A Case Study in Bigraded Commutative Algebra

David A. Cox

Amherst College

Outline

■ Graded vs Bigraded

- The Syzygies
- Two Hilbert Functions
- Two Free Resolutions

Joint work with
Alicia Dickenstein and Hal Schenck

Graded Case

If $f_{0}, f_{1}, f_{2} \in R=k\left[x_{0}, x_{1}, x_{2}\right]$ are homogeneous of positive degree, then TFAE:

1. The f_{i} don't vanish simultaneously on \mathbb{P}^{2}.
2. $\operatorname{Res}\left(f_{0}, f_{1}, f_{2}\right) \neq 0$.
3. The f_{i} form a regular sequence in R.
4. The Koszul complex of $I=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$ is exact:
$0 \rightarrow R \xrightarrow{\left[\begin{array}{c}f_{2} \\ -f_{1} \\ f_{0}\end{array}\right]} R^{3} \xrightarrow{\left[\begin{array}{ccc}f_{1} & f_{2} & 0 \\ -f_{0} & 0 & f_{2} \\ 0 & -f_{0} & -f_{1}\end{array}\right]} R^{3} \xrightarrow{\left[\begin{array}{lll}f_{0} & f_{1} & f_{2}\end{array}\right]} I \rightarrow 0$.

Bigraded Case

If $f_{0}, f_{1}, f_{2} \in R=k[x, y, z, w], x, y$ bidegree $(1,0)$, z, w bidegree (0,1), are bihomogeneous of positive bidegree, then TFAE:

1. The f_{i} don't vanish simultaneously on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.
2. $\operatorname{Res}\left(f_{0}, f_{1}, f_{2}\right) \neq 0$.

When this happens,

- The f_{i} do not form a regular sequence in R.
- The Koszul complex of the f_{i} is never exact.

We will study $I=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$ for $\operatorname{deg}\left(f_{i}\right)=(2,1)$.

Syzygies

Let $R_{m, n}, I_{m, n}$ denote graded pieces in bidegree (m, n). With our assumption on the f_{i}, we get
$0 \rightarrow R_{m-6, n-3} \rightarrow R_{m-4, n-2}^{3} \rightarrow R_{m-2, n-1}^{3} \rightarrow I_{m, n} \rightarrow 0$
Exactness fails at the term marked in red.
Let $\operatorname{Syz}(f)$ be the syzygy module of the f_{i}. Thus

$$
0 \rightarrow \operatorname{Syz}(f)_{m, n} \rightarrow R_{m-2, n-1}^{3} \xrightarrow{\left[\begin{array}{lll}
f_{0} & f_{1} & f_{2}
\end{array}\right]} I_{m, n} \rightarrow 0
$$

is exact. Most $\operatorname{Syz}(f)_{m, n}$ are easy to compute.

Picture of $\operatorname{Syz}(f)_{m, n}$

Examples \& Luck

Example 1. $f_{0}, f_{1}, f_{2} \in R_{2,1}$ chosen randomly. Here $\operatorname{Syz}(f)$ has no generator of bidegree $(2,3)$. In fact, all question marks ? are zero!

Examples \& Luck

Example 1. $f_{0}, f_{1}, f_{2} \in R_{2,1}$ chosen randomly. Here $\operatorname{Syz}(f)$ has no generator of bidegree $(2,3)$. In fact, all question marks ? are zero!

Example 2. $f_{0}=x^{2} z, f_{1}=y^{2} w, f_{2}=x^{2} w+y^{2} z$ have no common zeros on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and satisfy

$$
w^{2} f_{0}+z^{2} f_{1}-z w f_{2}=0
$$

Thus $\left(w^{2}, z^{2},-z w\right)$ lies in $\operatorname{Syz}(p)_{2,3} \subseteq R_{0,2}^{3}$.

Examples \& Luck

Example 1. $f_{0}, f_{1}, f_{2} \in R_{2,1}$ chosen randomly. Here $\operatorname{Syz}(f)$ has no generator of bidegree $(2,3)$. In fact, all question marks ? are zero!

Example 2. $f_{0}=x^{2} z, f_{1}=y^{2} w, f_{2}=x^{2} w+y^{2} z$ have no common zeros on $\mathbb{P}^{1} \times \mathbb{P}^{1}$ and satisfy

$$
w^{2} f_{0}+z^{2} f_{1}-z w f_{2}=0
$$

Thus $\left(w^{2}, z^{2},-z w\right)$ lies in $\operatorname{Syz}(p)_{2,3} \subseteq R_{0,2}^{3}$.
This was the first example we computed!
There are at least two free resolutions!

Some Geometry

The polynomials $f_{0}, f_{1}, f_{2} \in R_{2,1}$ give

$$
W=\mathbb{P}\left(\operatorname{Span}\left(f_{0}, f_{1}, f_{2}\right)\right) \subseteq \mathbb{P}\left(R_{2,1}\right) \simeq \mathbb{P}^{5}
$$

since $R_{2,1}=\operatorname{Span}\left(x^{2} z, x^{2} w, x y z, x y w, y^{2} z, y^{2} w\right)$.

Some Geometry

The polynomials $f_{0}, f_{1}, f_{2} \in R_{2,1}$ give

$$
W=\mathbb{P}\left(\operatorname{Span}\left(f_{0}, f_{1}, f_{2}\right)\right) \subseteq \mathbb{P}\left(R_{2,1}\right) \simeq \mathbb{P}^{5}
$$

since $R_{2,1}=\operatorname{Span}\left(x^{2} z, x^{2} w, x y z, x y w, y^{2} z, y^{2} w\right)$.
The multiplication map $R_{2,0} \times R_{0,1} \rightarrow R_{2,1}$ gives

$$
\mathbb{P}^{2} \times \mathbb{P}^{1}=\mathbb{P}\left(R_{2,0}\right) \times \mathbb{P}\left(R_{0,1}\right) \rightarrow \mathbb{P}^{5}=\mathbb{P}\left(R_{2,1}\right)
$$

Let $Y \subseteq \mathbb{P}^{5}$ be the image.

Some Geometry

The polynomials $f_{0}, f_{1}, f_{2} \in R_{2,1}$ give

$$
W=\mathbb{P}\left(\operatorname{Span}\left(f_{0}, f_{1}, f_{2}\right)\right) \subseteq \mathbb{P}\left(R_{2,1}\right) \simeq \mathbb{P}^{5}
$$

since $R_{2,1}=\operatorname{Span}\left(x^{2} z, x^{2} w, x y z, x y w, y^{2} z, y^{2} w\right)$.
The multiplication map $R_{2,0} \times R_{0,1} \rightarrow R_{2,1}$ gives

$$
\mathbb{P}^{2} \times \mathbb{P}^{1}=\mathbb{P}\left(R_{2,0}\right) \times \mathbb{P}\left(R_{0,1}\right) \rightarrow \mathbb{P}^{5}=\mathbb{P}\left(R_{2,1}\right)
$$

Let $Y \subseteq \mathbb{P}^{5}$ be the image.
Key Question: What is $W \cap Y$?

What is $W \cap Y$?

Thus:

$\square W=\mathbb{P}\left(\operatorname{Span}\left(f_{0}, f_{1}, f_{2}\right)\right) \subseteq \mathbb{P}\left(R_{2,1}\right) \simeq \mathbb{P}^{5}$.
■ Segre embedding $\mathbb{P}^{2} \times \mathbb{P}^{1} \simeq Y \subseteq \mathbb{P}^{5}$.

- f_{i} don't vanish simultaneously on $\mathbb{P}^{1} \times \mathbb{P}^{1}$.

Theorem: Either
■ Generic: $W \cap Y$ is finite and $\operatorname{Syz}(f)_{2,3}=0$, or
■ Special: $W \cap Y$ is a smooth conic in $W \simeq \mathbb{P}^{2}$, and $\operatorname{Syz}(f)_{2,3} \neq 0$.

This tells us when the question marks exist.

Generators of $\operatorname{Syz}(f)$

Generic: Six minimal generators:

- One in bidegree $(6,1)$
- Three in bidegree (4,2) (Koszul)

■ Two in bidegree $(3,3)$.
Special: Five minimal generators:

- One in bidegree $(6,1)$
- Three in bidegree $(4,2)$ (Koszul)

■ One in bidegree $(2,3)$.

Two Resolutions

Generic: $\quad R(-6,-1)$

$$
\begin{gathered}
\cdots \rightarrow R(-4,-2)^{3} \rightarrow R(-2,-1)^{3} \rightarrow I \rightarrow 0 \\
\quad R(-3,-3)^{2}
\end{gathered}
$$

Special: $\quad R(-6,-1)$

$$
\begin{gathered}
\cdots \rightarrow R(-4,-2)^{3} \rightarrow R(-2,-1)^{3} \rightarrow I \rightarrow 0 \\
\quad R(-2,-3)
\end{gathered}
$$

Finding Resolutions

To find the minimal free resolution of the ideal $I=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$, we will use the following tools:

- Koszul Resolutions
- Hilbert-Burch Resolutions
- Mapping Cones

$$
\begin{array}{cccc}
F_{\bullet} & -\cdots & G \bullet & M C \bullet \\
\downarrow & & \downarrow & \downarrow \\
0 \rightarrow S /(\mathcal{I}: f) & \xrightarrow{l} S / \mathcal{I} \longrightarrow S /(\mathcal{I}+\langle f\rangle) \rightarrow 0
\end{array}
$$

Generic Strategy

First decompose $I=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$ into

$$
I=\underbrace{\left\langle f_{0}, f_{1}\right\rangle}_{K}+\left\langle f_{2}\right\rangle
$$

where K has a Koszul resolution. Then prove

$$
K: f_{2}=\left\langle f_{0}, f_{1}, k_{1}, k_{2}, g\right\rangle=\underbrace{\left\langle f_{1}, f_{2}, k_{1}, k_{2}\right\rangle}_{H}+\langle g\rangle
$$

where H has a Hilbert-Burch resolution. Finally,

$$
H: g=\langle z, w\rangle
$$

Then apply mapping cone twice.

More on $K: f_{2}$

Using $K=\left\langle f_{0}, f_{1}\right\rangle$, we obtain

$$
K: f_{2}=\left\{u \in R \mid u f_{2}=A f_{0}+B f_{1}, A, B \in R\right\} .
$$

Since we know generators of $\operatorname{Syz}(f)$, we get

$$
K: f_{2}=\langle\underbrace{f_{0}, f_{1}}_{(2,1)}, \underbrace{k_{1}, k_{2}}_{(1,2)}, \underbrace{g}_{(4,0)}\rangle
$$

since the generators of $\operatorname{Syz}(f)$ have bidegrees $(4,2),(3,3),(6,1)$ and we shift by $(2,1)$.

More on k_{1}, k_{2}

We also have explicit formulas for k_{1}, k_{2}. If

$$
\begin{aligned}
& f_{0}=C_{0} x^{2}+D_{0} x y+E_{0} y^{2} \\
& f_{1}=C_{1} x^{2}+D_{1} x y+E_{1} y^{2}
\end{aligned}
$$

$\left(C_{i}, D_{i}, E_{i}\right.$ linear in $\left.z, w\right)$, then
$k_{1}=\operatorname{det}\left[\begin{array}{l}C_{0} x+D_{0} y \\ E_{0} \\ C_{1} x+D_{1} y\end{array} E_{1}\right], k_{2}=\operatorname{det}\left[\begin{array}{ll}C_{0} & D_{0} x+E_{0} y \\ C_{1} & D_{1} x+E_{1} y\end{array}\right]$.
These are examples of Sylvester forms.

More on H

It follows that $H=\left\langle f_{0}, f_{1}, k_{1}, k_{2}\right\rangle$ is generated by the 3×3 minors of the 4×3 matrix:

$$
\left[\begin{array}{ccc}
E_{1} & -D_{1} & C_{1} \\
E_{0} & -D_{0} & C_{0} \\
x & y & 0 \\
0 & x & y
\end{array}\right]
$$

Hence K has a Hilbert-Burch Resolution.
Putting this all together, we can resolve $I=\left\langle f_{0}, f_{1}, f_{2}\right\rangle$ in the generic case.

Generic Resolution

$$
\begin{gathered}
0 \longrightarrow R(-6,-3) \longrightarrow \begin{array}{c}
R(-4,-3)^{3} \\
\\
R(-6,-2)^{2}
\end{array} \longrightarrow \\
\begin{array}{c}
R(-6,-1) \\
\oplus \\
R(-4,-2)^{3} \longrightarrow R(-2,-1)^{3} \longrightarrow I \longrightarrow 0 \\
\oplus \\
R(-3,-3)^{2}
\end{array}
\end{gathered}
$$

Conclusion

- The special case can be handled using the same methods.

■ Full details appear in the book chapter A Case Study in Bigraded Commutative Algebra by Cox, Dickenstein and Schenck, in Syzygies and Hilbert Functions, I. Peeva ed., Chapman \& Hall/CRC, 2007.

Conclusion

- The special case can be handled using the same methods.
- Full details appear in the book chapter A Case Study in Bigraded Commutative Algebra by Cox, Dickenstein and Schenck, in Syzygies and Hilbert Functions, I. Peeva ed., Chapman \& Hall/CRC, 2007.
-Thank You!

