Title: The bi-graded structure of Symmetric Algebras with applications to Rees rings.

Speaker: Andy Kustin, University of South Carolina

Date and Time: Friday, February 10, 2012, 2 PM
Abstract: Let k be a field, $R=k[x, y]$ a polynomial ring in 2 variables over k, and I a height 2 ideal of R minimally generated by 3 forms, g_{1}, g_{2}, g_{3} of the same positive degree d. The Hilbert-Burch Theorem guarantees that there is a 3×2 matrix φ, with homogeneous entries from R, so that the signed 2×2 minors of φ are equal to g_{1}, g_{2}, and g_{3}. We arrange φ so that each entry in column i of φ has degree d_{i}, with $d_{1}<d_{2}$. Let \mathcal{R} be the Rees algebra of I, that is

$$
\mathcal{R}=R \oplus I \oplus I^{2} \oplus I^{3} \oplus \cdots=R[I t],
$$

\mathcal{A} be the kernel of the natural surjection

$$
\operatorname{Sym}(I) \rightarrow \mathcal{R}
$$

from the symmetric algebra of I to the Rees algebra of I and let S and B be the polynomial rings $S=k\left[T_{1}, T_{2}, T_{3}\right]$ and $B=R \otimes_{k} S=k\left[x, y, T_{1}, T_{2}, T_{3}\right]$. View B as a bi-graded k-algebra, where x and y have bi-degree (1,0) and each T_{i} has bi-degree $(0,1)$. We describe the S-module structure of $\mathcal{A}_{\left(\geq d_{1}-1, *\right)}$ under the hypothesis that φ has a generalized zero in its first column. This module is free and we identify the bi-degrees of its basis. We also identify the bi-degrees of a minimal generating set of $\mathcal{A}_{\left(\geq d_{1}-1, *\right)}$ as an ideal of $\operatorname{Sym}(I)$. Our proof is motivated by a Theorem of Weierstrass and Kronecker which classifies matrices with homogeneous linear entries in two variables - that is, "singular pencils of matrices". We learned about the Weierstrass-Kronecker Theorem from Gantmacher's book. When one views this result in a geometric context, that is,

$$
\left[g_{1}, g_{2}, g_{3}\right]: \mathbb{P}^{1} \rightarrow \mathcal{C} \subseteq \mathbb{P}^{2}
$$

is a birational parameterization of a plane curve, then $\operatorname{Bi}-\operatorname{Proj} \mathcal{R}$ is the graph, Γ, of the parameterization of \mathcal{C}, the hypothesis concerning the existence of a generalized zero is equivalent to assuming that \mathcal{C} has a singularity of multiplicity d_{2}, and the ideal $\mathcal{A}_{\left(\geq d_{1}-1, *\right)}$ is an approximation of the ideal \mathcal{A} which defines Γ. This is joint work with Claudia Polini (University of Notre Dame) and Bernd Ulrich (Purdue University).

