An example of using Representation Theory to find a resolution

I plan to give three 50 minute talks. Here is an outline of my plan.

Section 1. A brief introduction to irreducible representations of GL(V).

Section 2. A family of complexes associated to a generic map $\varphi \colon F \to G$.

Section 3. The Littlewood-Richardson rule shows that the objects of section 2 are complexes.

Section 4. The Acyclicity Lemma (together with LR) yields exactness!

Section 1. A brief introduction to irreducible representations of GL(V).

Let K be a field of characteristic zero (like \mathbb{Q}) and V be a finite dimensional vector space over K. There are many K-module maps $\theta: V \to V$. However, if I restrict my attention to coordinate-free maps θ (and this is the natural thing to do in my business – if I am trying to tell somebody a large sequence of maps (i.e., a resolution), I have to make these maps be as transparent as possible, I don't want to have to start by telling my favorite basis!), then there are many fewer choices for θ . Indeed, in this case, θ is multiplication by a scalar from K. (This is an easy exercise in Linear Algebra. The words " $\theta: V \to V$ is a coordinate-free map" mean that for every $g \in \operatorname{GL}(V)$, $g \circ \theta \circ g^{-1} = \theta$. So, the matrix for θ , with respect to your favorite basis, commutes with all invertible matrices.)

The basic building blocks in this sequence of lectures are irreducible representations of GL(V). The first paragraph establishes V as one of these. As soon as I tell you what I am talking about, and why I care, I will tell you many more examples.

The vector space L is a representation of GL(V) (or is a GL(V)-module, or is a K[GL(V)]-module, or admits a GL(V)-action) if every change of basis in V gives rise to a corresponding change of basis in L (in a coherent manner).

Furthermore, the representation L is irreducible if the L does not contain any proper sub-representations. Notice that if L is an irreducible representation of $\operatorname{GL}(V)$, and $\theta: L \to L$ is a K-linear map which is independent of the choice of basis for V, (i.e., θ is a $\operatorname{GL}(V)$ -equivariant map), then θ is multiplication by a scalar. Similarly, if L and L' are non-isomorphic irreducible representations of $\operatorname{GL}(V)$, and $\theta: L \to L'$ is a $\operatorname{GL}(V)$ -equivariant K-module homomorphism, then θ is zero.

Remark. I believe that the last two sentences (about homomorphisms of irreducible GL(V)-modules) is known as Schur's Lemma. For the first fifty years of my life – before I made any sense out of Representation Theory – I would tell students that Schur's lemma said that any ring homomorphism from a field to itself is either identically zero or and isomorphism. Then I would stand back, scratch my head,

and wonder why a name was associated to such a trivial observation. Technically, I suppose, I was telling the truth in the old days. The intersection of what Schur proved and what I understood; was indeed, a trivial comment. However, I am more impressed with the result now that I understand more of it. The two sentences in the preceding paragraph are the key to the whole sequence of lectures.)

Example. The module $\operatorname{Sym}_d(V)$ is an irreducible $\operatorname{GL}(V)$ -representation for all non-negative integers d. The easiest way to deal with $\operatorname{Sym}_d(V)$ is to pick a basis v_1, \ldots, v_n for V. The vector space $\operatorname{Sym}_d(V)$ is the vector space of all homogeneous polynomials of degree d in the n symbols v_1, \ldots, v_n . Do notice that $\operatorname{Sym}_d(V)$ admits a $\operatorname{GL}(V)$ -action. (If you decide to use a new basis for V, you will be looking at the same set of polynomials.)

Example. The module $\bigwedge^{d}(V)$ is an irreducible $\operatorname{GL}(V)$ -representation for all non-negative integers d. My favorite basis for $\bigwedge^{d}(V)$ is

$$\{v_{i_1} \wedge \ldots \wedge v_{i_d} \mid 1 \le i_1 < \cdots < i_d \le n\}.$$

Once again, notice that $\bigwedge^{d}(V)$ admits a $\operatorname{GL}(V)$ -action.

Example. The Schur module $L_{\lambda}V$ is an irreducible GL(V)-representation for all partitions $\lambda = (\lambda_1, \ldots, \lambda_\ell)$. (The words " $\lambda = (\lambda_1, \ldots, \lambda_\ell)$ is a partition" mean $\lambda_1 \geq \cdots \geq \lambda_\ell$ are non-negative integers.) The coordinate-free definition is that $L_{\lambda}V$ is the image of the natural map

(*)
$$\bigwedge^{\lambda_1} V \otimes \ldots \otimes \bigwedge^{\lambda_\ell} V \to \operatorname{Sym}_{\lambda'_1} V \otimes \ldots \otimes \operatorname{Sym}_{\lambda'_{\text{last}}} V$$

where $\lambda' = (\lambda'_1, \ldots, \lambda'_{\text{last}})$ is the partition dual to λ . In particular, $L_i V = \bigwedge^i V$ and $L_{1^i} V = \operatorname{Sym}_i(V)$.