h-VECTORS OF GORENSTEIN POLYTOPES

WINFRIED BRUNS AND TIM RÖMER

Abstract

We show that the Ehrhart h-vector of an integer Gorenstein polytope with a unimodular triangulation satisfies McMullen's g-theorem; in particular it is unimodal. This result generalizes a recent theorem of Athanasiadis (conjectured by Stanley) for compressed polytopes. It is derived from a more general theorem on Gorenstein affine normal monoids M : one can factor $K[M]$ (K a field) by a "long" regular sequence in such a way that the quotient is still a normal affine monoid algebra. In the case of a polytopal Gorenstein normal monoid $E(P)$, this technique reduces all questions about the Ehrhart h-vector to a normal Gorenstein polytope Q with exactly one interior lattice point. (These are the normal ones among the reflexive polytopes considered in connection with mirror symmetry.) If P has a unimodular triangulation, then it follows readily that the Ehrhart h vector of P coincides with the h-vector of the boundary complex of a simplicial polytope, and the g-theorem applies.

1. Introduction

Let $P \subset \mathbb{R}^{n-1}$ be an integral convex polytope and consider the Ehrhart-function given by $E(P, m)=\left|\left\{z \in \mathbb{Z}^{n-1}: \frac{z}{m} \in P\right\}\right|$ for $m>0$ and $E(P, 0)=1$. It is well-known that $E(P, m)$ is a polynomial in m of degree $\operatorname{dim}(P)$ and the corresponding Ehrhart-series $E_{P}(t)=\sum_{m \in \mathbb{N}} E(P, m) t^{m}$ is a rational function

$$
E_{P}(t)=\frac{h_{0}+h_{1} t+\cdots+h_{d} t^{d}}{(1-t)^{\operatorname{dim}(P)+1}}
$$

We call $h(P)=\left(h_{0}, \ldots, h_{d}\right)$ (where $\left.h_{d} \neq 0\right)$ the h-vector of P. This vector was intensively studied in the last decades (e.g. see [5] or [9]). In particular, the following questions are of interest:
(i) For which polytopes is $h(P)$ symmetric, i.e. $h_{i}=h_{d-i}$ for all i ?
(ii) For which polytopes is $h(P)$ unimodal, i. e. there exists a natural number t such that $h_{0} \leq h_{1} \leq \cdots \leq h_{t} \geq h_{t+1} \geq \cdots \geq h_{d}$?
Let us sketch Stanley's approach to Ehrhart functions via commutative algebra. The results we are referring to can be found in [5] or [9]. The Ehrhart function of P can be interpreted as the Hilbert function of an affine monoid algebra $K[E(P)]$ (with coefficients from an arbitrary field K). Namely, one considers the cone $C(P)$ generated by $P \times\{1\}$ in \mathbb{R}^{n}, and sets $E(P)=C(P) \cap \mathbb{Z}^{n}$. The algebra $K[E(P)]$ is graded in such a way that the degree of a monomial $x \in E(P)$ is its last coordinate, and so the Hilbert function of $K[E(P)]$ coincides with the Ehrhart function of P. Since P is integral, $K[E(P)]$ is a finite module over its subalgebra generated in degree 1 .

However, in general $E(P)$ is not generated by its degree 1 elements. If it is, then we say that P is normal, and simplify our notation by setting $K[P]=K[E(P)]$.

The monoid $E(P)$ is always normal, and by a theorem of Hochster, $K[E(P)]$ is a CohenMacaulay algebra. It follows that $h_{i} \geq 0$ for all $i=1, \ldots, d$. Using Stanley's Hilbert series characterization of the Gorenstein rings among the Cohen-Macaulay domains, one sees that $h(P)$ is symmetric if and only if $K[E(P)]$ is a Gorenstein ring. In terms of the monoid $E(P)$, the Gorenstein property has a simple interpretation: it holds if and only if $E(P) \cap \operatorname{int} C(P)$ is of the form $x+E(P)$ for some $x \in E(P)$. This follows from the description of the canonical module of normal affine monoid algebras by Danilov and Stanley.

It was conjectured by Stanley that question (ii) has a positive answer for the Birkhoff polytope P, whose points are the real doubly stochastic $n \times n$ matrices and for which $E(P)$ encodes the magic squares. This long standing conjecture was recently proved by Athanasiadis [1]. (That P is normal and $K[P]$ is Gorenstein in this case is easy to see.)

Questions (i) and (ii) can be asked similarly for the combinatorial h-vector $h(\Delta(Q))$ of the boundary complex $\Delta(Q)$ of a simplicial polytope Q, and both have a positive answer. The Dehn-Sommerville equations express the symmetry, while unimodality follows from McMullen's famous g-theorem (proved by Stanley [8]): the vector ($1, h_{1}-h_{0}, \ldots, h_{\lfloor d / 2\rfloor}-$ $\left.h_{\lfloor d / 2\rfloor-1}\right)$ is an M-sequence, i. e. it represents the Hilbert function of a graded artinian K algebra that is generated by its degree 1 elements. In particular, its entries are nonnegative, and so the h-vector is unimodal.

Athanasiadis proved Stanley's conjecture for the Birkhoff polytope P by showing that there exists a simplicial polytope Q with $h(\Delta(Q))=h(P)$. More generally, his theorem applies to compressed polytopes i , e. integer polytopes all of whose pulling triangulations are unimodular. (The Birkhoff polytope is compressed [7, 9].) In this note we generalize Athanasiadis' theorem as follows:

Theorem 1. Let P be an integral polytope such that P has a unimodular triangulation and $K[P]$ is Gorenstein. Then the h-vector of P satisfies the inequalities $1=h_{0} \leq h_{1} \leq \cdots \leq$ $h_{\lfloor d / 2\rfloor}$. More precisely, the vector $\left(1, h_{1}-h_{0}, \ldots, h_{\lfloor d / 2\rfloor}-h_{\lfloor d / 2\rfloor-1}\right)$ is an M-sequence.

Our strategy of proof is to consider the algebra $K[M]$ of a normal affine monoid M for which $K[M]$ is Gorenstein. We relate the Hilbert series of $K[M]$ to that of a simpler affine monoid algebra $K[N]$ which we get by factoring out a suitable regular sequence of $K[M]$. In the situation of an algebra $K[P]$ for a normal polytope P, the regular sequence is of degree 1 , and we obtain a normal reflexive polytope such that $h(P)=h(Q)$. (However, note that Mustaţa and Payne [6] have given an example of a nonormal reflexive polytope with a nonunimodal h-vector.) If P has even a unimodular triangulation, we can find a simplicial polytope P^{\prime} such that the h-vector of the boundary complex of P^{\prime} coincides with the one of $K[P]$. Then it only remains to apply the g-theorem to P^{\prime}.

As a side effect we show that the toric ideal of a Gorenstein polytope with a square-free initial ideal has also a Gorenstein square-free initial ideal.

For notions and results related to commutative algebra we refer to Bruns-Herzog [5] and Stanley [9]. For details on convex geometry we refer to the books of Bruns and Gubeladze [3] (in preparation) and Ziegler [11].

2. GORENSTEIN MONOID ALGEBRAS

We fix a field K for the rest of the paper. Given a positive affine monoid $M \subseteq \mathbb{Z}^{n}$ we consider the rational cone $\operatorname{cn}(M) \subseteq \mathbb{R}^{n}$ generated by M. If $\operatorname{cn}(M)=\bigcap_{i=1}^{s} H_{\sigma_{i}}^{+}$is the irredundant intersection of rational half-spaces, then each σ_{i} is unique up to a nonnegative factor. There is a unique multiple with coprime integral coefficients, and we call this choice of $\sigma_{i}, i=1, \ldots, s$, the support forms of M. The map

$$
\sigma: M \rightarrow \mathbb{Z}^{s}, \quad a \mapsto\left(\sigma_{1}(a), \ldots, \sigma_{s}(a)\right),
$$

is injective because M is positive. It is called the standard embedding of M. It can be extended to $\mathrm{gp}(M)$, and we denote the extension also by σ.

Lemma 2. Let $M \subseteq \mathbb{Z}^{n}$ be a positive normal affine monoid with $\operatorname{gp}(M)=\mathbb{Z}^{n}$ and $R=$ $K[M]$. Let $\sigma_{1}, \ldots, \sigma_{s}$ be the support forms and $\sigma: \mathbb{Z}^{n} \rightarrow \mathbb{Z}^{s}$ the standard embedding of M. Then:
(i) The \mathbb{Z}^{n}-graded canonical module ω_{R} is the ideal of R generated by all X^{z} for $z \in \operatorname{int}(M)$.
(ii) R is Gorenstein if and only if there exists a (necessarily unique) $y \in \operatorname{int}(M)$ such that $\operatorname{int}(M)=y+M$, and therefore $\omega_{R}=\left(X^{y}\right)$.
(iii) R is Gorenstein if and only if there exists a (necessarily unique) $y \in \operatorname{int}(M)$ such that $\sigma(y)=(1, \ldots, 1)$.

Proof. (i) and (ii) are well-known results of Stanley and Danilov. A proof can be found in [5].
(iii): Assume that R is Gorenstein. By (ii) there exists $y \in \operatorname{int}(M)$ such that $\omega_{R}=\left(X^{y}\right)$. We have that $\sigma_{i}(y)>0$ for $i=1, \ldots, s$ since $y \in \operatorname{int}(M)$. Fix i and choose $z \in \operatorname{int}(M)$ with $\sigma_{i}(z)=1$. Such an element z can be found for the following reason. There exists an element $z^{\prime} \in M$ such that $\sigma_{i}(y)=0$ and $\sigma_{j}(y)>0$ for $j \neq i$. Furthermore there exists $z^{\prime \prime} \in$ \mathbb{Z}^{n} such that $\sigma_{i}\left(z^{\prime \prime}\right)=1$ by the choice of σ_{i}. For $r \gg 0$ the element $z=r z^{\prime}+z^{\prime \prime} \in \operatorname{int}(M)$ will do the job.

Now $z-y \in M$ and thus $\sigma_{i}(z-y) \geq 0$. Hence $\sigma_{i}(y) \leq 1$ and therefore $\sigma_{i}(y)=1$. This shows that $\sigma(y)=(1, \ldots, 1)$.

Conversely, if there exists $y \in \operatorname{int}(M)$ such that $\sigma(y)=(1, \ldots, 1)$ then it is easy to see that $\operatorname{int}(M)=y+M$.

In each case the uniqueness of y follows from the positivity of M.
Let $M \subseteq \mathbb{Z}^{n}$ be a positive affine monoid. It is well-known that M has only finitely many irreducible elements which form the unique minimal system of generators of M. We call the collection of these elements the Hilbert basis of M. The following is our main result for monoid algebras.

Theorem 3. Let $M \subseteq \mathbb{Z}^{n}$ be a positive normal affine monoid and assume that $R=K[M]$ is Gorenstein. Let $y_{1}, \ldots, y_{m} \in \operatorname{Hilb}(M)$ such that $\omega_{R}=\left(X^{y_{1}+\cdots+y_{m}}\right)$ is the \mathbb{Z}^{n}-graded canonical module of R. Then:
(i) $S=R /\left(X^{y_{1}}-X^{y_{2}}, \ldots, X^{y_{m-1}}-X^{y_{m}}\right)$ is isomorphic to a Gorenstein normal affine monoid algebra $K[N]$.
(ii) The corresponding multi-graded canonical module ω_{S} is generated by the residue class of $X^{y_{1}}$.

Proof. Replacing \mathbb{Z}^{n} by $\operatorname{gp}(M)$ if necessary we may assume that $\operatorname{gp}(M)=\mathbb{Z}^{n}$. Let σ_{1}, \ldots, σ_{s} be the support forms of M and $\sigma: \mathrm{gp}(M) \rightarrow \mathbb{Z}^{s}$ the standard embedding. By Lemma 2 we have $\sigma\left(y_{1}+\cdots+y_{m}\right)=(1, \ldots, 1)$ and thus the $\sigma\left(y_{i}\right)$ are $0 / 1$-vectors with disjoint support. After arranging the facets in a suitable order we may assume that there exist natural numbers $k_{i}, 0=k_{0}<k_{1}<\cdots<k_{m}=s$, such that

$$
\sigma_{j}\left(y_{i}\right)= \begin{cases}1 & \text { if } j \in\left\{k_{i-1}+1, \ldots, k_{i}\right\} \\ 0 & \text { else }\end{cases}
$$

It is easy to see that both sets of elements

$$
\left\{\sigma\left(y_{1}\right), \ldots, \sigma\left(y_{m}\right)\right\} \subseteq \mathbb{Z}^{s}
$$

and

$$
\left\{\sigma\left(y_{1}\right)-\sigma\left(y_{2}\right), \ldots, \sigma\left(y_{m-1}\right)-\sigma\left(y_{m}\right)\right\} \subseteq \mathbb{Z}^{s}
$$

respectively are part of a basis for \mathbb{Z}^{s}. Thus the groups generated by

$$
y_{1}, \ldots, y_{m} \quad \text { and } \quad y_{1}-y_{2}, \ldots, y_{m-1}-y_{m}
$$

respectively are direct summand of $\mathbb{Z}^{n}=\operatorname{gp}(M)$, because σ is injective. Below we will use these facts several times.

Next we define a subfan Γ of the face lattice of $\mathrm{cn}(M)$. In Γ we collect all subfaces of those faces F of $\mathrm{cn}(M)$ for which there exist natural numbers

$$
i_{1}, \ldots, i_{m} \quad \text { with } 1 \leq i_{1} \leq k_{1}, \ldots, k_{m-1}+1 \leq i_{m} \leq k_{m}
$$

and F has the defining hyperplane

$$
H_{i_{1}, \ldots, i_{m}}=\left\{z \in \mathbb{R}^{n}: \sigma_{i_{1}}(z)+\cdots+\sigma_{i_{m}}(z)=0\right\}
$$

In other words, if F_{i} is the facet of $\operatorname{cn}(M)$ defined by σ_{i} for $i=1, \ldots, s$, then $F=\bigcap_{j=1}^{m} F_{i_{j}}$. Note that Γ consists exactly of those faces of $\mathrm{cn}(M)$ that do not contain any of y_{1}, \ldots, y_{m}.

For example, if $K[M]=K[P]$ for the join P of two line segments of length 2 (suitably embedded) and y_{1} and y_{2} are the two midpoints (the only possible choice in this case), then Γ consists of the cones through the cycle formed by the non-broken edges, as shown in the figure.

Since M is normal in $\operatorname{gp}(M)=\mathbb{Z}^{n}$, there exists a unimodular triangulation of $\mathrm{cn}(M)$ such that each cone in this triangulation is a unimodular simplicial cone generated by elements of M. (See [3, Section 2.D] for a proof of this well-known result.) Restricting this triangulation to Γ we obtain a unimodular triangulation Σ of Γ. Now we construct a
new unimodular triangulation Δ of $\mathrm{cn}(M)$ which gives us enough control over its cones. Let

$$
\Delta=\Sigma \cup \bigcup_{j=1}^{m}\left\{\operatorname{cn}\left(F, y_{i_{1}}, \ldots, y_{i_{j}}\right): F \in \Sigma, 1 \leq i_{1}<\cdots<i_{j} \leq m\right\} .
$$

We claim that Δ is a unimodular triangulation of $\mathrm{cn}(M)$. Let G be a face of $\mathrm{cn}(M)$ and choose $x \in \operatorname{int}(G)$. Let

$$
\lambda_{i}=\min \left\{\sigma_{j}(x): j=k_{i-1}+1, \ldots, k_{i}\right\} \quad \text { for } i=1, \ldots, m
$$

Then

$$
x^{\prime}=x-\sum_{i=1}^{m} \lambda_{i} y_{i} \in \operatorname{cn}(M) \cap|\Gamma| .
$$

Thus there exists an $F \in \Sigma$ such that $x^{\prime} \in \operatorname{int}(F)$, because Σ is a triangulation of Γ. Hence

$$
x \in \operatorname{cn}\left(F, y_{i}: \lambda_{i}>0\right)
$$

and this cone belongs to Δ. Furthermore $\operatorname{cn}\left(F, y_{i}: \lambda_{i}>0\right) \subseteq G$ because of the choice of $x \in \operatorname{int}(G)$. We conclude that every face G of $\operatorname{cn}(M)$ is the union of those faces $\mathrm{cn}\left(F, y_{i_{1}}, \ldots, y_{i_{j}}\right)$ of Δ which are contained in G and thus Δ is a subdivision of $\mathrm{cn}(M)$.

It remains to show that the cones in the triangulation Δ are unimodular and simplicial. Let $F=\operatorname{cn}(M) \cap H_{j_{1}, \ldots, j_{m}} \in \Sigma$ be a maximal cone and $\operatorname{cn}\left(F, y_{1}, \ldots, y_{m}\right) \in \Delta$ be the corresponding maximal cone. Let v_{1}, \ldots, v_{r} be the extreme generators of F. Since F is unimodular, v_{1}, \ldots, v_{r} are linearly independent, and the simplex spanned by these elements together with zero is unimodular. Assume that

$$
0=\sum_{k=1}^{m} \lambda_{k} y_{k}+\sum_{l=1}^{r} \mu_{l} v_{l} \quad \text { for } \lambda_{k}, \mu_{l} \in \mathbb{R}
$$

Applying σ we get $0=\sum_{k=1}^{m} \lambda_{k} \sigma\left(y_{k}\right)+\sum_{l=1}^{r} \mu_{l} \sigma\left(v_{l}\right)$. Since $F=\operatorname{cn}(M) \cap H_{j_{1}, \ldots, j_{m}}$ and $\sigma\left(y_{i_{k}}\right)$ are $0 / 1$-vectors as described above, we conclude that $\lambda_{k}=0$ for all k. Then, since the v_{l} are linearly independent, we obtain that $\mu_{l}=0$ for all l as well. Hence $\operatorname{cn}\left(F, y_{1}, \ldots, y_{m}\right)$ is simplicial. Using the standard embedding, it is not hard to see that $\mathrm{cn}\left(F, y_{1}, \ldots, y_{m}\right)$ is unimodular because a (part of a) basis of $H_{j_{1}, \ldots, j_{m}} \cap \mathbb{Z}^{n}$ can always be extended by y_{1}, \ldots, y_{m} to part of a basis for \mathbb{Z}^{n}. We conclude that Δ is indeed a unimodular triangulation of $\mathrm{cn}(M)$.

Via σ the ring R is also \mathbb{Z}^{s}-graded and since the monomials $\sigma\left(y_{i}\right)$ have pairwise disjoint support, the monomials $X^{y_{1}}, \ldots, X^{y_{m}}$ form an R-sequence. The ring R is an \mathbb{Z}^{n}-graded local ring, since M is positive. Thus $X^{y_{1}}-X^{y_{2}}, \ldots, X^{y_{m-1}}-X^{y_{m}}$ is also an R-sequence. (One can alternatively use the fact that R is Cohen-Macaulay.)

Now we define

$$
U=\mathbb{Z}^{n} /\left(y_{1}-y_{2}, \ldots, y_{m-1}-y_{m}\right) \quad \text { and set } \quad N=\varepsilon(M)
$$

where $\varepsilon: \mathbb{Z}^{n} \rightarrow U$ is the natural projection map. In the following we denote by ε also the induced map from $\mathbb{R}^{n} \rightarrow \mathbb{R} U$. The map ε induces a K-algebra homomorphism $R \rightarrow K[N]$ which factors through $S=R /\left(X^{y_{1}}-X^{y_{2}}, \ldots, X^{y_{m-1}}-X^{y_{m}}\right)$. We claim that:
(a) $N \subseteq U$ is a positive normal affine monoid;
(b) $S \rightarrow K[N]$ is an isomorphism;
(c) $K[N]$ is Gorenstein and the \mathbb{Z}^{n}-graded canonical module $\omega_{K[N]}$ is generated by the residue class of $X^{y_{1}}$.

Since $N=\varepsilon(M)$, the cone $\mathrm{cn}(N)$ is the union of the unimodular simplicial cones $\varepsilon(G)$ for $G \in \Delta$. Assume that $G=\operatorname{cn}\left(F, y_{i_{1}}, \ldots, y_{i_{j}}\right)$ for a unimodular cone $F=\operatorname{cn}\left(v_{1}, \ldots, v_{r}\right) \in$ Γ where $v_{1}, \ldots, v_{r} \subseteq M$ are the extreme generators of F. Then

$$
G=\operatorname{cn}\left(\varepsilon\left(v_{1}\right), \ldots, \varepsilon\left(v_{r}\right), p\right) \subseteq \mathbb{R} U \quad \text { or } \quad G=\operatorname{cn}\left(\varepsilon\left(v_{1}\right), \ldots, \varepsilon\left(v_{r}\right)\right) \subseteq \mathbb{R} U
$$

where $p=\varepsilon\left(y_{1}\right)=\cdots=\varepsilon\left(y_{m}\right)$ is the common image of the y_{i}. We know that the elements $v_{1}, \ldots, v_{r}, y_{1}, \ldots, y_{m}$ are part of a basis of \mathbb{Z}^{n} and thus it follows that $\varepsilon\left(v_{1}\right), \ldots, \varepsilon\left(v_{r}\right), p$ are part of a basis of U. Hence G is unimodular, simplicial and $\mathrm{cn}(N)$ has the unimodular triangulation $\Delta^{\prime}=\{\varepsilon(G): G \in \Delta\}$. It follows easily that N is normal (see [3, Section 2.D]). Below we will see that $K[N]$ has a positive grading. Therefore N is positive, and this proves claim (a).

Clearly $S \rightarrow K[N]$ is surjective and for (b) it remains to show that this homomorphism is injective. To this end we introduce a new positive grading on $R, K[N]$ and S and compare their Hilbert series with respect to this grading. We set

$$
\operatorname{deg}\left(X^{a}\right)=k_{2} \cdots k_{m} \sum_{i=1}^{k_{1}} \sigma_{i}(a)+\cdots+k_{1} \cdots k_{m-1} \sum_{i=k_{m-1}+1}^{k_{m}} \sigma_{i}(a)
$$

for $a \in \operatorname{gp}(M)$. Note that $\operatorname{deg}\left(X^{y_{i}}\right)=k_{1} \cdots k_{m}$ for $i=1, \ldots, m$. Recall that the maximal cones in the triangulation Δ of $\mathrm{cn}(M)$ and, therefore, all their intersections contain y_{1}, \ldots, y_{m}. If C_{1}, \ldots, C_{t} are these maximal cones, then we see via inclusion-exclusion that

$$
H_{R}(t)=\sum_{1 \leq i \leq t} \sum_{a \in \operatorname{gp}(M) \cap C_{i}} t^{\operatorname{deg}\left(X^{a}\right)}-\sum_{1 \leq i<j \leq t} \sum_{a \in \operatorname{gp}(M) \cap C_{i} \cap C_{j}} t^{\operatorname{deg}\left(X^{a}\right)} \pm \cdots
$$

A comparison of the elements in the unimodular simplicial cones C_{i} and D_{i} yields

$$
H_{K[N]}(t)=\left(1-t^{k_{1} \cdots k_{m}}\right)^{m-1} H_{R}(t) .
$$

But the right hand side of the latter equation is exactly the Hilbert series of S, because $X^{y_{1}}-X^{y_{2}}, \ldots, X^{y_{m-1}}-X^{y_{m}}$ is a regular sequence of R. Hence $H_{S}(t)=H_{K[N]}(t)$ and therefore $S \cong K[N]$, which is claim (b). Since S is clearly a Gorenstein ring, its isomorphic copy K [N] is Gorenstein, too, and so the first statement in (c) has been proved.

It remains to compute the multi-graded canonical module of $S \cong K[N]$. Since $K[N]$ is Gorenstein, we have to determine the unique lattice point $q \operatorname{in} \operatorname{int}(N)$ such that $\operatorname{int}(N)=$ $q+N$ because then $\omega_{K[N]}=\left(X^{q}\right)$. By construction, q must have degree $k_{1} \cdots k_{m}$, and the residue class of y_{1} in U is an interior point of $\mathrm{cn}(N)$ of that degree. This concludes the proof.

3. GORENSTEIN POLYTOPES

Let $X \subseteq \mathbb{R}^{n-1}$. We set $E(X, m)=\left|\left\{z \in \mathbb{Z}^{n-1}: \frac{z}{m} \in P\right\}\right|$ and $E(P, 0)=0$. In analogy to the rational function $E_{P}(t)$ we define

$$
E_{\mathrm{int}(P)}(t)=\sum_{m \in \mathbb{N}} E(\operatorname{int}(P), m) t^{m} \quad \text { and } \quad E_{\partial(P)}(t)=\sum_{m \in \mathbb{N}} E(\partial(P), m) t^{m}
$$

Observe that $E_{\partial(P)}(t)=E_{P}(t)-E_{\text {int }(P)}(t)$. In our situation $E_{P}(t)=H_{K[P]}(t)$ and $E_{\text {int }(P)}(t)=$ $H_{\omega_{K[P]}}(t)$. Hence these series are rational with denominator $(1-t)^{\operatorname{dim}(P)+1}$. Moreover, $E_{\partial(P)}(t)=E_{P}(t)-E_{\text {int }(P)}(t)$ is rational with denominator $(1-t)^{\operatorname{dim}(P)}$, and it makes sense to consider the h-vectors of these series which we denote by $h(\operatorname{int}(P))$ and $h(\partial(P))$. In the following we present variations and corollaries of Theorem 3.

Corollary 4. Let P be an normal integer polytope such that $K[P]$ is Gorenstein. Then there exists a Gorenstein normal integer polytope Q such that $\operatorname{int}(Q)$ contains a unique lattice point and

$$
h(P)=h(Q)=h(\partial(Q))
$$

Proof. Recall that $R=K[P]$ is the affine monoid ring generated by the positive normal affine monoid $M=E(P)=C \cap \mathbb{Z}^{n}$ where $C=\operatorname{cn}((p, 1): p \in P)$. Observe that R is \mathbb{Z} graded with respect to the last coordinate and we will use only this grading for the rest of the proof. All irreducible elements of M have degree 1 , because P is normal. Since R is Gorenstein, there exists a unique lattice point $y \in M$ such that $\operatorname{int}(M)=y+M$. Choosing irreducible elements $y_{1}, \ldots, y_{m} \in M$ such that $y=\sum_{i=1}^{m} y_{i}$ we are in the situation to apply Theorem 3.

In the proof of the theorem we have constructed the lattice $U=\operatorname{gp}(M) /\left(y_{i}-y_{i+1}: i=\right.$ $1, \ldots, m-1)$ and the normal affine lattice monoid $N \subset \operatorname{gp}(M)$ such that $K[N]$ is Gorenstein. The monoid N is also homogeneous with respect to the grading induced by that of M and generated by the degree 1 elements. Thus it is polytopal by [4, Proposition 1.1.3], and $K[N]=K[Q]$ for the polytope Q spanned by the degree 1 elements of N. It has also been shown that the canonical module of $K[Q]$ is generated by a degree 1 element, the residue class of $X^{y_{1}}$, which we denote by X^{p}. Thus Q can have only one interior lattice point, namely p. The h-polynomial of $K[P]$ and the one of $K[Q]$ coincide since $K[Q] \cong K[P] /\left(X^{y_{i}}-X^{y_{i+1}}\right)$ and $X^{y_{1}}-X^{y_{2}}, \ldots, X^{y_{m-1}}-X^{y_{m}}$ is a regular sequence homogeneous of degree on 1.

It follows from

$$
E_{\partial(P)}(t)=E_{P}(t)-E_{\mathrm{int}(P)}(t)=H_{K[P]}(t)-H_{\omega_{K[P]}}(t)=H_{K[P]}(t)-t \cdot H_{K[P]}(t)
$$

that $h(Q)=h(\partial(Q))$. For the last equality we have used the fact that $\omega_{K[P]}=\left(X^{p}\right) \cong$ $R(-1)$ with respect to the considered grading. This concludes the proof.

The Gorenstein polytopes with an interior lattice point are exactly the reflexive polytopes used by Batyrev in the theory of mirror symmetry; see [2]. Therefore the previous corollary reduces all questions about the h-vector of normal Gorenstein polytopes to normal reflexive polytopes. However, as shown by Mustaţa and Payne [6], there exist nonnormal reflexive polytopes whose h-vector is not unimodal.

If Q is a simplicial polytope, then its boundary complex $\Delta(Q)$ is simplicial, and we can speak of its combinatorial h-vector (which one can read as the h-vector of the Ehrhart series of the geometric realization of $\Delta(Q)$ in the boundary of a suitable unit simplex.)
Corollary 5. Let P be an integer polytope such that $K[P]$ is Gorenstein and P has a unimodular triangulation. Then there exists a simplicial integer polytope P^{\prime} such that

$$
h(P)=h\left(\Delta\left(P^{\prime}\right)\right)
$$

Proof. Polytopes with a unimodular triangulation are normal. So we can proceed as in the proof of Corollary 4 and use the same notation. The only change is that we start with the given unimodular triangulation Σ of P. It induces a unimodular triangulation of $\mathrm{cn}((p, 1): p \in P)$ that can be used in the proof of Theorem 3. Thus the simplicial cones in that triangulation have generators of degree one. This induces a unimodular triangulation of $\operatorname{cn}(N)$ with generators of degree one and thus a unimodular triangulation Σ^{\prime} of the (normal) integer polytope Q. Moreover, $K[Q]$ is Gorenstein, $h(P)=h(Q)=h(\partial(Q))$ and $\operatorname{int}(Q)$ contains a unique interior lattice point p. It only remains to construct the simplicial polytope P^{\prime}.

We project the vertices of the triangulation of Q on a sphere around p inside Q and consider their convex hull P^{\prime}. It is a simplicial polytope whose boundary is combinatorially equivalent Σ^{\prime}. Since Σ^{\prime} is unimodular the Ehrhart h-vector $h(\partial Q)$ coincides with the combinatorial h-vector of Σ^{\prime}, and hence with that of $\Delta\left(P^{\prime}\right)$. We obtain

$$
h(\partial(Q))=h\left(\Delta\left(P^{\prime}\right)\right)
$$

as desired.
The assumptions of Corollary 5 appear at several places in algebraic combinatorics as has been pointed out in [1]. Theorem 1 follows immediately by the g-theorem.

We conclude by drawing a consequence for the toric ideal I_{P} of P. It defines the algebra $K[P]$ in the form $K[P]=S / I_{P}$ where S is a polynomial ring on the integral points of P. "Generic" weights on S induce on the one side regular triangulations Σ of P and on the other side weight orders $>$ on S; see Sturmfels [10] for the details. The initial ideal of I_{P} with respect to $>$ is then a monomial ideal J. By part of the main theorem of [10], J is square-free if and only if the triangulation is unimodular. In this case S / J is the StanleyReisner ring of Σ, understood as an abstract simplicial complex. If in the situation of Corollary 5 the unimodular triangulation of P regular, then one can show that the induced triangulation constructed above is also regular (see [3, Section 1.F]) and apply the result of Sturmfels to find a new initial ideal J^{\prime}. By construction, its underlying triangulation is combinatorially the join of $\Delta\left(P^{\prime}\right)$ (as in Corollary 5) and the simplex spanned by y_{1}, \ldots, y_{m} (as in Theorem 3). So the indeterminates of S corresponding to y_{1}, \ldots, y_{m} form a regular sequence modulo J^{\prime}, and we obtain

Corollary 6. Let P be an integer Gorenstein polytope with a regular unimodular triangulation. Then the toric ideal I_{P} has a square-free initial ideal defining a Gorenstein ring.

The corollary answers a question of Conca and Welker, and the methods of this note were originally designed for its solution.

REFERENCES

[1] C. A. Athanasiadis, Ehrhart polynomials, simplicial polytopes, magic squares and a conjecture of Stanley. math. C0/0312031, Preprint (2003).
[2] V. V. Batyrev, Dual polyhedra and mirror symmetry for Calabi-Yau hypersurfaces in toric varieties. J. Algebraic Geom. 3 (1994), 493-535.
[3] W. Bruns and J. Gubeladze, Polytopes, rings, and K-theory. Preliminary version at http://www.math.uos.de/staff/phpages/brunsw/preprints.htm
[4] W. Bruns, J. Gubeladze and N. V. Trung, Normal polytopes, triangulations, and Koszul algebras, J. Reine Angew. Math. 485 (1997), 123-160. Preprint.
[5] W. Bruns and J. Herzog, Cohen-Macaulay rings. Rev. ed. Cambridge Studies in Advanced Mathematics 39, Cambridge University Press, Cambridge (1998).
[6] M. Mustaţa and S. Payne, Ehrhart polynomials and stringy Betti numbers. math. AG/0504486. Math. Ann., to appear.
[7] R. P. Stanley, Decompositions of rational convex polytopes. Annals of Discrete Math. 6, 333-342 (1980).
[8] R. P. Stanley, The number of faces of a simplicial convex polytope. Adv. in Math. 35 (1980), 236-238.
[9] R. P. Stanley, Combinatorics and commutative algebra. 2nd ed. Progress in Mathematics 41, Basel, Birkhäuser (1996).
[10] B. Sturmfels, Gröbner Bases and Convex Polytopes. American Mathematical Society, Univ. Lectures Series 8, Providence, Rhode Island (1996).
[11] G. M. Ziegler, Lectures on polytopes. Graduate Texts in Mathematics 152, Berlin, Springer (1995).
FB Mathematik/Informatik, Universität Osnabrück, 49069 OSnabrück, Germany
E-mail address: winfried@mathematik.uni-osnabrueck.de
FB Mathematik/Informatik, Universität Osnabrück, 49069 Osnabrück, Germany
E-mail address: troemer@mathematik.uni-osnabrueck.de

