o.p.s
give rise to r(m). In other words,

(*) r(m) = tsdB/(general l.s.o.p.).

• Of course, by general I mean something: Let b1, . . . , bN generate B1. Each element
of AN×D corresponds to a D-tuple of linear forms in B1. I assert that (*) holds on
a dense Zariski open set in AN×D.

• But, what if you would like to know r(I) for some non-maximal ideal
I in the local or graded ring (R,m)? Well, it turns out that r(I) = r(mF(I)),
where

F(I) =
R

m
⊕ I

mI
⊕ I2

mI2
⊕ · · · = R(I)

mR(I)
.

It remains true that

R(I) = R[It] = R⊕ I ⊕ I2 ⊕ I3 ⊕ . . . .

(I think this was known already by Northcott and Rees. A more modern version is
due to Trung. It is in Huneke-Swanson.) So, one can study r(I) for arbitrary ideals
I by studying r(m), where m is the maximal ideal in a standard graded k-algebra;
and this question amounts to studying tsd in graded artinian algebras.

• What ideals do we study? We study ideals I ⊆ R = k[x, y], with ht I = 2.
These ideals are minimally generated by m homogeneous forms of degree d. (The
number n satisfies n+m−2 = d.) The other hypothesis on I is one of the following
equivalent statments:

(a) the minimal resolution of I is

0→ R(−d− 1)m−2 ⊕R(−d− n)→ R(−d)m → I,

or
(b) I = Im−1(ϕ) for some m × (m − 1) matrix ϕ where every entry in the last

column of ϕ is homogeneous of degree n, every other entry of ϕ is a linear
form and n+m− 2 = d, or
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(c) there exist non-negative integers a ≥ b and homogeneous forms F1 and F2,
with a+ b = m− 2, degF1 = d− a, degF2 = d− b, and

I = (x, y)aF1 + (x, y)bF2.

The three conditions (a), (b), (c) are equivalent. Take one of them to be the
description of I that you like and lets deal with it.

• Lets find r(I)?

• If b = 0, then F(I) is CM; so it is easy to calculate r(I) = dn−1
a e+ 1.

• If a|(n − 1), then one needs an observation that I am not going to make today
and the words that I will say are not exactly correct in that case, so I’ll just tell
you that r(I) = dn−1

a e+ 1.

• Henceforth, we assume b > 0 and a 6 |(n− 1). In this case, F(I) = A/A, where A
is the RNS ring

A =
k[T1, . . . , Ta+1, S1, . . . , Sb+1]

I2

[
T1 . . . Ta S1 . . . Sb

T2 . . . Ta+1 S2 . . . Sb+1

] , dimA = 3

and A ∼= K(n)(−1) where K is the ideal of A generated by the first row. (The
isomorphism is explicitly given by multiplication by an element of the quotient
field of A.)

• Furthermore, we have

r(I) = r(mF(I)) = r(mA/K(n)) + 1 = tsd
A

K(n) + (2glf)
+ 1.

• One observes:

MGDK(n) − 1 ≤∗ tsd
A

K(n) + (2glf)
≤∗∗ MGDK(n).

∗ holds because m 6⊆ I2( ) + (2 forms). One MUST involve K(n).

∗∗ holds because we consider a specific specialization. Set Ta+1 = S1.

• The minimal generator degree of K(n) is dn
a e. To calculate the value of the Hilbert

function HgyK(n)(dn
a e), one simply counts the number of monomials of degree dn

a e
that appear in the minimal generating set of K(n). This amounts to counting

{(i, k) | i+ k = dn
a e and ai < n ≤ ai+ a+ 1− k}

∪ {(i, j, k) | i+ j + k = dn
a e and ai+ bj < n ≤ ai+ bj + b+ 1− k},

where i, j, and k are non-negative integers.
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Theorem.
(a) If b = 0 or a|n− 1, then r(I) = dn−1

a e+ 1.
(b) Otherwise, dn

a e ≤ r(I) ≤ dn
a e+ 1; furthermore,

r(I) = dn
a e ⇐⇒ dim[K(n)]dn

a e ≥ m− 2.

Some ideas from the proof.

(⇒) A/(2 forms) has Hilbert function 1,m−2,m−2, . . . . So the image of [K(n)]MGD

must have dimension m − 2 to make
[

A
K(n)+(2 forms)

]
MGD

vanish. So, [K(n)]MGD

must have dimension at least m− 2.

(⇐) Apply

Socle Lemma of Huneke-Ulrich. Let k be a field of characteristic zero, R be a
polynomial ring over k, and M be graded R-module. Consider the exact sequence

0→ Ker→M(−1) `−→M →M/(`M)→ 0,

with ` a general linear form and Ker 6= 0. Then

MGD(Ker) > MGD
(

soc
(
M

`M

))
.

We use the Socle Lemma to show that

dim
[
ImK(n) in

A

(two forms)

]
MGD

= [dimK(n)]MGD.

The Socle Lemma FAILS in characteristic p. Take p = 2, M = k[x,y,z]
m[2] . We have

the exact sequence:

0→ `M(−1)︸ ︷︷ ︸
MGD=2

→M(−1) `−→M → M

`M︸︷︷︸
MGD(soc)=2

→ 0.

The proof of the Socle Lemma uses Characteristic zero because:

m` is generated by {y` | y ∈ R1} in characteristic zero.

Of course, m[2] 6= ({y2 | y ∈ R1}) in characteristic 2.
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• We are able to apply the socle lemma in all characteristics because we maneuver
ourselves into the ring

B =
k′[T1, . . . , Tc]

I2

[
T1 . . . Tc−1 Tc

T2 . . . Tc

∑
λiTi

]
where the λi are new variables and k′ is the splitting field of

k({λi})
(some polynomial with the λ′s as coefficients)

.

• We prove in B that m` = ({y` | y ∈ R1}).

• Our proof involves simultaneously diagonalizing T−1
1 Tj : B1 → B1


