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ABSTRACT. We show that the Ehrharth-vector of an integer Gorenstein polytope with
a unimodular triangulation satisfies McMullen’sg-theorem; in particular it is unimodal.
This result generalizes a recent theorem of Athanasiadis (conjectured by Stanley) for
compressed polytopes. It is derived from a more general theorem on Gorenstein affine
normal monoidsM: one can factorK[M] (K a field) by a “long” regular sequence in such
a way that the quotient is still a normal affine monoid algebra. In the case of a polytopal
Gorenstein normal monoidE(P), this technique reduces all questions about the Ehrhart
h-vector to a normal Gorenstein polytopeQ with exactly one interior lattice point. (These
are the normal ones among the reflexive polytopes consideredin connection with mirror
symmetry.) IfP has a unimodular triangulation, then it follows readily that the Ehrharth-
vector ofP coincides with theh-vector of the boundary complex of a simplicial polytope,
and theg-theorem applies.

1. INTRODUCTION

Let P⊂ R
n−1 be an integral convex polytope and consider theEhrhart-functiongiven

by E(P,m) = |{z∈ Z
n−1 : z

m ∈ P}| for m > 0 andE(P,0) = 1. It is well-known that
E(P,m) is a polynomial inm of degree dim(P) and the correspondingEhrhart-series
EP(t) = ∑m∈N E(P,m)tm is a rational function

EP(t) =
h0 +h1t + · · ·+hdtd

(1− t)dim(P)+1
.

We callh(P) = (h0, . . . ,hd) (wherehd 6= 0) theh-vectorof P. This vector was intensively
studied in the last decades (e.g. see [5] or [9]). In particular, the following questions are
of interest:

(i) For which polytopes ish(P) symmetric, i.e. hi = hd−i for all i?
(ii) For which polytopes ish(P) unimodal, i. e. there exists a natural numbert such

thath0 ≤ h1 ≤ ·· · ≤ ht ≥ ht+1 ≥ ·· · ≥ hd?

Let us sketch Stanley’s approach to Ehrhart functions via commutative algebra. The
results we are referring to can be found in [5] or [9]. The Ehrhart function ofP can be
interpreted as the Hilbert function of an affine monoid algebraK[E(P)] (with coefficients
from an arbitrary fieldK). Namely, one considers the coneC(P) generated byP×{1}
in R

n, and setsE(P) = C(P)∩Z
n. The algebraK[E(P)] is graded in such a way that

the degree of a monomialx ∈ E(P) is its last coordinate, and so the Hilbert function of
K[E(P)] coincides with the Ehrhart function ofP. SinceP is integral,K[E(P)] is a finite
module over its subalgebra generated in degree 1.

However, in generalE(P) is not generated by its degree 1 elements. If it is, then we
say thatP is normal, and simplify our notation by settingK[P] = K[E(P)].
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The monoidE(P) is always normal, and by a theorem of Hochster,K[E(P)] is a Cohen-
Macaulay algebra. It follows thathi ≥ 0 for all i = 1, . . . ,d. Using Stanley’s Hilbert
series characterization of the Gorenstein rings among the Cohen-Macaulay domains, one
sees thath(P) is symmetric if and only ifK[E(P)] is a Gorenstein ring. In terms of the
monoidE(P), the Gorenstein property has a simple interpretation: it holds if and only
if E(P)∩ intC(P) is of the formx+ E(P) for somex ∈ E(P). This follows from the
description of the canonical module of normal affine monoid algebras by Danilov and
Stanley.

It was conjectured by Stanley that question (ii) has a positive answer for theBirkhoff
polytope P, whose points are the real doubly stochasticn× n matrices and for which
E(P) encodes themagic squares. This long standing conjecture was recently proved by
Athanasiadis [1]. (ThatP is normal andK[P] is Gorenstein in this case is easy to see.)

Questions (i) and (ii) can be asked similarly for the combinatorial h-vectorh(∆(Q)) of
the boundary complex∆(Q) of a simplicial polytopeQ, and both have a positive answer.
The Dehn-Sommerville equations express the symmetry, while unimodality follows from
McMullen’s famousg-theorem (proved by Stanley [8]): the vector(1,h1−h0, . . . ,h⌊d/2⌋−
h⌊d/2⌋−1) is anM-sequence, i. e. it represents the Hilbert function of a graded artinianK-
algebra that is generated by its degree 1 elements. In particular, its entries are nonnegative,
and so theh-vector is unimodal.

Athanasiadis proved Stanley’s conjecture for the Birkhoff polytopeP by showing that
there exists a simplicial polytopeQ with h(∆(Q)) = h(P). More generally, his theorem
applies to compressed polytopes i, e. integer polytopes allof whose pulling triangulations
are unimodular. (The Birkhoff polytope is compressed [7, 9].) In this note we generalize
Athanasiadis’ theorem as follows:

Theorem 1. Let P be an integral polytope such that P has a unimodular triangulation and
K[P] is Gorenstein. Then the h-vector of P satisfies the inequalities1 = h0 ≤ h1 ≤ ·· · ≤
h⌊d/2⌋. More precisely, the vector(1,h1−h0, . . . ,h⌊d/2⌋−h⌊d/2⌋−1) is an M-sequence.

Our strategy of proof is to consider the algebraK[M] of a normal affine monoidM for
whichK[M] is Gorenstein. We relate the Hilbert series ofK[M] to that of a simpler affine
monoid algebraK[N] which we get by factoring out a suitable regular sequence ofK[M].
In the situation of an algebraK[P] for a normal polytopeP, the regular sequence is of
degree 1, and we obtain a normal reflexive polytope such thath(P) = h(Q). (However,
note that Mustaţa and Payne [6] have given an example of a nonormal reflexive polytope
with a nonunimodalh-vector.) If P has even a unimodular triangulation, we can find a
simplicial polytopeP′ such that theh-vector of the boundary complex ofP′ coincides
with the one ofK[P]. Then it only remains to apply theg-theorem toP′.

As a side effect we show that the toric ideal of a Gorenstein polytope with a square-free
initial ideal has also a Gorenstein square-free initial ideal.

For notions and results related to commutative algebra we refer to Bruns–Herzog [5]
and Stanley [9]. For details on convex geometry we refer to the books of Bruns and
Gubeladze [3] (in preparation) and Ziegler [11].
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2. GORENSTEIN MONOID ALGEBRAS

We fix a field K for the rest of the paper. Given a positive affine monoidM ⊆ Z
n

we consider the rational cone cn(M) ⊆ R
n generated byM. If cn(M) =

⋂s
i=1H+

σi
is the

irredundant intersection of rational half-spaces, then eachσi is unique up to a nonnegative
factor. There is a unique multiple with coprime integral coefficients, and we call this
choice ofσi , i = 1, . . . ,s, thesupport formsof M. The map

σ : M → Z
s, a 7→ (σ1(a), . . . ,σs(a)),

is injective becauseM is positive. It is called thestandard embeddingof M. It can be
extended to gp(M), and we denote the extension also byσ .

Lemma 2. Let M ⊆ Z
n be a positive normal affine monoid withgp(M) = Z

n and R=
K[M]. Letσ1, . . . ,σs be the support forms andσ : Z

n → Z
s the standard embedding of M.

Then:

(i) TheZ
n-graded canonical moduleωR is the ideal of R generated by all Xz for

z∈ int(M).
(ii) R is Gorenstein if and only if there exists a (necessarily unique) y∈ int(M) such

that int(M) = y+M, and thereforeωR = (Xy).
(iii) R is Gorenstein if and only if there exists a (necessarily unique) y∈ int(M) such

that σ(y) = (1, . . . ,1).

Proof. (i) and (ii) are well-known results of Stanley and Danilov. Aproof can be found
in [5].

(iii): Assume thatR is Gorenstein. By (ii) there existsy∈ int(M) such thatωR = (Xy).
We have thatσi(y) > 0 for i = 1, . . . ,s sincey ∈ int(M). Fix i and choosez∈ int(M)
with σi(z) = 1. Such an elementz can be found for the following reason. There exists an
elementz′ ∈ M such thatσi(y) = 0 andσ j(y) > 0 for j 6= i. Furthermore there existsz′′ ∈
Z

n such thatσi(z′′) = 1 by the choice ofσi. For r ≫ 0 the elementz= rz′ +z′′ ∈ int(M)
will do the job.

Now z−y∈ M and thusσi(z−y) ≥ 0. Henceσi(y) ≤ 1 and thereforeσi(y) = 1. This
shows thatσ(y) = (1, . . . ,1).

Conversely, if there existsy∈ int(M) such thatσ(y) = (1, . . . ,1) then it is easy to see
that int(M) = y+M.

In each case the uniqueness ofy follows from the positivity ofM. �

Let M ⊆Z
n be a positive affine monoid. It is well-known thatM has only finitely many

irreducible elements which form the unique minimal system of generators ofM. We call
the collection of these elements theHilbert basisof M. The following is our main result
for monoid algebras.

Theorem 3. Let M⊆ Z
n be a positive normal affine monoid and assume that R= K[M]

is Gorenstein. Let y1, . . . ,ym ∈ Hilb(M) such thatωR = (Xy1+···+ym) is the Z
n-graded

canonical module of R. Then:

(i) S= R/(Xy1 −Xy2, . . . ,Xym−1 −Xym) is isomorphic to a Gorenstein normal affine
monoid algebra K[N].
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(ii) The corresponding multi-graded canonical moduleωS is generated by the residue
class of Xy1.

Proof. ReplacingZn by gp(M) if necessary we may assume that gp(M) = Z
n. Let σ1, . . . ,

σs be the support forms ofM andσ : gp(M) → Z
s the standard embedding. By Lemma

2 we haveσ(y1 + · · ·+ ym) = (1, . . . ,1) and thus theσ(yi) are 0/1-vectors with disjoint
support. After arranging the facets in a suitable order we may assume that there exist
natural numberski, 0= k0 < k1 < · · · < km = s, such that

σ j(yi) =

{

1 if j ∈ {ki−1 +1, . . . ,ki},

0 else.

It is easy to see that both sets of elements

{σ(y1), . . . ,σ(ym)} ⊆ Z
s

and
{σ(y1)−σ(y2), . . . ,σ(ym−1)−σ(ym)} ⊆ Z

s

respectively are part of a basis forZ
s. Thus the groups generated by

y1, . . . ,ym and y1−y2, . . . ,ym−1−ym

respectively are direct summand ofZ
n = gp(M), becauseσ is injective. Below we will

use these facts several times.
Next we define a subfanΓ of the face lattice of cn(M). In Γ we collect all subfaces of

those facesF of cn(M) for which there exist natural numbers

i1, . . . , im with 1≤ i1 ≤ k1, . . . ,km−1 +1≤ im ≤ km

andF has the defining hyperplane

Hi1,...,im = {z∈ R
n : σi1(z)+ · · ·+σim(z) = 0}.

In other words, ifFi is the facet of cn(M) defined byσi for i = 1, . . . ,s, thenF =
⋂m

j=1Fi j .
Note thatΓ consists exactly of those faces of cn(M) that do not contain any ofy1, . . . ,ym.

For example, ifK[M] = K[P] for the joinP of two line segments of length 2 (suitably
embedded) andy1 andy2 are the two midpoints (the only possible choice in this case),
thenΓ consists of the cones through the cycle formed by the non-broken edges, as shown
in the figure.

y1
y2

Γ

SinceM is normal in gp(M) = Z
n, there exists a unimodular triangulation of cn(M)

such that each cone in this triangulation is a unimodular simplicial cone generated by
elements ofM. (See [3, Section 2.D] for a proof of this well-known result.) Restricting
this triangulation toΓ we obtain a unimodular triangulationΣ of Γ. Now we construct a
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new unimodular triangulation∆ of cn(M) which gives us enough control over its cones.
Let

∆ = Σ∪
m
⋃

j=1

{cn(F,yi1, . . . ,yi j ) : F ∈ Σ, 1≤ i1 < · · · < i j ≤ m}.

We claim that∆ is a unimodular triangulation of cn(M). Let G be a face of cn(M) and
choosex∈ int(G). Let

λi = min{σ j(x) : j = ki−1 +1, . . . ,ki} for i = 1, . . . ,m.

Then

x′ = x−
m

∑
i=1

λiyi ∈ cn(M)∩|Γ|.

Thus there exists anF ∈ Σ such thatx′ ∈ int(F), becauseΣ is a triangulation ofΓ. Hence

x∈ cn(F,yi : λi > 0),

and this cone belongs to∆. Furthermore cn(F,yi : λi > 0) ⊆ G because of the choice
of x ∈ int(G). We conclude that every faceG of cn(M) is the union of those faces
cn(F,yi1, . . . ,yi j ) of ∆ which are contained inG and thus∆ is a subdivision of cn(M).

It remains to show that the cones in the triangulation∆ are unimodular and simplicial.
Let F = cn(M)∩H j1,..., jm ∈ Σ be a maximal cone and cn(F,y1, . . . ,ym) ∈ ∆ be the corre-
sponding maximal cone. Letv1, . . . ,vr be the extreme generators ofF . SinceF is uni-
modular,v1, . . . ,vr are linearly independent, and the simplex spanned by these elements
together with zero is unimodular. Assume that

0 =
m

∑
k=1

λkyk +
r

∑
l=1

µl vl for λk,µl ∈ R.

Applying σ we get 0= ∑m
k=1λkσ(yk)+ ∑r

l=1 µl σ(vl ). SinceF = cn(M)∩H j1,..., jm and
σ(yik) are 0/1-vectors as described above, we conclude thatλk = 0 for all k. Then,
since thevl are linearly independent, we obtain thatµl = 0 for all l as well. Hence
cn(F,y1, . . . ,ym) is simplicial. Using the standard embedding, it is not hard to see that
cn(F,y1, . . . ,ym) is unimodular because a (part of a) basis ofH j1,..., jm∩Z

n can always be
extended byy1, . . . ,ym to part of a basis forZn. We conclude that∆ is indeed a unimodular
triangulation of cn(M).

Via σ the ringR is alsoZ
s-graded and since the monomialsσ(yi) have pairwise disjoint

support, the monomialsXy1, . . . ,Xym form anR-sequence. The ringR is anZ
n-graded

local ring, sinceM is positive. ThusXy1 −Xy2, . . . ,Xym−1 −Xym is also anR-sequence.
(One can alternatively use the fact thatR is Cohen–Macaulay.)

Now we define

U = Z
n/(y1−y2, . . . ,ym−1−ym) and set N = ε(M)

whereε : Z
n →U is the natural projection map. In the following we denote byε also the

induced map fromR
n → RU . The mapε induces aK-algebra homomorphismR→ K[N]

which factors throughS= R/(Xy1 −Xy2, . . . ,Xym−1 −Xym). We claim that:

(a) N ⊆U is a positive normal affine monoid;
(b) S→ K[N] is an isomorphism;
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(c) K[N] is Gorenstein and theZn-graded canonical moduleωK[N] is generated by
the residue class ofXy1.

SinceN = ε(M), the cone cn(N) is the union of the unimodular simplicial conesε(G)
for G∈ ∆. Assume thatG = cn(F,yi1, . . . ,yi j ) for a unimodular coneF = cn(v1, . . . ,vr) ∈
Γ wherev1, . . . ,vr ⊆ M are the extreme generators ofF . Then

G = cn(ε(v1), . . . ,ε(vr), p) ⊆ RU or G = cn(ε(v1), . . . ,ε(vr)) ⊆ RU

wherep= ε(y1) = · · ·= ε(ym) is the common image of theyi. We know that the elements
v1, . . . ,vr ,y1, . . . ,ym are part of a basis ofZn and thus it follows thatε(v1), . . . ,ε(vr), p are
part of a basis ofU . HenceG is unimodular, simplicial and cn(N) has the unimodular
triangulation∆′ = {ε(G) : G ∈ ∆}. It follows easily thatN is normal (see [3, Section
2.D]). Below we will see thatK[N] has a positive grading. ThereforeN is positive, and
this proves claim (a).

ClearlyS→K[N] is surjective and for (b) it remains to show that this homomorphism is
injective. To this end we introduce a new positive grading onR, K[N] andSand compare
their Hilbert series with respect to this grading. We set

deg(Xa) = k2 · · ·km

k1

∑
i=1

σi(a)+ · · ·+k1 · · ·km−1

km

∑
i=km−1+1

σi(a)

for a ∈ gp(M). Note that deg(Xyi) = k1 · · ·km for i = 1, . . . ,m. Recall that the maxi-
mal cones in the triangulation∆ of cn(M) and, therefore, all their intersections contain
y1, . . . ,ym. If C1, . . . ,Ct are these maximal cones, then we see via inclusion–exclusion that

HR(t) = ∑
1≤i≤t

∑
a∈gp(M)∩Ci

tdeg(Xa)− ∑
1≤i< j≤t

∑
a∈gp(M)∩Ci∩Cj

tdeg(Xa)±·· ·

Let D1, . . . ,Dt be the images ofC1, . . . ,Ct with respect toε. ThenHier erstmalK[N]

HK[N](t) = ∑
1≤i≤t

∑
a∈gp(N)∩Di

tdeg(Xa)− ∑
1≤i< j≤t

∑
a∈gp(M)∩Di∩D j

tdeg(Xa)±·· ·

A comparison of the elements in the unimodular simplicial conesCi andDi yieldsKorrigiert !!

HK[N](t) = (1− tk1···km)m−1HR(t).

But the right hand side of the latter equation is exactly the Hilbert series ofS, because
Xy1 −Xy2, . . . ,Xym−1 −Xym is a regular sequence ofR. HenceHS(t) = HK[N](t) and there-
fore S∼= K[N], which is claim (b). SinceS is clearly a Gorenstein ring, its isomorphic
copyK[N] is Gorenstein, too, and so the first statement in (c) has been proved.

It remains to compute the multi-graded canonical module ofS∼= K[N]. SinceK[N] is
Gorenstein, we have to determine the unique lattice pointq in int(N) such that int(N) =
q+N because thenωK[N] = (Xq). By construction,q must have degreek1 · · ·km, and the
residue class ofy1 in U is an interior point of cn(N) of that degree. This concludes the
proof. �
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3. GORENSTEIN POLYTOPES

Let X ⊆ R
n−1. We setE(X,m) = |{z∈ Z

n−1 : z
m ∈ P}| andE(P,0) = 0. In analogy to

the rational functionEP(t) we define

Eint(P)(t) = ∑
m∈N

E(int(P),m)tm and E∂ (P)(t) = ∑
m∈N

E(∂ (P),m)tm.

Observe thatE∂ (P)(t)= EP(t)−Eint(P)(t). In our situationEP(t)= HK[P](t) andEint(P)(t)=

HωK[P]
(t). Hence these series are rational with denominator(1− t)dim(P)+1. Moreover,

E∂ (P)(t) = EP(t)−Eint(P)(t) is rational with denominator(1− t)dim(P), and it makes sense
to consider theh-vectors of these series which we denote byh(int(P)) andh(∂ (P)). In
the following we present variations and corollaries of Theorem 3.

Corollary 4. Let P be an normal integer polytope such that K[P] is Gorenstein. Then
there exists a Gorenstein normal integer polytope Q such that int(Q) contains a unique
lattice point and

h(P) = h(Q) = h(∂ (Q)).

Proof. Recall thatR = K[P] is the affine monoid ring generated by the positive normal
affine monoidM = E(P) = C∩Z

n whereC = cn((p,1) : p ∈ P). Observe thatR is Z-
graded with respect to the last coordinate and we will use only this grading for the rest of
the proof. All irreducible elements ofM have degree 1, becauseP is normal. SinceR is
Gorenstein, there exists a unique lattice pointy∈ M such that int(M) = y+M. Choosing
irreducible elementsy1, . . . ,ym ∈ M such thaty = ∑m

i=1yi we are in the situation to apply
Theorem 3.

In the proof of the theorem we have constructed the latticeU = gp(M)/(yi −yi+1 : i =
1, . . . ,m−1) and the normal affine lattice monoidN ⊂ gp(M) such thatK[N] is Goren-
stein. The monoidN is also homogeneous with respect to the grading induced by that
of M and generated by the degree 1 elements. Thus it is polytopal by [4, Proposition
1.1.3], andK[N] = K[Q] for the polytopeQ spanned by the degree 1 elements ofN. It has
also been shown that the canonical module ofK[Q] is generated by a degree 1 element,
the residue class ofXy1, which we denote byXp. ThusQ can have only one interior
lattice point, namelyp. The h-polynomial ofK[P] and the one ofK[Q] coincide since
K[Q]∼= K[P]/(Xyi −Xyi+1) andXy1 −Xy2, . . . ,Xym−1 −Xym is a regular sequence homoge-
neous of degree on 1.

It follows from

E∂ (P)(t) = EP(t)−Eint(P)(t) = HK[P](t)−HωK[P]
(t) = HK[P](t)− t ·HK[P](t)

that h(Q) = h(∂ (Q)). For the last equality we have used the fact thatωK[P] = (Xp) ∼=
R(−1) with respect to the considered grading. This concludes the proof. �

The Gorenstein polytopes with an interior lattice point areexactly thereflexive poly-
topesused by Batyrev in the theory of mirror symmetry; see [2]. Therefore the previ-
ous corollary reduces all questions about theh-vector of normal Gorenstein polytopes to
normal reflexive polytopes. However, as shown by Mustaţa and Payne [6], there exist
nonnormal reflexive polytopes whoseh-vector is not unimodal.
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If Q is a simplicial polytope, then its boundary complex∆(Q) is simplicial, and we
can speak of its combinatorialh-vector (which one can read as theh-vector of the Ehrhart
series of the geometric realization of∆(Q) in the boundary of a suitable unit simplex.)

Corollary 5. Let P be an integer polytope such that K[P] is Gorenstein and P has a
unimodular triangulation. Then there exists a simplicial integer polytope P′ such that

h(P) = h(∆(P′)).

Proof. Polytopes with a unimodular triangulation are normal. So wecan proceed as in
the proof of Corollary 4 and use the same notation. The only change is that we start
with the given unimodular triangulationΣ of P. It induces a unimodular triangulation of
cn((p,1) : p∈ P) that can be used in the proof of Theorem 3. Thus the simplicialcones in
that triangulation have generators of degree one. This induces a unimodular triangulation
of cn(N) with generators of degree one and thus a unimodular triangulation Σ′ of the
(normal) integer polytopeQ. Moreover,K[Q] is Gorenstein,h(P) = h(Q) = h(∂ (Q)) and
int(Q) contains a unique interior lattice pointp. It only remains to construct the simplicial
polytopeP′.

We project the vertices of the triangulation ofQ on a sphere aroundp insideQ and
consider their convex hullP′. It is a simplicial polytope whose boundary is combinatori-
ally equivalentΣ′. SinceΣ′ is unimodular the Ehrharth-vectorh(∂Q) coincides with the
combinatorialh-vector ofΣ′, and hence with that of∆(P′). We obtain

h(∂ (Q)) = h(∆(P′)),

as desired. �

The assumptions of Corollary 5 appear at several places in algebraic combinatorics as
has been pointed out in [1]. Theorem 1 follows immediately bytheg-theorem.

We conclude by drawing a consequence for the toric idealIP of P. It defines the algebra
K[P] in the formK[P] = S/IP whereS is a polynomial ring on the integral points ofP.
“Generic” weights onS induce on the one side regular triangulationsΣ of P and on the
other side weight orders> on S; see Sturmfels [10] for the details. The initial ideal ofIP
with respect to> is then a monomial idealJ. By part of the main theorem of [10],J is
square-free if and only if the triangulation is unimodular.In this caseS/J is the Stanley-
Reisner ring ofΣ, understood as an abstract simplicial complex. If in the situation of
Corollary 5 the unimodular triangulation ofP regular, then one can show that the induced
triangulation constructed above is also regular (see [3, Section 1.F]) and apply the result
of Sturmfels to find a new initial idealJ′. By construction, its underlying triangulation is
combinatorially the join of∆(P′) (as in Corollary 5) and the simplex spanned byy1, . . . ,ym
(as in Theorem 3). So the indeterminates ofScorresponding toy1, . . . ,ym form a regular
sequence moduloJ′, and we obtain

Corollary 6. Let P be an integer Gorenstein polytope with a regular unimodular trian-
gulation. Then the toric ideal IP has a square-free initial ideal defining a Gorenstein
ring.

The corollary answers a question of Conca and Welker, and the methods of this note
were originally designed for its solution.
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