
An example of using Representation Theory to find a resolution

I plan to give three 50 minute talks. Here is an outline of my plan.

Section 1. A brief introduction to irreducible representations of GL(V ).

Section 2. A family of complexes associated to a generic map ϕ : F → G.

Section 3. The Littlewood-Richardson rule shows that the objects of section 2 are
complexes.

Section 4. The Acyclicity Lemma (together with LR) yields exactness!

Section 1. A brief introduction to irreducible representations of GL(V ).

Let K be a field of characteristic zero (like Q) and V be a finite dimensional
vector space over K. There are many K-module maps θ : V → V . However, if I
restrict my attention to coordinate-free maps θ (and this is the natural thing to do
in my business – if I am trying to tell somebody a large sequence of maps (i.e., a
resolution), I have to make these maps be as transparent as possible, I don’t want
to have to start by telling my favorite basis!), then there are many fewer choices
for θ. Indeed, in this case, θ is multiplication by a scalar from K. (This is an easy
exercise in Linear Algebra. The words “θ : V → V is a coordinate-free map” mean
that for every g ∈ GL(V ), g ◦ θ ◦ g−1 = θ. So, the matrix for θ, with respect to
your favorite basis, commutes with all invertible matrices.)

The basic building blocks in this sequence of lectures are irreducible representa-
tions of GL(V ). The first paragraph establishes V as one of these. As soon as I tell
you what I am talking about, and why I care, I will tell you many more examples.

The vector space L is a representation of GL(V ) (or is a GL(V )-module, or is a
K[GL(V )]-module, or admits a GL(V )-action) if every change of basis in V gives
rise to a corresponding change of basis in L (in a coherent manner).

Furthermore, the representation L is irreducible if the L does not contain any
proper sub-representations. Notice that if L is an irreducible representation of
GL(V ), and θ : L → L is a K-linear map which is independent of the choice of basis
for V , (i.e., θ is a GL(V )-equivariant map), then θ is multiplication by a scalar.
Similarly, if L and L′ are non-isomorphic irreducible representations of GL(V ), and
θ : L → L′ is a GL(V )-equivariant K-module homomorphism, then θ is zero.

Remark. I believe that the last two sentences (about homomorphisms of irreducible
GL(V )-modules) is known as Schur’s Lemma. For the first fifty years of my life
– before I made any sense out of Representation Theory – I would tell students
that Schur’s lemma said that any ring homomorphism from a field to itself is either
identically zero or and isomorphism. Then I would stand back, scratch my head,
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and wonder why a name was associated to such a trivial observation. Technically,
I suppose, I was telling the truth in the old days. The intersection of what Schur
proved and what I understood; was indeed, a trivial comment. However, I am more
impressed with the result now that I understand more of it. The two sentences in
the preceding paragraph are the key to the whole sequence of lectures.)

Example. The module Symd(V ) is an irreducible GL(V )-representation for all
non-negative integers d. The easiest way to deal with Symd(V ) is to pick a basis
v1, . . . , vn for V . The vector space Sym

d
(V ) is the vector space of all homogeneous

polynomials of degree d in the n symbols v1, . . . , vn. Do notice that Symd(V ) admits
a GL(V )-action. (If you decide to use a new basis for V , you will be looking at the
same set of polynomials.)

Example. The module
∧

d
(V ) is an irreducible GL(V )-representation for all non-

negative integers d. My favorite basis for
∧d

(V ) is

{vi1
∧ . . . ∧ vid

| 1 ≤ i1 < · · · < id ≤ n}.

Once again, notice that
∧

d
(V ) admits a GL(V )-action.

Example. The Schur module LλV is an irreducible GL(V )-representation for all
partitions λ = (λ1, . . . , λ`). (The words “λ = (λ1, . . . , λ`) is a partition” mean
λ1 ≥ · · · ≥ λ` are non-negative integers.) The coordinate-free definition is that
LλV is the image of the natural map

(*)
∧λ1 V ⊗ . . .⊗

∧λ` V → Sym
λ′

1

V ⊗ . . . ⊗ Sym
λ′

last

V

where λ′ = (λ′

1
, . . . , λ′

last
) is the partition dual to λ. In particular, LiV =

∧
i
V and

L1iV = Symi(V ).


