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The ring R has positive prime characteristic p, e ≥ 1 is an

integer, ϕR : R → R is the Frobenius homomorphism, and

q = pe. We write ϕe
RR to mean R viewed as as R-module

by way of the homomorphism ϕe
R.
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The Starting Point.

The following Theorem plays a critical role in a project

that Adela and I studied.

Theorem (L. Avramov and C. Miller). Let M be a

finitely generated module over a complete intersection local

ring R. If TorR
j (M, ϕe

RR) = 0 for any fixed j ≥ 1 and any

fixed e ≥ 1, then pdR M < ∞.

We wonder if the hypothesis that R is a complete intersec-

tion can be weakened.

I am so fond of the A-M theorem because if I know some-

thing about a particular R-module M I have a chance of

calculating TorR
1 (M, ϕe

RR) even if I appear to have insuf-

ficient information to calculate the entire R-resolution of

M .
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The context.

Let R be a local ring of prime characteristic p > 0 and

M be a finitely generated R-module.

Kunz: The ring R is regular if and only if ϕe
RR is a flat

R-module. In other words, R is regular if and only if

TorR
i (M, ϕe

RR) = 0 for all M and all e, i ≥ 1.

Peskine and Szpiro: If pdR M < ∞,

then TorR
i (M, ϕe

RR) = 0 for all e, i ≥ 1.

Herzog: If TorR
i (M, ϕe

RR) = 0 for all i ≥ 1 and infinitely

many e, then pdR M < ∞.

Koh and Lee: If TorR
i (M, ϕe

RR) = 0 for depthR + 1 con-

secutive i and sufficiently large e, then pdR M < ∞.

Avramov and Miller: If R is a complete intersection

and TorR
i (M, ϕe

RR) = 0 for one i and one e, then

pdR M < ∞.
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The factorization. Suppose R = Q/I where Q is a poly-

nomial ring or a power series ring over the perfect field k.

The map ϕe
Q : Q → Q exhibits ϕe

QQ as a free Q-module. A

base change gives makes Q/I → Q/I [q] a free extension.

Furthermore, the original ϕR : R → R factors as

R = Q/I
free module ext.
−−−−−−−−−−→ Q/I [q] natural quot. map

−−−−−−−−−−−−→ Q/I = R.

The map on the left is faithfully flat so

TorR(M, ϕe
RR) = TorQ/I[q]

(M ⊗R Q/I [q], Q/I).
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We just saw that

TorR(M, ϕe
RR) = TorQ/I[q]

(M ⊗R Q/I [q], Q/I).

We are lead to ask questions about

TorQ/I[q]

( , Q/I),

where Q/I is a Q/I [q]-module by way of the natural quo-

tient map

Q/I [q] → Q/I.

In particular, we ask if Q/I is rigid as a Q/I [q]-module.

In fact, we do not yet know the answer to that question,

but as we worked on it, we saw that we knew how to resolve

Q/I as a Q/I [q]-module.

Eventually, we realized that our resolution has nothing

to do with the Frobenius map.
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The set up. Let Q be a ring, J be an ideal of Q, and

M be a Q/J-module. Suppose that the Q-resolution F of

Q/J is a DG-algebra and that the Q-resolution F of M is a

DG F-module. I will describe Q-modules L and Q-module

maps Li → Li−1 so that L̄ is the Q/J-resolution of M ,

where ¯ means ⊗Q Q/J .

Remarks.

1. We apply this technique with J = I [q] and M = Q/I.

2. The hypotheses that F is a DG algebra and F is a DG-

module over F can always be attained, at the expense of

any pretense of minimality.

3. In practice, it appears that we don’t really need asso-

ciativity or “associativity”. The modules stay the same,

but the differentials get more complicated (with various

homotopy maps coming into play). We are not finished

with this thought.
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L as a module. Every module of the form

Fb0 ⊗ Fb1 ⊗ . . . ⊗ Fbt
,

with 0 ≤ t, 0 ≤ b0 and 1 ≤ bi, for 1 ≤ i ≤ t is a summand

of L. This particular summand sits in position
t

∑

i=0

bi + t.

An alternate description of L as a module. For each

i ≥ 1, pick a basis for the module Fi, say: xi,1, xi,2 . . . .

Then L is F with non-commuting variables

X1,1, X1,2, . . .
X2,1, . . .
X3,1, . . .

...

adjoined, where Xi,∗ contributes i + 1 to the position.
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The differential. The map d : L → L carries

Y0 ⊗ Y1 ⊗ Y2 ⊗ . . . ⊗ Yt

to














































d(Y0) ⊗ Y1 ⊗ Y2 ⊗ . . . ⊗ Yt

±Y0Y1 ⊗ Y2 ⊗ . . . ⊗ Yt

±χ(2 ≤ |Y1|)Y0 ⊗ d(Y1) ⊗ Y2 ⊗ . . . ⊗ Yt

±Y0 ⊗ Y1Y2 ⊗ Y3 . . . ⊗ Yt

±χ(2 ≤ |Y2|)Y0 ⊗ Y1 ⊗ d(Y2) ⊗ . . . ⊗ Yt

...

Remarks.

1. d(Y0) is the differential in F

2. Y0Y1 is the (right) module action of F on F.

3. For 1 ≤ i, Yi ∈ F|Yi|.

4. I use “χ” like a Kronecker delta. The value of χ(S) is 1

if S is true, but 0 is S is false.

5. The point of the χ factors is that F0 is NOT used in L.

6. d(Y1) is the differential in F.

7. Y1Y2 is multiplication if F.



10

8. The above sum consists of 2t + 1 terms.
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Theorem. Let Q be a ring, J be an ideal of Q, and M be a

Q/J-module. If the Q-resolution F of Q/J is a DG-algebra

and the Q-resolution F of M is a DG F-module, then L̄ is

the Q/J-resolution of M , where ¯ means ⊗Q Q/J .
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Example. Let I be a perfect grade 2 ideal in the ring Q.

Let J = I [q] and M = Q/I. In this case, F looks like

0 → F2
d2−→ F1

d1−→ F0,

and F looks like

0 → F
[q]
2

d
[q]
2−−→ F

[q]
1

d
[q]
1−−→ F0.

The resolutions F and F are DG algebras and any compar-

ison map

0 −−−−→ F
[q]
2

d
[q]
2−−−−→ F

[q]
1

d
[q]
1−−−−→ F0 −−−−→ Q/I [q]





y





y

=





y





y

nat. quot. map

0 −−−−→ F2
d2−−−−→ F1

d1−−−−→ F0 −−−−→ Q/I

gives F the structure of a DG-module over F.
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Continue with the previous example. If I has n gen-

erators, then L is F with n non-commuting variables of

degree 2 and n − 1 non-commuting variables of degree 3

adjoined; and L̄ is the resolution of Q/I by free Q/I [q] mod-

ules. Furthermore, if I is not a complete intersection and

the data is local or homogeneous, then L̄ is the minimal

resolution of Q/I. On the other hand, if I is a complete

intersection, then F is an exterior algebra and the product

of the basis vectors e1 and e2 from F1 is equal to the basis

vector e1 ∧ e2 of F2. Once the the variable of degree 3

is split off from L̄, the resulting resolution is F̄ with two

COMMUTING variables of degree 2 adjoined. This reso-

lution is the same as the Avramov-Buchweitz resolution.
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Thoughts towards a proof that L̄ is a resolution.

Observe the recursive nature of L. In particular, Li is

Fi

⊕
L0 ⊗ Fi−1

⊕
L1 ⊗ Fi−2

⊕
...
⊕

Li−3 ⊗ F2

⊕
Li−2 ⊗ F1

The key calculation. The composition d ◦d : Li → Li−2

is
{

1 ⊗ d on the component Li−2 ⊗ F1

0 on every other component

The calculation obviously shows that L̄ is a complex. But

in fact, the calculation also shows acyclicity. I illustrate by

showing that H2(L̄) = 0.
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We prove something small. Recall that F is a Q resolu-

tion of M , F is a Q-resolution of Q/J , ¯ means ⊗Q Q/J ,

and L is

. . .
d
−→

F3

⊕
L0 ⊗ F2

⊕
L1 ⊗ F1

d
−→

F2

⊕
L0 ⊗ F1

d
−→ L1

d
−→ L0.

We show that H2(L̄) = 0.

Proof. Suppose Z ∈ L2 with dZ ∈ JL1. The “key calcu-

lation” gives Y1 ∈ L1 ⊗ F1 ⊆ L3 with dZ = ddY1. Thus,

Z − dY1 is a cycle of L, not only L̄. The L0 ⊗ F1 compo-

nent of Z − dY1 is sent to zero in L0 by d ◦ d = 1⊗ d. (We

used “kc” again.) But L0 ⊗ F is acyclic, so there exists Y2

in L0 ⊗ F2 ⊆ L3 with

Z − dY1 − dY2

is still a cycle in L and has 0 as its L0 ⊗ F1-component.
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Thus, Z − dY1 − dY2 is in F2 and is killed by d. The

argument is complete because F is acyclic. �


