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Section 1. Irreducible Representations.

Let V be a finite dimensional vector space over the field K of characteristic zero.
Last week we learned that for every partition λ, there is an irreducible GL(V )-
representation Lλ(V ). This object was described in a coordinate free manner.
However, I can tell you a basis for it. I told you that Lλ(V ) is the image of a map

λ1∧

V ⊗ . . . ⊗

λ∧̀

V → Symλ′

1
V ⊗ . . . ⊗ Symλ′

last
V.

I will express my basis as elements of The left hand side
kernel . If v1, . . . , vn is a basis for V ,

then one basis for LλV is







vi1,1
∧ vi1,2

∧ . . .∧ vi1,λ1

⊗vi2,1
∧ vi2,2

∧ . . . ∧ vi2,λ2

⊗
...
⊗vi`,1

∧ vi`,2
∧ . . .







where the indices satisfy

1 ≤ ir,1 < ir,2 < · · · < ir,λr
≤ n

in each row and
i1,c

∧|
i2,c

∧|
i3,c

∧|
...

in each column.
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Section 2. A family of complexes associated to a generic map ϕ : F → G.
Let F and G be vector spaces over the old field K of dimension f and g re-

spectively; let R = K[{ϕi,j}] be the polynomial ring in the g × f variables ϕi,j ;
and let ϕ : F ⊗K R → G ⊗K R be the R-module homomorphism given by mul-
tiplication by the matrix [ϕi,j ]. (A useful, coordinate-free, description looks like
“let R = SymK(F ⊗ G∗) and ϕ : F ⊗K R → G ⊗K R be the natural R-module
homomorphism”.)

For each partition ν = (ν1, . . . , νg−1), I will tell give you a collection tν of free
R-modules and R-module homomorphisms:

→ tν,k → tν,k−1 → . . . .

Eventually, I will show you that each tν is a complex, and is acyclic. It is easy to
see that H0(tν) is a module over R/Ig(ϕ). When we look at the complexes we will
see that the length of tν is f − g + 1 when ν1 ≤ f − g + 1; so in these cases H0(tν)
is a maximal Cohen Macaulay R/Ig(ϕ)-module (and a perfect R-module).

The notation. Given the partition ν = (ν1, . . . , νg−1) and an integer k.

• Find i with νi ≥ k > νi+1. Let

p(ν, k) = (ν1, . . . , νi, k, νi+1 + 1, . . . , νg−1 + 1).

Let

N(ν, k) = |p(ν, k)| − |ν| = k + g − 1 − i.

The modules. Let tν,k =
∧N(ν,k)

F ⊗K Lp(ν,k)′G
∗ ⊗K R.

Examples.
• If g = 4, then t(0,0,0) is

· · · →
∧6

F ⊗ L(3,1,1,1)′G
∗

︸ ︷︷ ︸

D2G∗⊗

∧
4

G∗

⊗R →
∧5

F ⊗ L(2,1,1,1)′G
∗

︸ ︷︷ ︸

D1G∗⊗

∧
4

G∗

⊗R

→
∧4

F ⊗ L(1,1,1,1)′G
∗

︸ ︷︷ ︸
∧

4
G∗

⊗R →
∧0

F ⊗ L(0,0,0,0)′G
∗

︸ ︷︷ ︸

K

⊗R

(This is the Eagon-Northcott complex which resolves R/I4(ϕ).)
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• If g = 4, then t(1,1,1) is

· · · →
∧6

F ⊗ L(3,2,2,2)′G
∗

︸ ︷︷ ︸

D1G∗⊗

∧
4

G∗⊗

∧
4

G∗

⊗R →
∧5

F ⊗ L(2,2,2,2)′G
∗

︸ ︷︷ ︸
∧

4
G∗⊗

∧
4

G∗

⊗R

→
∧1

F ⊗ L(1,1,1,1)′G
∗

︸ ︷︷ ︸
∧

4
G∗

⊗R →
∧0

F ⊗ L(1,1,1,0)′G
∗

︸ ︷︷ ︸

Sym1 G⊗

∧
4

G∗

⊗R

(This is the “Buchsbaum-Rim” complex which resolves the cokernel of the generic

map F
ϕ
−→ G.)

• If g = 4, then t(2,1,0) is

· · · →
∧7

F ⊗L(4,3,2,1)′G
∗⊗R →

∧6
F ⊗L(3,3,2,1)′G

∗⊗R →
∧4

F ⊗L(2,2,2,1)′G
∗⊗R

→
∧2

F ⊗ L(2,1,1,1)′G
∗ ⊗ R →

∧0
F ⊗ L(2,1,0,0)′G

∗ ⊗ R.

I included this example merely to point out that the family of complexes under
consideration is much larger than the family of Eagon-Northcott complexes. One
can tell the degree of the differential by looking at the difference in the power of
∧

F . The present example has three matrices of quadratic maps before linear maps
finally appear. An Eagon-Northcott complex (see for example Appendix A2.6 in
Eisenbud) has linear maps in every position except one.

The differentials. I will tell you the differential

(**) tν,k → tν,k−1.

The partition ν is (ν1, . . . , νi, k − 1, . . . , k − 1
︸ ︷︷ ︸

m

, νj, . . . , νg−1), with νi ≥ k and k−2 ≥

νj . In this case,

p(ν, k) = (α, km+1, β) and p(ν, k − 1) = (α, (k − 1)m+1, β)

for α = (ν1, . . . , νi) and β = (νj +1, . . . , νg−1 +1). When K has characteristic zero,
Representation Theory establishes the existence of a map

(***) L(α,km+1,β)′G
∗ RT
−−→ L(1m+1)′G

∗ ⊗ L(α,(k−1)m+1,β)′G
∗.
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Of course, L(1m+1)′G
∗ is a very odd way of writing

∧m+1
G∗. The map (**) is

tν;k =
∧N(ν;k)

F⊗L(α,km+1,β)′G
∗⊗R

RT
−−→

∧N(ν;k)
F⊗

∧m+1
G∗⊗L(α,(k−1)m+1,β)′G

∗

∧
m+1

ϕ∗

−−−−−−→
∧N(ν,k)

F ⊗
∧m+1

F ∗ ⊗ L(α,(k−1)m+1,β)′G
∗ module action
−−−−−−−−−→

∧N(ν;k)−(m+1)
F ∗ ⊗ L(α,(k−1)m+1,β)′G

∗ = tν,k−1

(In other words, use Representation Theory to pull m + 1 boxes from row k and
then do the “obvious map” involving the m + 1 × m + 1 minors of ϕ.)

The picture that goes with (***) is:

α1 × 1 . . . α` × 1 k × (m + 1) β1 × 1 . . . βs × 1

The Representation Theory allows us to move the bottom row from

k × (m + 1)

and get

1 × (m + 1) ⊗

α1 × 1 . . . α` × 1 (k − 1) × (m + 1) β1 × 1 . . . βs × 1

The reason that Representation Theory gives the map (***): The mod-
ule Lm+1G

∗ ⊗ L(α,(k−1)m+1,β)′G
∗ is a direct sum of irreducible representations
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of GL(G∗). The Littlewood-Richardson rule tells us that exactly one copy of
L(α,km+1,β)′G

∗ appears in this direct sum decomposition. So (up to scalar mul-
tiple from K), there is exactly one coordinate-free map (***). It is possible to
write down exactly what (***) does, but it is not a very pretty answer!

Section 3. Each tν is a complex.

The Littlewood-Richardson Rule. If λ and µ are partitions then

LλV ⊗ LµV =
⊕

LR(λ, µ; ν)LνV

where the sum is taken over all partitions ν with |ν| = |λ|+ |µ|, and the Littlewood-
Richardson coefficient LR(λ, µ; ν) is is calculated according to the following descrip-
tion. Draw ν, remove µ. Fill in the resulting picture using λ1 ones, λ2 twos, etc.
You must have your rows WEAKLY increasing and your columns STRICTLY in-
creasing. The word that you form using the Macdonald convention (right to left top
to bottom) must be a lattice permutation meaning w = a1a2 . . . aN in the symbols
1, 2, . . . , n is a lattice permutation if for 1 ≤ r ≤ N and 1 ≤ i ≤ n−1, the number of
occurrences of the symbol i in a1a2 . . . ar is not less than the number of occurrences
of i + 1.

Example. Let us calculate the LR coefficient for L(α,km+1,β)′G
∗ in

Lm+1G
∗ ⊗ L(α,(k−1)m+1,β)′G

∗.

We draw (α, km+1, β)′ and remove (α, (k − 1)m+1, β)′. This leaves

a one m + 1 row of boxes .

We must fill these boxes in using m + 1 ones. There is one way to do this. This
unique way is weakly increasing in the rows and the word is okay! Thus, there is
exactly one non-zero GL(V )-module homomorphism

L(α,km+1,β)′G
∗ → Lm+1G

∗ ⊗ L(α,(k−1)m+1,β)′G
∗

(up to multiplication by a scalar).
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Calculation. Now we show that each tν is a complex. That is, we show that the
composition

(†) tν,k → tν,k−1 → tν,k−2

is zero. Write ν = (ν1, . . . , νi, (k − 1)a, (k − 2)b, νj, . . . , νg−1), with νi ≥ k and
k − 3 ≥ νj . Let α = (ν1, . . . , νi) and β = (νj + 1, . . . , νg−1 + 1). We see that

p(ν; k) = (α, ka+1, (k − 1)b, β), p(ν; k − 1) = (α, (k − 1)a+b+1, β)

and
p(ν; k − 2) = (α, (k − 1)a, (k − 2)b+1, β).

The composition (†) is

tν,k =

N(ν;k)
∧

F ⊗ L(α,ka+1,(k−1)b,β)′G
∗ ⊗ R

RT
−−→

N(ν;k)
∧

F ⊗
a+1∧

G∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G
∗ ⊗ R

ϕ∗

−→

N(ν;k)
∧

F ⊗

a+1∧

F ∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G
∗ ⊗ R

MA
−−→

N(ν;k)−(a+1)
∧

F ⊗ L(α,(k−1)a+1,(k−1)b,β)′G
∗ ⊗ R

RT
−−→

N(ν;k)−(a+1)
∧

F ⊗
b+1∧

G∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G
∗ ⊗ R

ϕ∗

−→

N(ν;k)−(a+1)
∧

F ⊗

b+1∧

F ∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)′G
∗ ⊗ R

MA
−−→

N(ν;k)−(a+1)−(b+1)
∧

F ⊗ L(α,(k−1)a,(k−2)b+1,β)′G
∗ ⊗ R = tν;k−2

It is legal to do both representation theory maps first, then do both ϕ∗ maps,
and then do both module action maps. So we focus on the composition of the
Representation Theory maps:

L(α,ka+1,(k−1)b,β)′G
∗ RT
−−→

a+1∧

G∗ ⊗ L(α,(k−1)a+1,(k−1)b,β)′G
∗ RT
−−→
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a+1∧

G∗⊗

b+1∧

G∗⊗L(α,(k−1)a,(k−2)b+1,β)′G
∗ EM
−−→

a+1+b+1∧

G∗⊗L(α,(k−1)a,(k−2)b+1,β)′G
∗

(The maps “ϕ∗” and “Module action” both commute with “Exterior Multiplica-
tion”.) Well, the Littlewood-Richardson rule tells us that the only GL(G∗)-module
map

(††) L(α,ka+1,(k−1)b,β)G
∗ → La+b+2G

∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)G
∗

is ZERO, and (†) factors through (††); thus, (†) is also zero.

To see that the only choice for a GL(G∗)-module map (††) is zero: We
compute the LR coefficient for L(α,ka+1,(k−1)b,β)G

∗ in

La+b+2G
∗ ⊗ L(α,(k−1)a,(k−2)b+1,β)G

∗.

We draw the picture for (α, ka+1, (k − 1)b, β), remove the picture for
(α, (k − 1)a, (k − 2)b+1, β). We are left with

· · ·

· · ·

with b+1 boxes in the top row, a+1 boxes in the bottom row, and an overlap of one
box. There is NO way to fill the picture in using ALL ONES so that the columns
are strictly increasing. Thus, the only coordinate free K-vector space map
with domain and range given in (††) is zero and (†) is also zero.

Section 4. Each tν is a resolution.


