# An explicit, characteristic-free, equivariant homology equivalence 

 between Koszul complexes(aka: Divisors over determinantal rings defined by two by two minors, II)

Andy Kustin<br>Purdue University

September, 2007

## Where to find it:

I have posted this talk on my website. Also, a relevant paper and pre-print are available on my website.

## The Set up:

Let $R$ be a ring (probably $\mathbb{Z}$ or a field $K$ ) and $E$ and $G$ be free $R$-modules of rank $e$ and $g$, respectively.

We study: the (Koszul) complex

$$
\begin{gather*}
\cdots \rightarrow \mathcal{N}(m-1, n-1, p+1) \rightarrow \underbrace{\operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right)}_{\mathcal{N}(m, n, p)}  \tag{1}\\
\rightarrow \mathcal{N}(m+1, n+1, p-1) \rightarrow \ldots,
\end{gather*}
$$

its homology (which I'll call $\mathrm{H}_{\mathcal{N}}(m, n, p)$ ), its dual

$$
\begin{gather*}
\cdots \rightarrow \mathcal{M}(m+1, n+1, p-1) \rightarrow \underbrace{D_{m} E \otimes D_{n} G^{*} \otimes \bigwedge^{p}\left(E \otimes G^{*}\right)}_{\mathscr{M}(m, n, p)}  \tag{2}\\
\rightarrow \mathcal{M}(m-1, n-1, p+1) \rightarrow \ldots,
\end{gather*}
$$

and the homology of its dual (which I'll call $\mathrm{H}_{\mathcal{M}}(m, n, p)$ ).

## The plan for this talk:

Topic 1. The complex (1) can have interesting homology.
Topic 2. The connection with divisors of determinantal rings.
Topic 2.a. The homology of (1) depends on characteristic.
Topic 2.b. Duality
Topic 3. Does there exist a quasi-isomorphism from (2) to (1), for the appropriate choice of parameters?

Topic 3.a. Yes, but this quasi-isomorphism depends (heavily) on the choice of a basis.

Topic 3.b. Independent of basis? NO. (This is new.)
Topic 3.c. What can be done in an equivariant manner? (This also is new.)

Topic 4. Show an example of 3.b.
Topic 5. Fix 3.b.
Topic 6. Show the answer to 3.c
Topic 7. Ask a question, maybe?
Topic 8. Application 1. We exhibit a generator for
$\mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha-1) \simeq R$.
Topic 9. Application 2. The betti numbers of the divisors of the determinantal rings defined by the $2 \times 2$ minors of a generic $e \times g$ matrix exhibit an extra symmetry when $e=3$ or $g=3$.

Topic 10. The proof of 6 .

## Topic 1. The complex (1) can have interesting homology.

Consider

$$
0 \rightarrow \underbrace{\mathcal{N}(0,0,2)}_{\Lambda^{2}\left(E^{*} \otimes G\right)} \rightarrow \underbrace{\mathcal{N}(1,1,1)}_{E^{*} \otimes G \otimes\left(E^{*} \otimes G\right)} \rightarrow \underbrace{\mathcal{N}(2,2,0)}_{\operatorname{Sym}_{2} E^{*} \otimes \operatorname{Sym}_{2} G} \rightarrow 0
$$

The homology is concentrated in spot $(1,1,1)$. If $v_{1}, v_{2}, \ldots$ is part of a basis for $E^{*}$ and $x_{1}, x_{2}, \ldots$ is part of a basis for $G$, then

$$
v_{1} \otimes x_{1} \otimes\left(v_{2} \otimes x_{2}\right)-v_{1} \otimes x_{2} \otimes\left(v_{2} \otimes x_{1}\right)
$$

is a cycle which represents a non-zero element of homology.

$$
\begin{gathered}
\text { In light of duality: } \\
\mathrm{H}_{\mathcal{X}}(m, n, p) \simeq \mathrm{H}_{\mathscr{M}}\left(m^{\prime}, n^{\prime}, p^{\prime}\right),
\end{gathered}
$$

provided

$$
\begin{gathered}
m+m^{\prime}=g-1, \quad n+n^{\prime}=e-1, \quad p+p^{\prime}=\underbrace{(e-1)(g-1)}_{\alpha}, \quad \text { and } \\
1-e \leq m-n \leq g-1,
\end{gathered}
$$

the only homology of
$\rightarrow \mathcal{M}(g-1, e-1, \alpha-2) \rightarrow \mathcal{M}(g-2, e-2, \alpha-1) \rightarrow \mathcal{M}(g-3, e-3, \alpha) \rightarrow$
occurs at $(g-2, e-2, \alpha-1)$.

Of course, Topic 3 asks if there is a map of complexes

so that the mapping cone of the resulting picture is exact.

- Let $\mathcal{P}=\operatorname{Sym}_{\bullet}\left(E^{*} \otimes G\right)$, a polynomial ring in the $e g$ variables $v_{i} \otimes x_{j}$,
- $S=\operatorname{Sym}_{\bullet}\left(E^{*} \oplus G\right)$, a polynomial ring in $e+g$ variables

$$
v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}, \text { and }
$$

- $T$ be the subring $\sum_{m} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{m} G$ of $S$. (So, $T$ is the subring $R\left[\left\{x_{i} v_{j}\right\}\right]$ of $\left.S=R\left[v_{1}, \ldots, v_{e}, x_{1}, \ldots, x_{g}\right]\right)$.

Notice that $v_{i} \otimes x_{j} \mapsto v_{i} x_{j}$ gives a ring homomorphism $\mathcal{P} \rightarrow T$ whose kernel is $I_{2}$ of the matrix $\left(v_{i} \otimes x_{j}\right)$. Thus, $T$ is the determinantal ring defined by the $2 \times 2$ minors of a generic $e \times g$ matrix.

The class group of $T$ is $\mathbb{Z}$ with the integer $s$ associated to the divisor $M_{s}=\sum_{m-n=s} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G$. (Notice that $M_{s}$ is a $T$-submodule of $S$.)

One can resolve $R$ as a $\mathcal{P}$-module. The resolution is the Koszul complex

$$
\mathcal{P} \otimes \bigwedge^{\bullet}\left(E^{*} \otimes G\right)
$$

Apply $M_{S} \otimes_{\mathcal{P}_{-}}:$

$$
\cdots \rightarrow \sum_{m-n=s} \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \ldots
$$

Take one graded strand:

$$
\cdots \rightarrow \operatorname{Sym}_{m} E^{*} \otimes \operatorname{Sym}_{n} G \otimes \bigwedge^{p}\left(E^{*} \otimes G\right) \rightarrow \ldots
$$

We conclude that

$$
\mathrm{H}_{\mathcal{X}}(m, n, p)=\operatorname{Tor}_{p, ?}^{\mathcal{P}}\left(M_{m-n}, R\right) .
$$

(The grading on $M_{s}$ is defined so that $?=n+p$.) Thus,

$$
\mathrm{H}_{\mathcal{X}}(m, n, p)=\operatorname{Tor}_{p, n+p}^{P}\left(M_{m-n}, R\right) .
$$

## Topic 2.a. The homology of (1) depends on characteristic.

- If $R=\mathbb{Z}$, then $\mathrm{H}_{\mathcal{N}}(m, n, p)$ is not always free! (If $e, g \geq 5$, then $\mathrm{H}_{\mathcal{N}}(2,2,3)$ has 3-torsion.) [Hashimoto 1990]
- If $R$ is a field, then the dimension of $\mathrm{H}_{\mathcal{N}}(m, n, p)$ depends on the characteristic of $R$. In particular, $\mathrm{H}_{\mathcal{N}}(2,2,3)$ has larger dimension in characteristic 3 , when $e, g \geq 5$, than it has in other characteristics.


## Topic 2.b. Duality.

Theorem. Assume $1-e \leq m-n \leq g-1$. If

- $m+m^{\prime}=g-1$,
- $n+n^{\prime}=e-1$, and
- $p+p^{\prime}=\alpha$,
then

$$
\mathrm{H}_{\mathcal{N}}(m, n, p) \simeq \mathrm{H}_{\mathscr{M}}\left(m^{\prime}, n^{\prime}, p^{\prime}\right)
$$

Proof. The key step in the proof is: If $1-e \leq s \leq g-1$, then $M_{s}$ is Cohen-Macaulay and

$$
M_{s} \simeq \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)
$$

Once one has this, then the rest is booking keeping (which I will hide).

## Show $M_{s} \simeq \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)$.

The canonical class is $M_{g-e}$. The class group arithmetic tells us that

$$
\begin{aligned}
& M_{s} \simeq \operatorname{Hom}_{T}\left(M_{g-e-s}, M_{g-e}\right) \simeq \operatorname{Hom}_{T}\left(M_{g-e-s}, \operatorname{Ext}_{\mathcal{P}}^{\alpha}(T, \mathcal{P})\right) \\
& =\operatorname{Ext}_{\mathcal{P}}^{0}\left(M_{g-e-s}, \operatorname{Ext}_{\mathcal{P}}^{\alpha}(T, \mathcal{P})\right) \simeq \star \operatorname{Ext}_{\mathcal{P}}^{0}\left(T, \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)\right) \\
& =\operatorname{Hom}_{\mathcal{P}}\left(T, \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)\right)=\operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)
\end{aligned}
$$

I justify the isomorphism $\star$. Let $M$ and $N$ be perfect $\mathcal{P}$ modules of projective dimension $c$ and let $\mathbb{F}$ and $\mathbb{G}$ be free resolutions of $M$ and $N$, respectively. The complex

$$
\operatorname{Hom}\left(\mathbb{F}, \mathbb{G}^{*}\right)=\operatorname{Hom}(\mathbb{F} \otimes \mathbb{G}, \mathcal{P})=\operatorname{Hom}\left(\mathbb{G}, \mathbb{F}^{*}\right)
$$

shows that

$$
\operatorname{Ext}_{\mathscr{P}}^{j}\left(M, \operatorname{Ext}_{\mathcal{P}}^{c}(N, \mathcal{P})\right) \simeq \operatorname{Ext}_{\mathcal{P}}^{j}\left(N, \operatorname{Ext}_{\mathcal{P}}^{c}(M, \mathcal{P})\right)
$$

for all $j$.

Topic 3. Does there exist a quasi-isomorphism from (2) to (1), for the appropriate choice of parameters?

Main Question. Suppose $1-e \leq m-n \leq g-1$. Choose $m^{\prime}, n^{\prime}, p^{\prime}$ to satisfy $m+m^{\prime}=g-1, n+n^{\prime}=e-1$, and $p+p^{\prime}=\alpha$. Does there exist a quasi-isomorphism

$$
\begin{aligned}
& \ldots \longrightarrow \mathcal{M}(m, n, p) \longrightarrow \mathcal{M}(m-1, n-1, p+1) \longrightarrow \ldots \\
& \downarrow \\
& \ldots \longrightarrow \mathcal{N}\left(m^{\prime}, n^{\prime}, p^{\prime}\right) \longrightarrow \mathcal{N}\left(m^{\prime}+1, n^{\prime}+1, p^{\prime}-1\right) \longrightarrow \ldots ?
\end{aligned}
$$

Answer (a). Yes, even when $R=\mathbb{Z}$.
Answer (b). The quasi-isomorphism of Answer (a), depends on the choice of basis. Does there exist a coordinate free quasi-isomorphism for the Main Question when $R=\mathbb{Z}$ ? NO! (new)

Answer (c). Does there exist a sequence of coordinate-free quasi-isomorphisms

$$
\mathbb{N} \stackrel{\psi}{\Perp} \mathbb{Y} \xrightarrow{\varphi} \mathbb{M}
$$

when $R=\mathbb{Z}$ ? YES! (new)

## Topic 4. We show an example for Answer 3.b.

Take $e=g=2$ and $R=\mathbb{Z}$. I demonstrate that there does not exist a coordinate-free quasi-isomorphism

$$
\begin{gathered}
0 \longrightarrow \mathcal{M}(0,0,0) \longrightarrow 0 \\
0 \longrightarrow \mathcal{N}(0,0,2) \longrightarrow \mathcal{N}(1,1,1) \longrightarrow \mathcal{N}(0,0,2) \longrightarrow 0
\end{gathered}
$$

I will demonstrate that it is impossible to select a cycle $z$ in $\mathcal{N}(1,1,1)$, such that $z$ is invariant under change of basis and the homology class of $z$ generates all of $\mathrm{H}_{\mathcal{N}}(1,1,1)$.

It is easy to calculate the cycles of $\mathcal{N}(1,1,1)$ which are invariant under under change of basis form the free group generated by the cycle

$$
\left\{\begin{array}{l}
+v_{1} \otimes x_{1} \otimes\left(v_{2} \otimes x_{2}\right)-v_{1} \otimes x_{2} \otimes\left(v_{2} \otimes x_{1}\right) \\
+v_{2} \otimes x_{2} \otimes\left(v_{1} \otimes x_{1}\right)-v_{2} \otimes x_{1} \otimes\left(v_{1} \otimes x_{2}\right)
\end{array}\right.
$$

The given cycle corresponds to 2 in $\mathcal{N}(1,1,1)$. The green summand and the red summand each represent generators of $\mathrm{H}_{\mathcal{N}}(1,1,1)$.
(Note for the purposes of this talk, I have pretended that all free modules are oriented, that is I have chosen a generator $\omega_{E}$ for $\bigwedge^{e} E$. This simplifies the exposition, allows us to consider only change of bases which have determinant one, and has no effect on any important idea.)

## Topic 5. Fix 3.b.

It is easy to "fix" 3.b. We merely look for a complex $\mathbb{Y}$ with $\mathrm{H}_{0}(\mathbb{Y})=\mathscr{M}(0,0,0)$ for which the mapping cone of


$$
0 \longrightarrow \mathcal{N}(0,0,2) \longrightarrow \mathcal{N}(1,1,1) \longrightarrow \mathcal{N}(2,2,0) \longrightarrow 0
$$

is exact.
One such $\mathbb{Y}$ is

$$
0 \rightarrow \bigwedge^{2} E^{*} \otimes D_{2} E \rightarrow E^{*} \otimes E
$$

## Topic 6. We create equivariant quasi-isomorphisms:



- Fix $P, Q$ with $1 \leq \underbrace{P-Q+e}_{\ell} \leq e+g-1$.
- Define $P+P^{\prime}=e(g-1)$ and $Q+Q^{\prime}=(e-1) g$.
- Let $\mathbb{N}=\mathbb{N}(P, Q): \quad \cdots \rightarrow \mathcal{N}(P-1, Q-1,1) \rightarrow \underbrace{\mathcal{N}(P, Q, 0)}_{\text {position } 0} \rightarrow 0$, and
- $\mathbb{M}=\mathbb{M}\left(P^{\prime}, Q^{\prime}\right)[-\alpha]: \quad 0 \rightarrow \underbrace{\mathcal{M}\left(P^{\prime}, Q^{\prime}, 0\right)}_{\text {position } \alpha} \rightarrow \mathscr{M}\left(P^{\prime}-1, Q^{\prime}-1,1\right) \rightarrow \ldots$

We create $\mathbb{Y}$ to be (a shift of) the total complex of

We make $\mathbb{Y}$ so that each row of

is split exact; so,

$$
\varphi: \mathbb{Y} \rightarrow \mathbb{M}
$$

is automatically a quasi-isomorphism.

is split exact.

The module $\mathbb{X}_{r, c}$ is

$$
\bigoplus \bigwedge^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \underbrace{D_{g+r+c} E \otimes D_{r} G^{*} \otimes \bigwedge^{\alpha+e-1-Q-r}\left(E \otimes G^{*}\right)}_{\mathcal{M}(g+r+c, r, \alpha+e-1-Q-r)}
$$

where the sum is taken over all $\ell$-tuples $\left(\lambda_{1}, \ldots, \lambda_{\ell}\right)$ with $\lambda_{i} \geq 1$ for all $i$ and $\lambda_{1}+\cdots+\lambda_{\ell}=\ell+c$.

The horizontal map $\mathbb{X}_{r, c} \rightarrow \mathbb{X}_{r, c-1}$ is

$$
\begin{gathered}
V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(a)} \otimes Y \otimes Z \mapsto \\
\sum_{i} \operatorname{sign} \chi\left(\lambda_{i} \geq 2\right) V_{1} \otimes \cdots \otimes u\left(V_{i}\right) \otimes \cdots \otimes V_{\ell} \otimes u^{(a-1)} \otimes Y \otimes Z .
\end{gathered}
$$

The vertical map

$$
\begin{array}{ccc}
\mathbb{X}_{r, c} & & V \otimes u^{(a)} \otimes y^{(b)} \otimes Z \\
\downarrow & \text { is } & \downarrow \\
\mathbb{X}_{r-1, c} & & V \otimes u^{(a-1)} \otimes y^{(b-1)} \otimes(u \otimes y) \wedge Z
\end{array}
$$

The horizontal augmentation

$$
X_{r, 0}=\underbrace{E^{*} \otimes \cdots \otimes E^{*}}_{\ell} \otimes D_{a} E \otimes D_{b} G^{*} \otimes \bigwedge^{d}\left(E \otimes G^{*}\right) \rightarrow \mathcal{M}\left(P^{\prime}+r, r, Q^{\prime}-r\right)
$$

is

$$
v_{1} \otimes \cdots \otimes v_{\ell} \otimes U \otimes Y \otimes Z \mapsto v_{1} \cdots v_{\ell}(U) \otimes Y \otimes Z
$$

I'll tell you the vertical augmentation

by telling you $[\psi(t)]\left(t^{\prime}\right)$ for each

$$
t=V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(g+c)} \otimes Y \otimes Z
$$

in $\Lambda^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \mathcal{M}(g+c, r, \alpha+e-1-Q) \subset \mathbb{X}_{0, c}$ and

$$
t^{\prime}=U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime} \in \mathcal{M}(\underbrace{g-1+Q^{\prime}-P^{\prime}-c}_{\ell-1-c}, e-1-c, \alpha-Q^{\prime}+c) .
$$

(a) The value of $[\psi(t)]\left(t^{\prime}\right)$ is zero unless every $\lambda_{i} \leq 2$ and $\lambda_{\ell}=1$.
(b) Under hypothesis (a), identify $i_{1}<\cdots<i_{\ell-c}$ and $j_{1}<\cdots<j_{c}$ with $\lambda_{i_{k}}=1$ and $\lambda_{j_{k}}=2$ for all $k$.
(c) The value of $[\psi(t)]\left(t^{\prime}\right)$ is

$$
\begin{aligned}
\left(V_{i_{1}} \cdots\right. & \left.V_{i_{\ell-c-1}}\right)\left(U^{\prime}\right) \\
\quad \cdot & {\left[Z \wedge Z^{\prime} \wedge\left(\left(V \wedge V_{\ell}\right)\left(\omega_{E}\right) \bowtie Y^{\prime}\right) \wedge\left(u^{(g)} \bowtie \omega_{G^{*}}\right)\right]\left(\omega_{E^{*} \otimes G}\right) }
\end{aligned}
$$

$$
\text { for } V=u\left(V_{j_{1}}\right) \wedge \cdots \wedge u\left(V_{j_{c}}\right) .
$$

Recall $t=V_{1} \otimes \cdots \otimes V_{\ell} \otimes u^{(g+c)} \otimes Y \otimes Z$ in $\bigwedge^{\lambda_{1}} E^{*} \otimes \cdots \otimes \bigwedge^{\lambda_{\ell}} E^{*} \otimes \mathcal{M}(g+c, r, \alpha+e-1-Q) \subset \mathbb{X}_{0, c}$ and

$$
t^{\prime}=U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime} \in \mathcal{M}\left(\ell-1-c, e-1-c, \alpha-Q^{\prime}+c\right)
$$

The homomorphism $\bowtie: D_{a} E \otimes \bigwedge^{a} G^{*} \rightarrow \bigwedge^{a}\left(E \otimes G^{*}\right)$ is on the next page.

The homomorphism

$$
\bowtie: D_{a} E \otimes \bigwedge^{a} G^{*} \rightarrow \bigwedge^{a}\left(E \otimes G^{*}\right)
$$

satisfies:

$$
u^{(a)} \bowtie\left(y_{1} \wedge \cdots \wedge y_{a}\right)=\left(u \otimes y_{1}\right) \wedge \cdots \wedge\left(u \otimes y_{a}\right)
$$

## Topic 7. Ask a question, maybe?

Let $R$ be a ring - at this point, "ring" should be interpreted in a liberal enough manner to include the possibility $R=\mathbb{Z}[\mathrm{GL}(E) \times \mathrm{GL}(G)]$.

Definition. The complexes $\mathbb{F}$ and $\mathbb{F}^{\prime}$ are homologically equivalent if there exists a sequence of quasi-isomorphisms

$$
\begin{equation*}
\mathbb{F} \leftarrow Q_{1}, \quad Q_{1} \rightarrow Q_{2}, \quad Q_{2} \leftarrow Q_{3}, \quad \ldots, \quad Q_{t} \rightarrow \mathbb{F}^{\prime} \tag{3}
\end{equation*}
$$

Question. Let $\mathbb{F}$ and $\mathbb{F}^{\prime}$ be complexes of free $R$-modules. Find necessary and sufficient conditions so that $\mathbb{F}$ and $\mathbb{F}^{\prime}$ are homologically equivalent.

One necessary condition is that

$$
\begin{equation*}
\mathrm{H}_{i}(\mathbb{F}) \simeq \mathrm{H}_{i}\left(\mathbb{F}^{\prime}\right) \tag{4}
\end{equation*}
$$

be isomorphic, for all $i$.
(a) Is condition (4) sufficient? Find a counterexample.
(b) Is there some significance to the least number $t$ in (3)?

## Topic 8. Application 1. We exhibit a generator for $\mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha-1) \simeq R$.

When $P=e(g-1)$ and $Q=(e-1) g$, then we can use our homology equivalence:

$$
\begin{gathered}
\underbrace{E^{*} \otimes \cdots \otimes E^{*}}_{g} \otimes D_{g} E \otimes D_{0} G^{*} \otimes \bigwedge^{0}\left(E \otimes G^{*}\right)=\mathbb{X}_{0,0} \xrightarrow{\varphi} \mathcal{M}(, 0,0,0) \\
\psi \\
\mathcal{N}(g-1, e-1, \alpha)
\end{gathered}
$$

to pick out a generator for $\mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha-1) \simeq R$.

There exists a homomorphism

$$
\Phi: D_{e-1} G^{*} \otimes D_{g-1} E \rightarrow \bigwedge^{e+g-1}\left(E \otimes G^{*}\right)
$$

which satisfies:
(a) $\Phi\left(x\left(Y^{\prime}\right) \otimes U\right)=\left(\omega_{E} \bowtie Y^{\prime}\right) \wedge\left(U \bowtie x\left(\omega_{G^{*}}\right)\right)$ for $Y^{\prime} \in D_{e} G^{*}$ and $x \in G$, and
(b) $\Phi\left(Y \otimes v\left(U^{\prime}\right)\right)=(-1)^{e+1}\left(v\left(\omega_{E}\right) \bowtie Y\right) \wedge\left(U^{\prime} \bowtie \omega_{G^{*}}\right)$ for $U^{\prime} \in D_{g} E$ and $v \in E^{*}$.

## Exhibit a generator for $\mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha-1) \simeq R$.

- Take any $s \in \operatorname{Sym}_{g-1} E^{*} \otimes D_{g-1} E$, which is sent to 1 under the evaluation map.
- Define $\zeta_{s} \in \mathcal{X}(g-1, e-1, \alpha)$ by

$$
\zeta_{s}\left(U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime}\right)=\left[Z^{\prime} \wedge \Phi\left(Y^{\prime} \otimes\left(U^{\prime} \otimes 1\right)(s)\right)\right]\left(\omega_{E^{*} \otimes G}\right)
$$

for all $U^{\prime} \otimes Y^{\prime} \otimes Z^{\prime} \in \mathcal{M}(g-1, e-1, \alpha)$.

- The cycle $\zeta_{s} \in \mathcal{N}(g-1, e-1, \alpha)$ depends on the choice of $s$.
- The homology class of $\zeta_{s} \in \mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha)$ is independent of $s$ and generates $\mathrm{H}_{\mathcal{N}}(g-1, e-1, \alpha)$.

```
Topic 9. Application 2. The betti numbers of the divisors of the determinantal rings defined by the \(2 \times 2\) minors of a generic \(e \times g\) matrix exhibit an extra symmetry when \(e=3\) or \(g=3\).
```

Return to the determinantal ring set up. Let $K$ be a field, $\mathcal{P}$ be a polynomial ring over $K$ in $e g$ variables, $T$ be the determinantal ring defined by the $2 \times 2$ minors of a generic $e \times g$ matrix, and $\left\{M_{s}\right\}$ be the previously identified set of representatives of the class group of $T$.

One can translate

$$
\mathrm{H}_{\mathcal{N}}(m, n, p) \simeq \mathrm{H}_{M}\left(m^{\prime}, n^{\prime}, p^{\prime}\right)
$$

$$
\text { for } m+m^{\prime}=g-1, n+n^{\prime}=e-1 \text { and } p+p^{\prime}=\alpha
$$

into:

$$
\begin{gather*}
\beta_{p, q}\left(M_{s}\right)=\beta_{p^{\prime}, q^{\prime}}\left(M_{s^{\prime}}\right) \text { for }  \tag{5}\\
1-e \leq s \leq g-1, s+s^{\prime}=g-e, p+p^{\prime}=\alpha, q+q^{\prime}=(e-1) g .
\end{gather*}
$$

One also gets
Corollary.
(a) Assume that $e=3$. If $s$ and $q$ are integers with $-2 \leq s \leq q-1$, then

$$
\begin{equation*}
\beta_{p, q}\left(M_{s}\right)=\beta_{p^{\prime}, q}\left(M_{s^{\prime}}\right) \tag{6}
\end{equation*}
$$

for $s+s^{\prime}=q-3$ and $p+p^{\prime}=2 q-2$.
(b) Assume that $g=3$. If $s$ and $q$ are integers with $s \leq 2$ and $1-2 s \leq q$, then

$$
\begin{equation*}
\beta_{p, q}\left(M_{s}\right)=\beta_{p^{\prime}, q^{\prime}}\left(M_{s^{\prime}}\right) \tag{6}
\end{equation*}
$$

provided

$$
s+s^{\prime}=3-s-q, \quad q+q^{\prime}=3(s+q-1), \quad \text { and } \quad p+p^{\prime}=2(s+q-1)
$$

Example. Take $e=g=3$. The graded betti numbers of the $\mathcal{P}$-modules $M_{s}$, for $-5 \leq s \leq 5$ are

$$
\begin{array}{cccc}
\ddagger \beta_{0,5}\left(M_{-5}\right)=21 & \ddagger \beta_{0,4}\left(M_{-4}\right)=15 & \ddagger \beta_{0,3}\left(M_{-3}\right)=10 & \beta_{0,2}\left(M_{-2}\right)=6 \\
\ddagger \beta_{1,6}\left(M_{-5}\right)=105 & \ddagger \beta_{1,5}\left(M_{-4}\right)=72 & \ddagger \beta_{1,4}\left(M_{-3}\right)=45 & \beta_{1,3}\left(M_{-2}\right)=24 \\
\ddagger \beta_{2,7}\left(M_{-5}\right)=216 & \ddagger \beta_{2,6}\left(M_{-4}\right)=141 & \ddagger \beta_{2,5}\left(M_{-3}\right)=81 & \beta_{2,4}\left(M_{-2}\right)=36 \\
\ddagger \beta_{3,8}\left(M_{-5}\right)=234 & \ddagger \beta_{3,7}\left(M_{-4}\right)=144 & \ddagger \beta_{3,6}\left(M_{-3}\right)=74 & \beta_{3,5}\left(M_{-2}\right)=24 \\
\ddagger \beta_{4,9}\left(M_{-5}\right)=141 & \ddagger \beta_{4,8}\left(M_{-4}\right)=81 & \beta_{4,7}\left(M_{-3}\right)=36 & \beta_{4,6}\left(M_{-2}\right)=6 \\
\ddagger \beta_{5,10}\left(M_{-5}\right)=45 & \beta_{5,9}\left(M_{-4}\right)=24 & \beta_{5,8}\left(M_{-3}\right)=9 & \\
\beta_{6,11}\left(M_{-5}\right)=6 & \beta_{6,10}\left(M_{-4}\right)=3 & \beta_{6,9}\left(M_{-3}\right)=1 &
\end{array}
$$

$$
\begin{array}{llll}
\beta_{0,1}\left(M_{-1}\right)=3 & \beta_{0,0}\left(M_{0}\right)=1 & \beta_{0,0}\left(M_{1}\right)=3 & \beta_{0,0}\left(M_{2}\right)=6 \\
\beta_{1,2}\left(M_{-1}\right)=9 & \beta_{1,2}\left(M_{0}\right)=9 & \beta_{1,1}\left(M_{1}\right)=9 & \beta_{1,1}\left(M_{2}\right)=24 \\
\beta_{2,3}\left(M_{-1}\right)=6 & \beta_{2,3}\left(M_{0}\right)=16 & \beta_{2,2}\left(M_{1}\right)=6 & \beta_{2,2}\left(M_{2}\right)=36 \\
\beta_{2,4}\left(M_{-1}\right)=6 & \beta_{3,4}\left(M_{0}\right)=9 & \beta_{2,3}\left(M_{1}\right)=6 & \beta_{3,3}\left(M_{2}\right)=24 \\
\beta_{3,5}\left(M_{-1}\right)=9 & \beta_{4,6}\left(M_{0}\right)=1 & \beta_{3,4}\left(M_{1}\right)=9 & \beta_{4,4}\left(M_{2}\right)=6 \\
\beta_{4,6}\left(M_{-1}\right)=3 & & \beta_{4,5}\left(M_{1}\right)=3 &
\end{array}
$$

$$
\begin{array}{lcc}
{ }_{\ddagger}^{\beta_{0,0}\left(M_{3}\right)=10} & { }^{\ddagger} \beta_{0,0}\left(M_{4}\right)=15 & { }^{\ddagger} \beta_{0,0}\left(M_{5}\right)=21 \\
{ }^{\ddagger} \beta_{1,1}\left(M_{3}\right)=45 & { }^{\ddagger} \beta_{1,1}\left(M_{4}\right)=72 & { }^{\ddagger} \beta_{1,1}\left(M_{5}\right)=105 \\
{ }^{\ddagger} \beta_{2,2}\left(M_{3}\right)=81 & { }^{\ddagger} \beta_{2,2}\left(M_{4}\right)=141 & { }^{*} \beta_{2,2}\left(M_{5}\right)=216 \\
{ }^{\ddagger} \beta_{3,3}\left(M_{3}\right)=74 & { }^{\ddagger} \beta_{3,3}\left(M_{4}\right)=144 & { }^{\ddagger} \beta_{3,3}\left(M_{5}\right)=234 \\
\beta_{4,4}\left(M_{3}\right)=36 & { }^{\ddagger} \beta_{4,4}\left(M_{4}\right)=81 & { }^{\ddagger} \beta_{4,4}\left(M_{5}\right)=141 \\
\beta_{5,5}\left(M_{3}\right)=9 & \beta_{5,5}\left(M_{4}\right)=24 & { }^{\ddagger} \beta_{5,5}\left(M_{5}\right)=45 \\
\beta_{6,6}\left(M_{3}\right)=1 & \beta_{6,6}\left(M_{4}\right)=3 & \beta_{6,6}\left(M_{5}\right)=6 .
\end{array}
$$

These numbers were calculated by the computer program Macaulay. There are four symmetries running through this set of numbers. In addition to the three mentioned above, the $R$-modules $E^{*}$ and $G$ are isomorphic because $e=g$; hence, the $R$-module automorphism of $\mathcal{P}$, which sends the matrix of indeterminates $Z$ to $Z^{\mathrm{T}}$, induces the relation

$$
\begin{equation*}
\beta_{p, q}\left(M_{s}\right)=\beta_{p, q+s}\left(M_{-s}\right) \tag{7}
\end{equation*}
$$

for all integers $p, q$, and $s$. We have marked (with ${ }^{*}$ ) the betti numbers which satisfy only (7). Each of the other betti numbers also satisfy at least one of the other symmetries. The module $M_{s}$ is Cohen-Macaulay for $-2 \leq s \leq 2$, and the symmetries of (5) apply only in this range. It is interesting to notice that the symmetries of (6) apply to some of the betti numbers of modules $M_{s}$ which are not Cohen-Macaulay.

```
Topic 10. The proof that \psi:\mathbb{Y}->\mathbb{N}\mathrm{ is a quasi-isomorphism.}
```

Let $\mathbb{C}(P, Q)$ be the mapping cone of $\psi$. We want to prove that all relevant $\mathbb{C}(P, Q)$ are split exact. We proceed by induction on $\ell$ and $g$.

- The case $g=0$ makes sense, is easy, and is exact.
- In today's talk $1 \leq \ell \leq e+g-1$. (Recall that $\ell=s+e$ and $M_{s}$ is Cohen-Macaulay and the critical duality

$$
M_{s} \simeq \operatorname{Ext}_{\mathcal{P}}^{\alpha}\left(M_{g-e-s}, \mathcal{P}\right)
$$

holds precisely when $1-e \leq s \leq g-1$.) Nonetheless, I studied the case " $\ell=0$ " (the module $M_{-e}$ is just outside the Cohen-Macaulay range) in some previous work and one can use " $\Phi$ " to connect the cases " $\ell=0$ " and $\ell=1$ and prove that $\mathbb{C}(P, Q)$ is exact whenever $\ell=1$. (Recall that $\ell=P-Q+e$.

Now one decomposes $G$ as $\bar{G} \oplus R x_{g}$. Use

$$
\begin{align*}
& x_{g}: \mathcal{N}(a, b, d) \rightarrow \mathcal{N}(a, b+1, d) \quad \text { and }  \tag{8}\\
& x_{g}: \mathcal{M}(a, b, d) \rightarrow \mathcal{M}(a, b-1, d)
\end{align*}
$$

to create a map

$$
\Theta: \mathbb{C}(P, Q) \rightarrow \mathbb{C}(P, Q+1)[-1]
$$

The complex $\mathbb{C}(P, Q+1)[-1]$ is split exact by induction on $\ell$; so it suffices to show that the mapping cone, $\mathbb{A}$, of $\Theta$ is split exact. Use (8) to split as much from $\mathbb{A}$ as possible. What remains is a direct sum of complexes

$$
\bigoplus_{w=0}^{e} \mathbb{C}_{E, \bar{G}}(P-w, Q-w+1)
$$

formed using the free module $\bar{G}$ of rank $g-1$.

