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Let I be an ideal of height g > 0 in a commutative noetherian ring R, and let A

be a proper sub-ideal of I generated by s ≥ g elements. If the ideal J = (A :I) has
height at least s, then J is called an s−residual intersection of I. (See Artin and
Nagata [1], Huneke [19], or Huneke and Ulrich [22].) The case s = g corresponds
to the theory of linkage, and is well understood, at least from the homological
point of view. The cornerstone of this theory is that, if I is perfect, then a free
resolution of R/J can be produced from a free resolution of R/I and the Koszul
complex on a set of generators of A. Very little is known about resolutions of
s−residual intersections for s > g. A few special cases have been resolved ([5],
[10], [30]); and the end of the resolution, or, in other words, a set of generators for
the canonical module of R/J , has been described ([22]). However, in general, even
the generators of J remain unknown. Here, we show that J can be approximated
by a “sum of links” of I if s = g + 1, and we give conditions under which this
approximation in fact gives a full set of generators of J . Since these generators
arise from comparison maps from Koszul complexes to known resolutions (at least
assuming that the resolution of R/I is in some sense known), it is feasible to count
them, compute their degrees in the graded case, or even to give explicit formulas for
them. After stating our main results (Theorems 2.15 and 2.16 and Corollary 2.18)
precisely in section 2, we lay out the argument in sections 3, 4 and 5. In section
6, we are concerned with the question of when a (g + 1)−residual intersection J
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is Cohen-Macaulay, and in section 8, we estimate the number of generators for J .
Section 7 contains various examples and applications.

1. Preliminary Concepts.

Throughout this paper R is a commutative noetherian ring (sometimes it
will also be local and Cohen-Macaulay), and Tor denotes TorR. An ideal we call
K will play a prominent role in our calculations. Throughout the entire paper we
let

R = R/K.(1.1)

If r is an element of R, and N is an ideal of R, then we write

r + N(1.2)

for the image of r in R/N . If M is an R−module, then M∗ denotes HomR(M,R),
and

〈 , 〉 : M ∗ ⊗ M → R(1.3)

is the evaluation map.
An ideal I in a ring R is unmixed if all of the associated prime ideals of I have

the same height. The grade of a (proper) ideal I in a ring R is the length of the
longest regular sequence on R in I. The ideal I of R is called perfect if the grade
of I is equal to the projective dimension, pdR(R/I), of the R−module R/I. The
grade g perfect ideal I is called Gorenstein if Extg

R(R/I,R) ∼= R/I. If I is a grade
g Gorenstein ideal and A is any ideal, then there is an isomorphism

τ : Torg(R/I,R/A)
∼=−→ (A :I)/A.(1.4)

If R is local, then one can easily establish (1.4) by applying — ⊗(R/A) to a minimal
resolution of R/I. We return to this isomorphism in Lemma 3.2.

If A and B are ideals, then we will make much use of the isomorphism

ϑ : Tor1(R/A,R/B) → (A ∩ B)/AB.(1.5)

To be explicit, if (F, d) is a projective resolution of R/A and x is an element of F1

with x ⊗ 1 a cycle in F ⊗ (R/B), then ϑ[x ⊗ 1] = [d1(x)].
The theory of linkage appears everywhere in this paper. Let I and J be proper

ideals in a noetherian ring R, and let x be an R−regular sequence contained in
I ∩ J . If J = ((x) : I) and I = ((x) : J), then I and J are linked by (x). Let I
be an R−ideal of grade g, and let x be an R−regular sequence of length g with
(x) properly contained in I. Set J = ((x) : I). If, either, I is perfect, or else R is
Gorenstein, I is unmixed, and R/I is Cohen-Macaulay, then J has grade g, and
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I and J are linked by (x). Furthermore, in the first case, J is perfect and, in the
second case, J is unmixed and R/J is Cohen-Macaulay. (See, for example, [33,
Propositions 1.3 and 2.6] or [7, section 5].) An ideal I is said to be licci (that
is, in the linkage class of a complete intersection) if there is a sequence of ideals
I = I0, . . . , In such that In is generated by a regular sequence, and Ii and Ii+1

are linked for all i. Now assume that I and J are linked by (x) where either I
is perfect, or else R is Gorenstein, I is unmixed, and R/I is Cohen-Macaulay.
Then it is well-known (see, for example, [28, Proposition 3.4]) that the following
statements are equivalent:

(a) I ∩ J = (x),

(b) (x)P = IP for all associated prime ideals P of R/I,

(c) Ass(R/I) ∩ Ass(R/J) = ∅.
If these conditions hold, then I and J are said to be geometrically linked.

Following the lead of [1], we say that an ideal I in a ring R satisfies the condition
Gk if µ(IP ) ≤ dim(RP ) for all prime ideals P of R with I ⊆ P and dim(RP ) < k.
(In the present context, µ(M) means the minimal number of generators of the
module M .) The ideal I satisfies G∞ if it satisfies Gk for all k. An ideal I is
said to be strongly Cohen-Macaulay if the Koszul homology modules on any set of
generators of I are Cohen-Macaulay modules. The main theorem of [18] guarantees
that every licci ideal in a Gorenstein ring is strongly Cohen-Macaulay.

Geometric residual intersection (introduced in [22]) is analogous to geometric
linkage. The s−residual intersection J = (A : I) is called geometric if IP = AP

for all prime ideals P of R with I ⊆ P and dim RP ≤ s. In this case it follows
immediately from the definition that

ht(I + J) ≥ s + 1.(1.6)

Let (R, I) be a pair consisting of a local ring R and an R−ideal I. A pair (R̃, Ĩ)
is a deformation of (R, I) if

(R, I) = (R̃/(x), (Ĩ ,x)/(x))

for some sequence x in R̃ which is regular on both R̃ and R̃/Ĩ.
Finally, we recall that an ideal I is said to satisfy a property generically if IQ

satisfies the property for every associated prime Q of I. If M is a matrix with
entries in the ring R, then It(M) is the ideal of R generated by the t × t minors
of M . If X = (xij) is a matrix of indeterminates, then we let R[X] denote the
polynomial ring R[{xij}].
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2. The Main Theorems.

Assume that (R, M, k) is a local Cohen-Macaulay ring and that I is a perfect
ideal of height g > 0 with I generically a complete intersection. Suppose A is an
ideal, contained in I, generated by g + 1 elements; and J = (A : I) is a (g +
1)−residual intersection. Consequently, Ip = Ap for ht P = g. Assume that
generators a1, . . . , ag+1 for A have been chosen so that the first g elements form
a regular sequence and Ip = (a1, . . . , ag)P for primes P minimal over I. (If k
is infinite, then one may either prove this general position statement directly or
consult [4].) Let A = (a1, . . . , ag), y = ag+1, and K = (A :I). (This ideal K is the
ideal of (1.1).) By the choice of A, we see that K is geometrically linked to I.

We define three ideals H, K and L of R which are all contained in J . (The ideal
K is defined only if I is Gorenstein.) We think of these ideals as “approximations
of J .” Of the three ideals, H is the most difficult to compute, but the quotient
J/H has been studied often in other contexts. The ideals K and L are both easy
to compute. Indeed, the “new generators” of these ideals are the entries of the
last map in a comparison from a Koszul complex to a known resolution. As such,
both of these ideals appear to be a “sum of links”. Fortunately, in Theorems 2.15
and 2.16, we are able to show that the three approximations H, K and L are all
essentially the same; consequently, we can both calculate our approximations and
estimate how close they are to all of J .

We first give our recipe for calculating K. Assume that I is a Gorenstein ideal.
Let (E, d) be the Koszul complex on a generating set of the ideal A, F be a minimal
resolution of R/I, and α : E → F be a complex map which covers the natural map

H0(E) = R/A → R/I = H0(F ).

If an identification Fg
∼= R is fixed, then

K = im(αg) + A.(2.1)

It will be useful to identify a particular generating set for im(αg). We have chosen
a generating set a1, . . . , ag+1 for A. Let ε1, . . . , εg+1 be a basis for E1 with dεi = ai

for all i. Define

ci = (−1)i+1αg(ε1 ∧ . . . ∧ ε̂i ∧ . . . ∧ εg+1) ∈ R.(2.2)

In (2.1) we said that
K = (c1, . . . , cg+1) + A.(2.3)
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The commutative diagram

0 −→ Eg+1
dg+1−→ Eg

↓ αg+1 ↓ αg

0 −→ Fg

with αg = [c1, . . . , cg+1] and dg+1 = [a1, . . . , ag+1]
T yields the equation

g+1∑
i=1

aici = 0.(2.4)

(We use “T” to mean “transpose”.) For each i with 1 ≤ i ≤ g + 1, let Ki be the
ideal

Ki = (a1, . . . , âi, . . . , ag+1, ci).(2.5)

Observe that Kg+1 = K is a link of I. If a1, . . . , âi, . . . , ag+1 is a regular sequence,
then Ki is also a link of I. At any rate,

K =
∑

Ki,

and we refer to K as a “sum of links”.
Continuing to assume that I is a Gorenstein ideal, we observe (with generaliza-

tion in mind) that K could have been defined as the ideal of R with the property
that K/A is the image of

∧gTor1(R/I,R/A)
mult.−→ Torg(R/I,R/A)

τ−→ (A :I)/A = J/A,(2.6)

where the first map is Tor−algebra multiplication, the map τ is the isomorphism
of (1.4), and the final identification is due to the definition of J .

Dropping the Gorenstein hypothesis on I, we define the ideal L in a similar
manner. Recall, from [33, Remarque 1.4], that the ideal I + K is a Gorenstein
ideal of height g + 1. It was observed in [19], that

J = (K, y) : (I + K).(2.7)

(Indeed, if rI ⊂ (K, y), then r ∈ ((A, y) :I) = J because y ∈ I and (I ∩ K) = A.)
Let L be the ideal in R such that L/(K, y) is the image of

∧g+1Tor1

(
R

I+K
, R

(K,y)

)
mult.−→ Torg+1

(
R

I+K
, R

(K,y)

)
τ−→ (K,y):(I+K)

(K,y)
= J

(K,y)
.(2.8)

The map labeled mult. is Tor−algebra multiplication; the map τ is the isomorphism
of (1.4); and the last identification is due to (2.7).
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We next give a recipe for calculating L. Let (K, d) be a Koszul complex on a
generating set of the ideal (K, y), C be the minimal resolution of R/(I + K), and
α : K → C be a map of complexes which covers the natural map

H0(K) = R/(K, y) → R/(I + K) = H0(C).

If an identification Cg+1
∼= R is fixed, then a quick look at (2.8) shows that

L = im(αg+1) + (K, y).

A closer inspection of (2.8) yields a more detailed description of L/(K, y). If x is
an element of K1 with dx = y, then

L = im(αg+1(— ∧ x)) + (K, y).(2.9)

Indeed, if x1, . . . , xg+1 are elements of K1 with dxi ∈ K for all i, then

αg+1(x1 ∧ . . . ∧ xg ∧ xg+1)

is an element of (K, y). This last observation holds because Tor−algebra multipli-
cation factors through∧g+1Tor1(R/(I + K), R) −→ Torg+1(R/(I + K), R) = 0

↓ ↓∧g+1Tor1(R/(I + K), R/(K, y)) −→ Torg+1(R/(I + K), R/(K, y)).

(2.10)

(The module in the upper right hand corner is zero because K is a perfect ideal of
grade g.)

Let K = (z1, . . . , zm). If (i) is a g−multi-index and z(i) denotes

zi1, . . . , zig ,

then let L(i) be the ideal (z(i), y, w(i)) for

w(i) = αg+1(xi1 ∧ . . . ∧ xig ∧ x), where xij ∈ K1 and dxij = zij .

It is clear that the equality
L =

∑
(i)

L(i)(2.11)

always holds. If the elements z(i), y form a regular sequence, then L(i) is an almost
complete intersection which is linked to the Gorenstein ideal I + K. The fact that
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(2.11) holds and that the ideals L(i) are sometimes links has lead us to refer to L

as a “sum of links”.
Let H be the ideal in R such that H/K is the image of the following composi-

tion: ∧gTor1(R,R)
µ−→ Torg(R,R)

λ−→ J/K.(2.12)

The map µ is Tor−algebra multiplication and the isomorphism λ is described in
Lemma 3.5. (Roughly speaking, there is a familiar identification of Torg(R,R) with
the dual of the canonical module, ω∗

R
= Hom(I/A,R); evaluation at y provides an

isomorphism from this last module to J/K.) Observe, for future reference, that

J/H ∼= coker(µ).(2.13)

Our main theorems are valid in a setting that is somewhat more general than
has been discussed so far. Indeed, they are valid when:

(2.14) R is a commutative noetherian ring; I and K are geometrically linked perfect
ideals of grade g > 0; y is an element of I that is regular on R = R/K; and
A = I ∩ K, A = (A, y), and J = (A :I).

Recall that A, y, and K can be produced, given a (g + 1)−residual intersection
J = (A : I), provided I is a perfect ideal of height g > 0 in a Cohen-Macaulay
local ring (R, M, k), I is generically a complete intersection and k is an infinite
field. Observe that this manufactured data does satisfy the hypotheses of (2.14).
(Indeed, it is only necessary to show that y is regular on R. However, if y were a
zero divisor on R, then (A, y) = A would be contained in a minimal prime of K.
On the other hand, every height g prime of R which contains A also contains I
since (A :I) = J is a (g + 1)−residual intersection. This is a contradiction because
geometrically linked ideals do not have any common components.)

In section 3 we prove that the ideals H, L, and K of (2.12), (2.8) and (2.6) are
defined whenever the assumptions of (2.14) hold. Furthermore, the recipes of (2.9)
and (2.1) hold under the assumptions of (2.14) provided that the free resolutions
C and F have the correct length and rank Cg+1 = rank Fg = 1.

Theorem 2.15. Assume the notation and hypotheses of (2.14). Define H, L,
and µ as in (2.12) and (2.8). Then

(a) The ideal L is equal to (H, y).

(b) There is a short exact sequence

0 → (H, y)/H → coker(µ) → J/L → 0.
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(c) If R is a power series ring over an infinite perfect field and R is reduced,
then coker(µ) is isomorphic to the ratio DD/DK of the Dedekind and Kähler
differents of R.

Theorem 2.16. In addition to the hypotheses of Theorem 2.15 (a), assume
that I is a Gorenstein ideal and define K as in (2.6). Then

(a) The ideals H, K, and L are all equal.

(b) The module J/K is isomorphic to coker(µ).

(c) The module coker(µ) is isomorphic to the cotangent cohomology
T 2(R/R,R).

Under certain circumstances it is known that coker(µ) = 0.

Corollary 2.17. Assume the hypotheses of Theorem 2.15 (a). If R is a Cohen-
Macaulay ring which contains the rational numbers and g = 2, then J = L.

Proof. If suffices to assume that R is local. In this case Herzog [15, Corollary
4.12] has shown that coker(µ) = 0 if K is perfect of grade two and is generically a
complete intersection.

Corollary 2.18. Let I be a grade g > 0 Gorenstein ideal in a Gorenstein
ring R such that I is generically a complete intersection. Let J = (A : I) be a
(g + 1)−residual intersection in R. Form K as in (2.6). Then J = K if and only if
T 2((R/I)/R,R/I) = 0.

Note. If I is a licci ideal which is generically a complete intersection, then
Theorem 2.19 (a) guarantees that T 2((R/I)/R,R/I) = 0.

Proof. Since A ⊆ K ⊆ J , there is no loss of generality if we assume that R is
local. If necessary we may make a faithfully flat extension of R in order assume
that the residue field of R is infinite. The data of (2.14) can now be manufactured.
We apply Theorem 2.16 in order to see that J/K ∼= T 2(R/R,R). The proof is
completed by applying Theorem 2.19 (b).

Theorem 2.19. Let R be a Gorenstein ring.

(a) ([8]) If I is a licci ideal of R which is generically a complete intersection,
then T 2((R/I)/R,R/I) = 0.
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(b) ([9]) Suppose I and K are perfect ideals of R which are in the same linkage
class. If each of these ideals is generically a complete intersection, then

T 2((R/K)/R,R/K)M
∼= T 2((R/I)/R,R/I)M

for all maximal ideals M of R. In particular,

T 2((R/K)/R,R/K) = 0 ⇔ T 2((R/I)/R,R/I) = 0.

There are two parts to the proof of Theorems 2.15 and 2.16. In sections 3
and 4 we establish the relationship between the ideals H, K, and L. In section 5
we identify coker(µ) with other classical objects. Observe that the assertions of
2.15 (b) and 2.16 (b) are immediate consequences of (2.13), 2.15 (a), and 2.16 (a).

3. The Approximation Ideals are Well Defined.

In this section R is an arbitrary commutative noetherian ring. The isomor-
phisms

λ : Torg(R,R) ∼= J/K,

τ : Torg+1(
R

I+K
, R

(K,y)
) ∼= (K,y):(I+K)

(K,y)
, and

τ : Torg(R/I,R/A) ∼= (A :I)/A

(3.1)

of (2.12), (2.8), and (2.6) are not canonical. For the time being, let N be K, I+K,
or I, respectively; let M be K, (K, y) or A, respectively, and let n = pdR(R/N).
If A is a projective resolution of R/N of length n, then the isomorphisms of
(3.1) depend on an identification of Extn

R((R/N), R) with a submodule of R/N ,
and on a choice of augmentation m from A∗ to this submodule. However, if T is
a submodule of Torn(R/N,R/M), then the image of T in R/M does not depend
on the particular isomorphism used in (3.1). In this section we establish the above
assertions in order to know that the ideals H, K, and L of section 2 are well-
defined whenever the hypotheses of (2.14) are satisfied. We begin by establishing
isomorphism (1.4) whenever I is a grade g Gorenstein ideal.

Lemma 3.2. Let I be a Gorenstein ideal of grade g in the ring R, and let L
be an arbitrary ideal of R. If (A, a) is a length g resolution of R/I by projective
R−modules and m : A∗

g → R/I is an augmentation of the resolution A∗ onto R/I,
then m induces an isomorphism

τm : Torg(R/I,R/L) → (L :I)/L.

Proof. Select u ∈ A∗
g with m(u) = 1̄ in R/I. We show that the map

(u ⊗ 1) : Ag ⊗ (R/L) → (R/L)
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restricts to give an isomorphism

τm : ker(ag ⊗ 1R/L) → (L :I)/L.

(Notice that τm does not depend on the choice of u. If v is another element of A∗
g

with m(v) = 1̄, then u− v ∈ ker(m) = im(a∗
g). Thus, u⊗ 1 and v⊗ 1 are the same

function when restricted to the domain of τm.)
At any rate, we show that τm is an isomorphism by showing that (τm)M is an

isomorphism for all maximal ideals M of R. Assume that (R, M) is local. There
exist bases x1, . . . , xr for Ag and y1, . . . , ys for Ag−1 such that

(a) u(xj) = δ1 j, for all j, and

(b) the matrix of ag with respect to these bases is
r1
... 0
rn

0 id


for some generating set r1, . . . , rn for I.

It is now clear that τm is an isomorphism.

Lemma 3.3. Retain the notation of Lemma 3.2. If T is a submodule of
Torg(R/I,R/L), then the image τm(T ) does not depend on the choice of m.

Proof. We may assume that R is local since it suffices to prove the claim
locally at every maximal ideal containing I. Let (B, b) be a resolution of R/I and
let n : B∗

g → R/I be an augmentation of B∗ onto R/I. We only need to show
that the map τnτ

−1
m : (L : I)/L → (L : I)/L is multiplication by a unit t of R. The

augmentation n : B∗
g → (R/I) induces an isomorphism n̄ : coker(b∗g) → (R/I) with

the property that the composition

B∗
g

nat.−→ coker(b∗g)
n̄−→ R/I

is n. Similarly, there is an isomorphism m : coker(a∗
g) → R/I with the composition

A∗
g

nat.−→ coker(a∗
g)

m−→ R/I

equal to m.
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Let α : A → B be a complex map which covers the identity map on R/I:

0 → Ag
ag−→ Ag−1 → . . . → A1

a1−→ A0
a0−→ R/I

↓ αg ↓ αg−1 ↓ α1 ↓ α0 ↓ id.

0 → Bg
bg−→ Bg−1 → . . . → B1

b1−→ B0
b0−→ R/I.

The dual of α covers the identity map on Extg
R(R/I,R); however, we picked the

augmentations m and n before we chose α. Consequently, the composition

R/I
n̄−1−→ coker(b∗g)

α∗
g−→ coker(a∗

g)
m−→ R/I

is an automorphism of the (R/I)−module R/I, but not necessarily the identity.
Thus, there is a unit t of R so that the diagram

. . . → B∗
g−1

b∗g−→ B∗
g

n−→ R/I → 0

↓ α∗
g−1 ↓ α∗

g ↓ t

. . . → A∗
g−1

a∗
g−→ A∗

g
m−→ R/I → 0

commutes.
Take bases for Ag, Ag−1, Bg, and Bg−1 as described in (a) and (b) of the proof

of Lemma 3.2. Let (ti j) be the matrix of αg with respect to these bases. One can
easily verify that

(a) τnτ
−1
m (r + L) = t1 1(r + L) for all r ∈ (L :I), and

(b) t1 1 − t ∈ I.

Thus, the automorphisms of (L : I)/L given by: τnτ−1
m , multiplication by t1 1, and

multiplication by t, are all equal.

Corollary 3.4. Assume the hypotheses of (2.14). Let τm be any of the maps
of Lemma 3.2.

(a) Every choice for the map τ = τm in (2.8) gives rise to the same ideal L of
R.

(b) If I is Gorenstein, then every choice for the map τ = τm in (2.6) gives rise
to the same ideal K of R.

For the rest of this section we study the isomorphism λ : Torg(R,R) → J/K
of (2.12). The notation and hypotheses of (2.14) are in effect throughout. Under
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these assumptions, we have

Extg
R(R,R) ' HomR(R,R/A) =

A :K

A
=

I

I ∩ K
=

I + K

K
.

For each length g resolution A of R and each augmentation m : A∗
g → (I + K)K,

we obtain an isomorphism λm : ker(ag ⊗ 1R) → J/K. We also show that if T is a
fixed submodule of Torg(R,R), then the image λm(T ) in J/K does not depend on
m.

If R is Gorenstein local, then it is well-known that Torg(R,R) is isomorphic to
the dual of the canonical module ω∗

R
. The following lemma amounts to the same

thing, absent extraneous hypotheses. The argument we give is implicit in Herzog
[15, Proposition 3.5].

Lemma 3.5. Adopt the notation of (2.14). If (B, b) is a length g projective
resolution of R and m : B∗

g → (I+K)/K is an augmentation of B∗ onto (I+K)/K,
then m induces an isomorphism

λm : Torg(R,R) → J/K.

Proof. Select an element η on B∗
g with m(η) = y + K in (I + K)/K. We will

prove that (η ⊗ 1R) : Bg ⊗ R → R restricts to give an isomorphism

λm : ker(bg ⊗ 1R) → J/K.

First we establish isomorphisms ρ and θ:

(3.6) ker(bg ⊗ 1R)
ρ−→ Hom

(
I + K

K
,R
)

θ−→ J/K,

then we prove that the composition θρ is in fact equal to the restriction of η ⊗ 1R

to ker(bg ⊗ 1R).
We have been given a presentation

(3.7) B∗
g−1

b∗g−→ B∗
g

m−→ (I + K)/K → 0

of (I + K)/K by free R−modules. Let “ – ” denote reduction modulo K. If we
apply — ⊗R to (3.7) and identify HomR(Bi, R) ⊗ R with HomR(Bi, R) for each
projective R−module Bi, then we obtain a presentation of (I+K)/K by projective
R−modules:

(3.8) B
∗
g−1

b̄∗g−→ B
∗
g

m−→ (I + K)/K → 0,
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where “ ∗ ” now represents HomR(—, R). (Notice that the maps b̄∗g and b∗g ⊗ 1R are

exactly the same.) If we apply Hom(—, R) once more to (3.8), then the canonical
identification of Bi with B

∗∗
i yields a commutative diagram with exact rows:

0 −→ ker(b̄g) −→ Bg
b̄g−→ Bg−1

eval. ↓ ∼= eval. ↓ ∼=
0 −→ Hom((I + K)/K,R)

m∗−→ B
∗∗
g

b̄∗∗g−→ B
∗∗
g−1.

Thus, there is an induced isomorphism ρ : ker(b̄g) → Hom((I + K)/K,R). Fur-
thermore, if x is any element of ker(b̄g) and γ is any element of B

∗
g, then

(3.9) 〈ρ(x),m(γ)〉 = 〈γ, x〉.
Since ȳ = y + K is in Ī = (I + K)/K, and ȳ is regular on R, it is well-known

(and easy to show) that the homomorphism θ : Hom(Ī , R) → (ȳ) : Ī defined by
θ(f) = f(ȳ) is an isomorphism. Observe that (2.7):

(3.10) (K, y) : (I + K) = J

holds under the hypotheses of (2.14). Thus, (ȳ) : Ī = J̄ = J/K, and both iso-
morphisms of (3.6) have been established. Finally, if x ∈ ker(b̄g), then, from the
definition of θ, the definition of η, the definition of m in (3.8), and (3.9), we see
that

θρ(x) = 〈ρ(x), y + K〉 = 〈ρ(x),m(η)〉 = 〈ρ(x), m(η ⊗ 1R)〉 = 〈η ⊗ 1R, x〉.
It follows that the restriction of η ⊗ 1R to ker(bg ⊗ 1R) is an isomorphism onto
J/K.

Lemma 3.11. Retain the notation of Lemma 3.5. If T is a submodule of
Torg(R,R), then the image λm(T ) of T in J/K does not depend on the choice of
m.

Proof. Again, we may assume that R is local. Let (A, a) be a resolution of
R, n be an augmentation of A∗ onto (I + K)/K, and α : A → B be a complex
map which covers the identity map on R. The dual of α induces an R−module
automorphism t of (I + K)/K:

. . . → B∗
g−1

b∗g−→ B∗
g

m−→ (I + K)/K → 0

↓ α∗
g−1 ↓ α∗

g ↓ t

. . . → A∗
g−1

a∗
g−→ A∗

g
n−→ (I + K)/K → 0.

13



However, the R−module R is perfect of grade g and (I + K)/K ' Extg
R(R,R), so

HomR

(
I + K

K
,
I + K

K

)
∼= HomR

(
Extg

R(R,R), Extg
R(R,R)

) ∼= HomR(R,R) = R.

(The second isomorphism is due to the fact that if M and N are perfect R−modules
of projective dimension g, then

HomR(M,N) ∼= HomR(Extg
R(N,R), Extg

R(M,R)).)

Thus, t is multiplication by some unit of R. The rest of the proof is identical to
the proof of Lemma 3.3.

Corollary 3.12. Assume the hypotheses of (2.14). Let λm be any of the maps
of Lemma 3.5. Then every choice for the map λ = λm in (2.12) yields the same
ideal H of R.

One particular choice for λ interacts especially nicely with the data used to
calculate K and L. We will make use of this λ in section 4 where we examine the
relationship between H, K, and L.

Proposition 3.13. Assume the hypotheses of (2.14). Let A be generated by
the regular sequence a1, . . . , ag and let x = µκ(ā1 ∧ . . . ∧ āg) in Torg(R,R), where
āi is the image of ai in K/K2, µ is the Tor−algebra multiplication of (2.12), and
the map κ =

∧gϑ−1 :
∧g(K/K2) → ∧gTor1(R,R) is induced by the isomorphism

ϑ of (1.5). Then there is an isomorphism λ : Torg(R,R) → J/K (constructed in
Lemma 3.5) so that λ(x) = y + K. Furthermore, if ρ is the isomorphism in (3.6)
which corresponds to λ, then ρ(x) : (I + K)/K → R is the inclusion map.

Proof. Let (K, ∂) be the Koszul complex on a1, . . . , ag; (B, b) be a length g
projective resolution of R; and α : K → B be a map of complexes which covers
the natural map R/A → R. If the basis for K1 is called ε1, . . . , εg with ∂(εi) = ai,
then let ε stand for the generator ε1 ∧ . . . ∧ εg of Kg. Observe that

(3.14) x = αg(ε) ⊗ 1R ∈ ker(bg ⊗ 1R) = Torg(R,R).

The mapping cone of α∗ is a resolution of R/I, thus

B∗
g−1 ⊕ K∗

g−2
d2−→ B∗

g ⊕ K∗
g−1

d1−→ R → R/I → 0

is exact where d1 = [〈—, αg(ε)〉, 〈—, ∂g(ε)〉], and

d2 =

 b∗g 0

−α∗
g−1 ∂∗

g−1

 .

14



The map m : B∗
g → (I + K)/K, defined by

(3.15) m(γ) = 〈γ, αg(ε)〉 + K

for γ ∈ B∗
g , is an augmentation of B∗ onto I/A = (I + K)/K. Following the proof

of Lemma 3.5, we select η ∈ B∗
g such that 〈η, αg(ε)〉 + K = y + K, and we define

λ : ker(bg ⊗ 1R) → J/K by λ(ξ ⊗ 1R) = 〈η, ξ〉 + K for all ξ ∈ Bg with ξ ⊗ 1R in
ker(bg ⊗ 1R). In particular,

λ(x) = λ(αg(ε) ⊗ 1R) = 〈η, αg(ε)〉 + K = y + K.

If r + K is an element of (I + K)/K, then there is an element γ of B
∗
g with

m(γ) = r + K. We use (3.9), (3.14), and (3.15) to see that

〈ρ(x), r + K〉 = 〈γ, x〉 = 〈γ, αg(ε) ⊗ 1R〉 = m(γ) = r + K,

and the proof is complete.

4. How the Approximation Ideals are Related.

We prove part (a) of the Theorems 2.15 and 2.16 in this section. Part (a) of
Theorem 2.15 can be deduced quickly once one knows that the diagram we have
labeled (4.15) commutes. We show that the left side of (4.15) commutes in Lemma
4.1 and that the right side of (4.15) commutes in Lemma 4.8.

Lemma 4.1. Let L,M , and N be ideals in R with L ⊆ M ; let z be an element
of M that is regular on R/N ; and let g > 0 be a fixed integer. Then there is a
map ν such that the following diagram

∧gTor1(R/L,R/N)
µ1−→ Torg(R/L,R/N)

↓ π∗

ν Torg(R/M,R/N)

↓ ↑ δ∧g+1Tor1(R/M,R/(N, z))
µ2−→ Torg+1(R/M,R/(N, z))

is commutative, where both maps labeled µi are Tor−algebra multiplication, π∗
is induced by the natural surjection π : R/L → R/M , and δ is the connecting
homomorphism in the long exact sequence of homology induced by the short exact
sequence

0 → (R/N)
z−→ (R/N) → R/(N, z) → 0.
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Proof. We begin by defining ν. Let ζ be the element of Tor1(R/M,R/(N, z))
that is sent to [z] under the isomorphism

ϑ : Tor1(R/M,R/(N, z)) → (M ∩ (N, z))/M(N, z)

of (1.5). The natural maps π and p : R/N → R/(N, z) induce

p∗π∗ : Tor1(R/L,R/N) → Tor1(R/M,R/(N, z)).

Define ν to be the composition [ζ ∧ (—)] ◦ ∧g(p∗π∗).
Let (B, b) be a resolution of R/L, let ρ1, . . . , ρg be elements of B1 with each

ρi⊗1 a cycle in B⊗(R/N); and let ρ = [ρ1⊗1]∧. . .∧[ρg⊗1] in
∧gTor1(R/L,R/N).

It suffices to show that

(4.2) π∗µ1(ρ) = δµ2ν(ρ).

Let r denote the sequence of elements b1(ρ1), . . . , b1(ρg) in R; let K be the
Koszul complex on r, with K1 a free module on the basis {ε1, . . . , εg}; let u1 :
K1 → B1 be defined by u1(εi) = ρi; and let u : K → B be a map of complexes
which extends u1 and the identity map u0 : K0 → B0. Then µ1(ρ) is the element of
Torg(R/L,R/N) that is represented by the cycle ug(ε) ⊗ 1 in Bg ⊗ (R/N), where
ε = ε1 ∧ . . . ∧ εg in Kg.

Let (C, c) be a resolution of R/M , and γ : B → C be a map of complexes which
extends the natural map π : R/L → R/M . Since π∗ is induced by γg ⊗ 1R/N , we
see that

(4.3) π∗(µ1(ρ)) = [γg(ug(ε)) ⊗ 1] in Hg(C ⊗ (R/N)).

Having calculated the left side of (4.2), we turn our attention to the right side.
Choose σ in C1 with c1(σ) = z. Since ϑ is an isomorphism and ϑ[σ⊗1] = [c1(σ)] =
[z], it follows that [σ ⊗ 1] = ζ. The map ν has been defined so that

ν(ρ) = [σ ⊗ 1] ∧ [γ1(ρ1) ⊗ 1] ∧ . . . ∧ [γ1(ρg) ⊗ 1]

in
∧g+1Tor1(R/M,R/(N, z)). We calculate multiplication in Tor exactly as before.

Let (K ′, ∂′) be the Koszul complex on c1(σ), c1(γ1(ρ1)), . . . , c1(γ1(ρg)), that is, on
the sequence z, r. Consequently, we may view K as a summand of K ′, and in
particular, take a basis for K ′

1 to be ε1, . . . , εg, together with one other element
ε0. Define u′

1 : K ′
1 → C1 by u′

1(εi) = γ1(ρi) for 1 ≤ i ≤ g and u′
1(ε0) = σ. If

u′ : K ′ → C is any complex map which extends u′
1 and the identity map K ′

0 → C0,
then

(4.4) µ2ν(ρ) = u′
g+1(ε

′) ⊗ 1 in Cg+1 ⊗ (R/(N, z))
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for ε′ = ε0 ∧ ε1 ∧ . . . ∧ εg. We may moreover insist, since K is a summand of K ′,
that the restriction of u′ to K is precisely equal to γu. Thus

(4.5) u′
g(ε) = γgug(ε).

The connecting homomorphism

δ : Torg+1(R/M,R/(N, z)) → Torg(R/M,R/N)

is obtained by applying the snake lemma to

(4.6)

0 → Cg+1 ⊗ (R/N) −→ Cg+1 ⊗ (R/N) −→ Cg+1 ⊗ R/(N, z) → 0

↓ ↓ cg+1⊗id ↓
0 → Cg ⊗ (R/N)

z−→ Cg ⊗ (R/N) −→ Cg ⊗ R/(N, z) → 0.

It follows from (4.4) that δ(µ2ν(ρ)) is represented by Ξ⊗ 1 in Cg ⊗ (R/N) for any
Ξ in Cg with

(4.7) cg+1u
′
g+1(ε

′) ⊗ 1 = zΞ ⊗ 1 in Cg ⊗ (R/N).

Since u′ is a map of complexes, it follows from the definition of ε′ that

cg+1u
′
g+1(ε

′) = u′
g∂

′
g+1(ε

′) ≡ u′
g(zε) mod (r)Cg.

The elements ρi ∈ B1 were chosen so that each ri ∈ N . Using (4.5) we obtain
cg+1u

′
g+1(ε

′)⊗1 = zγgug(ε)⊗1 in Cg ⊗ (R/N); and therefore, from (4.7) and (4.3),
we conclude that

δµ2ν(ρ) = [γgug(ε) ⊗ 1] = π∗µ1(ρ)

in Hg(C ⊗ (R/N)) = Torg(R/M,R/N).

Lemma 4.8. Under assumptions (2.14), there are isomorphisms τ and λ (con-
structed in Lemmas 3.2 and 3.5, respectively) so that the diagram

Torg(R,R)
λ−→ J/K

π∗ ↓

Torg(R/(I + K), R) p

δ−1 ↓ ↓
Torg+1(R/(I + K), R/(K, y))

τ−→ J/(K, y)
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commutes, where p is the natural quotient map, π∗ is induced by the natural
quotient map π : R → R/(I +K), and δ is the connecting homomorphism induced
by the short exact sequence

(4.9) 0 → R
y−→ R → R/(K, y) → 0.

Proof. We begin by observing that δ−1 makes sense. Indeed, inspection of the
long exact sequence of homology obtained by applying R/(I + K) ⊗ (—) to (4.9)
shows that δ is an isomorphism because y annihilates Tori(R/(I + K), —) for all
i and pdRR = g.

Next, we produce our favorite resolutions of R and R/(I+K). We have assumed
that I∩K = A is generated by a regular sequence a = a1, . . . , ag. Let (L, ∂) be the
Koszul complex on a, let (F, d) be a resolution of R/I of length g; and let α : L → F
be a map of complexes which covers the identity map α0 : L0 = R → F0 = R.
We know, from the theory of linkage, that the mapping cone of the dual of α is a
resolution of R. After we split off α∗

0, we obtain a resolution (B, b) for R in which
the modules are B0 = L∗

g, Bi = F ∗
g−i+1 ⊕L∗

g−i for 1 ≤ i ≤ g − 1, and Bg = F ∗
1 ; and

the maps are b1 = [α∗
g ∂∗

g ],

bi =

 d∗
g−i+2 0

(−1)i+1α∗
g−i+1 ∂∗

g−i+1

 ,

for 2 ≤ i ≤ g − 1, and

bg =

 d∗
2

(−1)g+1α∗
1

 .

Since Li =
∧iL1, it is well-known that exterior multiplication

Li ⊗ Lg−i → Lg ' R

induces an isomorphism of complexes:

. . . → L∗
i

∂∗
i+1−→ L∗

i+1 → . . .

↓ σi ↓ σi+1

. . . → Lg−i
∂g−i−→ Lg−i−1 → . . .

.

Let βi = αg−iσiα
∗
i : F ∗

i → Fg−i. It is obvious, from the form of B, that

βg = α0σgα
∗
g = σgα

∗
g
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induces an isomorphism from coker(d∗
g) onto K/(a) = (I + K)/I. Application of

the mapping cone construction to the map of complexes

0 → F ∗
0

d∗1−→ F ∗
1 → . . . → F ∗

g−1

d∗g−→ F ∗
g → (I + K)/I → 0

↓ β0 ↓ β1 ↓ βg−1 ↓ βg ↓ incl.

0 → Fg
dg−→ Fg−1 → . . . → F1

d1−→ F0 → R/I → 0

yields a resolution (C, c) of R/(I + K) in which the modules are C0 = F0,

Ci = F ∗
g+1−i ⊕ Fi

for 1 ≤ i ≤ g, and Cg+1 = F ∗
0 ; and the maps are c1 = [βg d1],

ci =

 d∗
g+2−i 0

(−1)i+1βg−i+1 di

 ,

for 2 ≤ i ≤ g, and

cg+1 =

 d∗
1

(−1)gβ0

 .

The augmentation of B∗ onto (I + K)/K that first comes to mind is induced
by d1:

F2 ⊕ L1

b∗g−→ F1
d1−→ (I + K)/K −→ 0,

with b∗g = [d2 (−1)g+1α1]. Let η be any element of F1 with

(4.10) d1(η) = y ∈ I.

Define λ : ker(bg ⊗ 1R) → J/K as in Lemma 3.5 by

(4.11) λ(ξ ⊗ 1R) = 〈ξ, η〉 + K

for ξ ∈ F ∗
1 with ξ ⊗ 1R ∈ ker(bg ⊗ 1R).

The augmentation of C∗ onto R/(I +K) that first comes to mind is the natural
quotient map

F1 ⊕ F ∗
g

c∗g+1−→ F0 = R
nat.−→ R/(I + K) −→ 0,

with c∗g+1 = [d1 (−1)gβ∗
0 ]. (Observe that the maps β∗

0 and βg from F ∗
g to F0 = R

satisfy β∗
0 = εβg for ε equal to 1 or −1.) Recall from (3.10) that J = (K, y) : (I+K).

Define τ : ker(cg+1 ⊗ 1R/(K,y)) → J/(K, y) as in Lemma 3.2 by

(4.12) τ(γ ⊗ 1) = γ(1) + (K, y)

19



for γ ∈ F ∗
0 = R∗ with γ ⊗ 1 in ker(cg+1 ⊗ 1R/(K,y)).

Finally, we prove that pλ = τδ−1π∗. Let z = [ξ ⊗ 1] be an arbitrary element
of Torg(R,R) = Hg(B ⊗ R) = ker(bg ⊗ 1R). Recall that Bg = F ∗

1 , so ξ ∈ F ∗
1 . We

know from (4.11) that
pλ(z) = 〈ξ, η〉 + (K, y)

for η defined in (4.10). We now calculate τδ−1π∗(z). It is easy to check that
γ0 = α0σg,

γi =

 id 0

0 αiσg−i


for 1 ≤ i ≤ g − 1, and

γg =

 id

0


defines a map of complexes γ : B → C which covers π. Then π∗(z) = [γg(ξ)⊗ 1] in
Torg(R/(I +K), R). We calculate the connecting homomorphism using a diagram
which is analogous to (4.6). Since

Torg+1(R/(I + K), R/(K, y)) = Hg+1(C ⊗ R/(K, y)),

there is an element u ∈ Cg+1 = F ∗
0 such that δ−1π∗(z) = [u ⊗ 1] and

(4.13) cg+1(u) ⊗ 1 = y(γg(ξ) ⊗ 1) in Cg ⊗ R.

We use the definition of τ , (4.12), to conclude that

(4.14) τδ−1π∗(z) = u(1) + (K, y).

On the other hand, (4.13) implies that d∗
1(u) ⊗ 1 = yξ ⊗ 1 in F ∗

1 ⊗ R; hence,
u(1)d1(f) − yξ(f) is in K for every f ∈ F1. In particular, if we take f to be
the element η defined in (4.10), then we conclude that u(1)y ≡ yξ(η) mod K.
Furthermore, since y is regular on R, we see that u(1) ≡ ξ(η) mod K. It follows
from (4.14) that τδ−1π∗(z) is equal to the image of 〈ξ, η〉 in R/(K, y), and the
proof is complete.

The proof of Theorem 2.15 (a). Apply Lemma 4.1 (with L = N = K,
M = I + K, and z = y) and Lemma 4.8 in order to obtain the commutative
diagram:

(4.15)

∧gTor1(R,R)
µ−→ Torg(R,R)

λ−→ J/K

↓ ν ↓ δ−1π∗ ↓ p∧g+1Tor1

(
R

(I+K)
, R

(K,y)

)
µ2−→ Torg+1

(
R

(I+K)
, R

(K,y)

)
τ−→ J

(K,y)
.
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The ideals H and L of R are defined so that

H/K = im(λµ), and L/(K, y) = im(τµ2).

Furthermore, the discussion surrounding (2.10) shows that∧g+1Tor1(R/(I + K), R/(K, y)) = im(ν) + ker(µ2);

thus,

(H, y)/(K, y) = im(pλµ) = im(τµ2ν) = im(τµ2) = L/(K, y).

The proof of Theorem 2.16 (a). We first find elements c1, . . . , cg+1 of R so
that (2.3) and (2.4) hold for the present ring R, which is not necessarily local. Let
a1, . . . , ag be a generating set for A, ag+1 = y, (E, d) be the Koszul complex on
the generating set a1, . . . , ag+1 of A, F be a length g resolution of R/I, α : E → F
be a map of complexes which covers the natural map R/A → R/I, m : F ∗

g → R/I
be an augmentation of F ∗ onto R/I, and u be an element of F ∗

g with m(u) = 1+I.
If we define

(4.16) ci = (−1)i+1uαg(ε1 ∧ . . . ∧ ε̂i ∧ . . . ∧ εg+1) ∈ R,

then (2.3) and (2.4) follow immediately.
The ideal K is the almost complete intersection (a1, . . . , ag, cg+1); so, in the

notation of Proposition 3.13, the image of µ :
∧gTor1(R,R) → Torg(R,R) is gen-

erated by
x = µκ(ā1 ∧ . . . ∧ āg),

together with

µκ(ā1 ∧ . . . ∧ ̂̄ai ∧ . . . ∧ āg ∧ c̄g+1) for 1 ≤ i ≤ g.

Proposition 3.13 furnishes an isomorphism λ : Torg(R,R) → J/K which satisfies
λ(x) = y + K. Using (2.4) we see that

yλµκ(ā1 ∧ . . . ∧ ̂̄ai ∧ . . . ∧ āg ∧ c̄g+1) = −λµκ(ā1 ∧ . . . ∧ ̂̄ai ∧ . . . ∧ āg ∧
g∑
1

c̄j āj)

= vciλ(x) = vciy + K

for v equal to +1 or −1. Since y is regular on R, it follows that

im(λµ) = ((c1, . . . , cg, y) + K)/K.

21



The ideal H of R is defined in (2.12) so that im(λµ) = H/K. Thus,

H = K + (c1, . . . , cg, y).

On the other hand, K = (a1, . . . , ag, cg+1), y = ag+1, and A = (a1, . . . , ag+1).
It follows that H = A + (c1, . . . , cg+1); and hence, H = K from (2.3). Finally,
Theorem 2.15 (a) says that L = (H, y). But y is in H; so, H = K = L.

5. The Identification of Coker(µ).

In this section we prove part (c) of Theorems 2.15 and 2.16.

Proof of Theorem 2.15 (c). Let Q be the total ring of quotients of R (that

is, Q = S
−1

R where S is the multiplicative set of regular elements of R), let
ρ : Torg(R,R) → Hom((I + K)/K,R) be the isomorphism of Proposition 3.13,
and let ϑ : Tor1(R,R) → K/K2 be the isomorphism of (1.5). We intend to define
maps δ :

∧g(K/K2) → R and τ : Hom((I + K)/K,R) → Q so that there is a
commutative diagram:∧gTor1(R,R)

µ−→ Torg(R,R) −→ coker(µ) −→ 0

δ(
∧gϑ) ↓ onto τρ ↓ ∼=

0 −→ DK −→ DD −→ DD/DK −→ 0

with exact rows. We follow the methods of Kunz [25, Lemma 3]. Let n be the
dimension of R, and d be the dimension of R. (It follows that g + d = n.) Recall
that R is a power series ring over an infinite perfect field k, and that R is a
reduced equidimensional ring. We use the technique of noether normalization and
pick linear forms Y1, . . . , Yn in R such that:

(a) R = k[[Y1, . . . , Yn]],

(b) k[[Y1, . . . , Yd]] ↪→ R/A is a module finite extension, and

(c) Q is a product of finite separable field extensions of the quotient field of
k[[Y1, . . . , Yd]].

Let S = k[[Y1, . . . , Yd]]. Observe that it follows from (b) that S ↪→ R is also a
module finite extension. The Kähler different, DK , of R over S, is the Fitting
ideal of the module of Kähler differentials of R over S. The Dedekind different,
DD, of R over S, is the inverse ideal of the Dedekind complementary module
{x ∈ Q | tr(xR) ⊆ S}, where tr denotes the usual trace map from Q into the
quotient field of S (cf. [3]).
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Define δ :
∧gK/K2 → R to be the Jacobian map

δ(z̄1 ∧ . . . ∧ z̄g) = det

(
∂zi

∂Yj

)
+ K

for j = d + 1, . . . , d + g = n, and elements z1, . . . , zg of K. It is clear that DK

is the image of δ in R. As always, we let a1, . . . , ag be the regular sequence that
generates A = I ∩K. Recall that these elements generate K locally at its minimal
prime ideals. Let

D = δ(ā1 ∧ . . . ∧ āg).

It follows that D is not a zero-divisor on R. According to Kunz, DK ⊆ DD

and DD is equal to D((I + K)/K)−1. The inverse is computed in Q. (Kunz’s
blanket assumption that R be an almost complete intersection is not used in this
particular lemma.) Although DK and DD individually depend on the choice of S,
the R−module DD/DK does not; this is well-known, but follows in any case from
the identification with coker(µ).

Define τ : Hom((I + K)/K,R) → Q by τ(f) = D(1Q ⊗ f)(1). It is clear that
τ is injective and that the image of τ is precisely DD. We complete the argument
by showing that

τρµκ(z̄1 ∧ . . . ∧ z̄g) = δ(z̄1 ∧ . . . ∧ z̄g)(5.1)

for all z1, . . . , zg in K and for κ defined in Proposition 3.13. First, take zi = ai for
all i. We know, from the choice of ρ made in Proposition 3.13, that

τρµκ(ā1 ∧ . . . ∧ āg) = τρ(x) = D = δ(ā1 ∧ . . . ∧ āg).

Now we can take the zi to be arbitrary elements of K. Since yzi is in I ∩K for all
i, there are elements rij such that yzi =

∑
rijaj . Let r be the determinant of the

matrix (rij), and observe, from the product rule, that

y(∂zi/∂Yk) ≡
g∑

j=1

rij(∂aj/∂Yk) mod K.

Hence,

ygτρµκ(z̄1 ∧ . . . ∧ z̄g) = rτρµκ(ā1 ∧ . . . ∧ āg)

= rδ(ā1 ∧ . . . ∧ āg) = ygδ(z̄1 ∧ . . . ∧ z̄g).

Line (5.1) follows since y is regular on R.

We turn our attention to proving Theorem 2.16 (c). There are many definitions
of cotangent cohomology, but they all agree when the hypotheses coincide. We give
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the original definition [31, (2.3)] of T 2(R/R,R); observe that no hypotheses are
placed on the commutative noetherian ring R.

Definition 5.2. Let K be an ideal in the commutative noetherian ring R, let
R = R/K, and let K be the Koszul complex on a generating set for K. There
is a natural map α : H1(K) → K1 ⊗R R. (If z ∈ K1 is a cycle and [z] is the
corresponding element of H1(K), then α([z]) = z⊗ 1.) The module T 2(R/R,R) is
the cokernel of

α∗ : HomR(K1 ⊗ R,R) → HomR(H1(K), R).

Whenever the ambient ring R is clear from the context, we write T 2(R) in
place of T 2(R/R,R). It is not necessary for us to make a deformation theoretic
interpretation of T 2; however, we remind the reader that if R is a formal power
series ring over a field, then T 2(R) measures the obstructions to lifting infinitesimal
deformations of R.

Proof of Theorem 2.16 (c). (Compare to the proof of Satz 3.1 in [13].)
Recall from (2.5) that

K = (a1, . . . , ag, cg+1).

Let w = cg+1, and let H1(K) denote the first Koszul homology on the given
generators of K. Consider the syzygetic exact sequence (see, for example, [15]):

(5.3) H1(K)
α−→ R ⊗ (

g+1⊕
i=1

Rei)
β−→ K/K2 −→ 0

in which α is the map of Definition 5.2 and

β(1R ⊗
g+1∑
1

riei) = (
g∑
1

riai + rg+1w) + K2.

We define a map π : H1(K) → (I + K)/K. If z =
∑

riei is a one-cycle in the
Koszul complex, then let π([z]) = rg+1 + K. Since (A : K)/A = (I + K)/K, it
is well-known (and easy to prove directly) that π is a well-defined isomorphism.
Define γ : ((I + K)/K)∗ → H1(K)∗ to be the dual map π∗, and consider the
diagram ∧gTor1(R,R)

µ−→ Torg(R,R) −→ coker(µ) −→ 0

γρ ↓ ∼=

(R
g+1

)∗ α∗−→ H1(K)∗ −→ coker(α∗) −→ 0
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where “ ∗ ” means Hom(—, R), µ is the Tor−algebra multiplication of (2.12), and
ρ is found in Proposition 3.13. We complete the proof by showing that

im(γρµ) = im(α∗).

Let {f1, . . . , fg+1} be the basis for (R
g+1

)∗ which is dual to {e1, . . . , eg+1}, and
let z =

∑
riei be a cycle representative for an arbitrary element [z] in H1(K).

Then

(5.4) γρµκ(ā1 ∧ . . . ∧ āg)[z] = π∗ρ(x)[z] = ρ(x)(r̄g+1) = r̄g+1 = α∗(fg+1)[z]

Since z is a cycle,
∑g

1 riai + rg+1w = 0, and on the other hand

(5.5)
g∑
1

ciai + yw = 0

by (2.4) (by way of (4.16)). Therefore,
∑g

1 (yri − cirg+1)ai = 0, from which it
follows that yrj − cjrg+1 is in (a1, . . . , âj, . . . , ag). In particular,

(5.6) yrj ≡ cjrg+1 mod K

for 1 ≤ j ≤ g. Using (5.5), (5.4), and (5.6) we obtain

yγρµκ(ā1 ∧ . . . ∧ āj−1 ∧ w̄ ∧ āj+1 ∧ . . . ∧ āg)[z] = −cjγρµκ(ā1 ∧ . . . ∧ āg)[z]

= −cj r̄g+1 = −yr̄j = yα∗(−fj)[z].

Since y is regular on R, we conclude that im(α∗) = im(γρµ).

6. The Cohen-Macaulay Property of J.

There are various results in the literature dealing with the question of when
an s−residual intersection J of an ideal I is Cohen-Macaulay ([19, 16, 22]). These
theorems require depth conditions on all the Koszul homology modules of I. It
turns out, however, that much less is needed to describe the Cohen-Macaulayness
of J when s = grade(I) + 1; moreover, these weaker conditions are also sufficient
to ensure the preservation of the residual intersection relation under specialization.
This is the content of Theorem 6.1 (a), (b), (c), whereas Theorem 6.1 (d) yields a
partial converse.

Theorem 6.1. Let R be a Gorenstein ring, I be an ideal in R of grade g,
A = (a1, . . . , as) be a proper sub-ideal of I, and J = (A : I) be an s−residual
intersection. Suppose that R/I is Cohen-Macaulay and I is generically a complete
intersection. If s = g + 1, then the following statements hold:
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(a) The ideal J is unmixed of grade g+1. If the residual intersection is geometric,
then A = I ∩ J .

(b) If the first Koszul homology of I, H1(I), is Cohen-Macaulay, then R/J is
Cohen-Macaulay.

(c) Assume that (R, M) is local, J is a geometric residual intersection, and H1(I)
is Cohen-Macaulay. Let x be a sequence in M which is regular on both R and
R/I. Let “ ′ ” denote reduction modulo (x). If I ′ is generically a complete
intersection and grade (A′ : I ′) ≥ g + 1, then J ′ = (A′ : I ′) and x is a regular
sequence on both R/A and R/J .

(d) If R is local, I is a Gorenstein ideal, T 2(R/I) = 0, and R/J is Cohen-
Macaulay, then the normal module of I, HomR(I, R/I), is Cohen-Macaulay.

Note. Suppose that s ≥ g + 2. It is natural to wonder if statement (b) can
be generalized. In particular, it is not known if assuming I satisfies Gs and Hi(I)
is Cohen-Macaulay for 1 ≤ i ≤ s − g suffices to guarantee that R/J is Cohen-
Macaulay.

Proof. We first reduce the proofs of parts (a) and (b) to the case where R
is local. Let M be any maximal ideal of R. If J is not contained in M, then
IM = AM, and nothing is to be shown. On the other hand, if I is not contained
in M, then JM = AM is a complete intersection of grade g + 1, and we are also
finished. Thus, we may assume that I + J ⊆ M. Furthermore, if grade(IM) > g,
then a1, . . . , ag+1 form an RM−regular sequence. (Indeed, if P is a prime ideal
with P ⊆ M and grade P ≤ g, then IP = JP = RP ; thus, A is not contained in
P .) If grade (IM) = g + 1, then all of the assertions follow from linkage theory.
If grade (IM) > g + 1, then all of the assertions are trivial, because, in this case,
JM = AM is again a complete intersection of grade g + 1. Thus, we may still
suppose that grade IM = g. We replace R by RM and prove the theorem for a
local Gorenstein ring R.

By using induction on the number of elements in the regular sequence x, we may
reduce the proof of part (c) to the case where x = x consists of only one element.
(See the proof of Theorem 4.7 in [22] for details.) In addition, after extending
the residue field, if necessary, we may assume that a1, . . . , ag form an R−regular
sequence with IP = (a1, . . . , ag)P for all P ∈ Ass(R/I), and that a′

1, . . . , a
′
g form

an R′−regular sequence with I ′
P ′ = (a′

1, . . . , a
′
g)P ′ for all P ′ ∈ Ass(R′/I ′). In

particular, x is also regular on R/(a1, . . . , ag). Let K = (a1, . . . , ag) : I and
y = ag+1. We see that K is a geometric link of I and that y is regular on R/K.
Similarly, (a′

1, . . . , a
′
g) : I ′ is a geometric link of I ′, and y′ = a′

g+1 is regular on
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R′/((a′
1, . . . , a

′
g) : I ′). We know, from [21, Lemma 2.12], that x is regular on R/K

and that the image, K ′, of K in R′ is equal to (a′
1, . . . , a

′
g) :I ′. Set R = R/K and

R′ = R′/K ′. Recall, from the proof of (3.10), that

(6.2) J̄ = (ȳR : Ī) ∼= Hom(Ī , R).

The linkage of I ′ and K ′ is geometric; so I ′ ∩ K ′ = (a′
1, . . . , a

′
g). It follows, from

the argument below (2.7), that (A′ :I ′) = (K ′, y′) : (I ′ + K ′); in particular

(6.3) A
′ :I ′ =

(K,x, y) : (I + K)

(x)
.

Since I and K are geometrically linked with R Gorenstein and R/I Cohen-
Macaulay, it follows, from [33], that K is generically a complete intersection, R
and R/Ī are both Cohen-Macaulay rings, and Ī is an ideal of grade one in R. We
see, from (6.2), that J̄ is unmixed of grade one; hence, J is unmixed of grade g+1.
Furthermore, if J is a geometric residual intersection, then, by (1.6), the grade of
I + J is at least g + 2. It follows, since R is Cohen-Macaulay, that

(6.4) grade (Ī + J̄) ≥ 2;

therefore, Ī and J̄ are geometrically linked and Ī ∩ J̄ = ȳR. Consequently, I ∩ J
is contained in yR + K. Since y ∈ I, we even conclude

(I ∩ J) ⊆ yR + (I ∩ K) = yR + (a1, . . . , ag) = A.

The proof of part (a) is complete.
We now prove part (b). The canonical module ω of R is isomorphic to Ī. Since I

and K are linked and H1(I) is Cohen-Macaulay, it follows, from [38, Theorem 3.1],
that S2(ω) is Cohen-Macaulay. In particular, Hom(S2(ω), ω) is Cohen-Macaulay.
On the other hand, R is generically Gorenstein; and therefore,

Hom(S2(ω), ω) ∼= Hom(ω ⊗ ω, ω).

Thus,
J̄ ∼= Hom(Ī , R) ∼= Hom(ω,R) ∼= Hom(ω ⊗ ω, ω)

is a Cohen-Macaulay R−module; and hence, R/J ∼= R/J̄ is a Cohen-Macaulay
ring.

To prove (c), we first show that the R−module ω ∼= Ī is cyclic locally in
codimension one. Let P ∈ V (K) with dim RP̄ = 1. We may assume that Ī ⊆ P̄ .
It follows, from (6.4), since J is a geometric residual intersection of I, that J̄
is not contained in P̄ . Therefore, J is not contained in P ; hence, IP = AP =
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(a1, . . . , ag, y)P , and ĪP̄ = ȳRP̄ is cyclic. We conclude that the kernel of the
natural epimorphism from ω ⊗ ω to S2(ω) is supported in codimension at least
two. Therefore

Ext1
R
(S2(ω), ω) ∼= Ext1

R
(ω ⊗ ω, ω).

On the other hand, by [14, Satz 1.2],

Ext1
R
(ω ⊗ ω, ω) ∼= Ext1

R
(ω,R).

Thus,

(6.5) 0 = Ext1
R
(S2(ω), ω) ∼= Ext1

R
(ω,R) ∼= Ext1

R
(Ī , R),

with the first module vanishing because S2(ω) is a maximal Cohen-Macaulay mod-
ule over R. The exact sequence

0 → R
x−→ R → R/xR → 0

induces, via (6.5), an exact sequence

(6.6) 0 → Hom(Ī , R)
x−→ Hom(Ī , R) → Hom(Ī , R/xR) → Ext1

R
(Ī , R) = 0.

Since y is in I and y is regular on R/(K,x), we see that the natural inclusion
Hom((I + K)/K,R/(K,x)) → Hom(I + K,R/(K,x)) is actually equality. By
applying the isomorphism f → f(y) to (6.6) (see the discussion above (3.10)), we
learn that the natural map

(K, y) : (I + K)

K
→ (K,x, y) : (I + K)

K + (x)

is a surjection. Thus, J + (x) = ((K, y) : (I + K)) + (x) = (K,x, y) : (I + K), and
we conclude, from (6.3), that J ′ = (A′ :I ′). Since, moreover, by parts (a) and (b),
R/J is Cohen-Macaulay and grade J = grade J ′, it follows that x is regular on
R/J . We also conclude that x is regular on R/A because A = I ∩ J . This finishes
the proof of (c).

We now prove (d). Since K is an almost complete intersection, we may choose
H1(K) = ω; and therefore (6.2) becomes

(6.7) J̄ ∼= Hom(H1(K), R).

On the other hand, T 2(R) ∼= T 2(R/I) = 0, by Theorem 2.19 (b); and hence, the
syzygetic sequence (5.3), combined with (6.7), yields an exact sequence

(6.8) 0 → Hom(K,R) → Hom(R
g+1

, R) → J̄ → 0.
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The ring R/J is Cohen-Macaulay by assumption; hence, J̄ is a maximal Cohen-
Macaulay module over R; and therefore, Hom(K,R) is Cohen-Macaulay by (6.8).
Since I is a perfect ideal in a local Gorenstein ring, and I and K are linked,
it follows from [9] (or [8] in the case that R is regular local and contains a
field) that Hom(I, R/I) is also Cohen-Macaulay. This finishes the proof of part
(d).

7. Examples.

We apply the techniques of the previous sections in order to exhibit a set
of generators for several families of generic residual intersections. That is, we
compute the generating set for J where

(7.1) I = (f1, . . . , fn) is an ideal of height g > 0 in a commutative noetherian
ring R, s ≥ g is an integer for which I satisfies Gs+1, Z is an n × s
matrix of indeterminates, [a1, . . . , as] = [f1, . . . , fn]Z, and J = (A : IS) for
A = (a1, . . . , as) and S = R[Z].

Our justification for giving examples of generic, rather than arbitrary, residual
intersection is two-fold. First of all, under suitable assumptions, an arbitrary
residual intersection can be deformed into a generic residual intersection. (See
the proof of Theorem 5.1 in [22] for details.) Secondly, as we observe in (7.9),
residual intersection behaves nicely under base change if the image is geometric.
We need some general facts about generic residual intersections to show that the
main theorems of this paper apply to the situation of (7.1) with s = g+1. (Further
results about generic residual intersections may be found in [22] and [23].)

Lemma 7.2. ([22], Lemma 3.2]) In the notation of (7.1), the following state-
ments hold.

(a) Let Q be a prime ideal of S. If either

(i) ht(Q) ≤ s − 1, or

(ii) ht(Q) ≤ s and IS ⊆ Q,

then (a1, . . . , as)Q = IQ.

(b) The ideal J is a geometric s−residual intersection of IS.

Lemma 7.3. If I is a perfect ideal, R is a Cohen-Macaulay ring, and s = g +1
in the notation of (7.1), then the hypotheses of (2.14) are satisfied for the ideal IS
in the ring S.
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Proof. Let K = ((a1, . . . , ag) : IS) and y = ag+1. It is well-known that
a1, . . . , ag forms a regular sequence; (see, for example, [17, Prop. 21]) consequently,
IS and K are linked. Lemma 7.2 guarantees that the linkage is geometric and that
J is a geometric (g + 1)−residual intersection of I. The argument which appears
under (2.14) shows that y is regular on R/K.

In our first few examples the ideal I is Gorenstein. Corollary 2.18, together
with recipe (2.3), gives an algorithm for identifying the generators of J . The
calculations which are needed to implement this algorithm are straightforward,
although unpleasant to exhibit. We use a different approach. We exhibit elements
w1, . . . , wg+1 in J of the appropriate degree and then prove that J is equal to
(w1, . . . , wg+1, a1, . . . , ag+1) by way of an easy linear independence argument. The
technique is summarized in Proposition 7.7. We begin by explaining the phrase
“the appropriate degree”.

We view R = Z[{xij}] as a graded ring in such a way that the generators
f1, . . . , fn of I all are homogeneous. (Each variable xij is assigned some positive
degree, not necessarily one.) Let

(7.4) d1 = max{deg (fi) | 1 ≤ i ≤ n}.

We assign a positive degree to each variable zij so that each ai has degree (d1 +1).
For all of the ideals I under consideration, there is a homogeneous resolution F of
R/I in which

(7.5) Fg = R(−dg)

for some integer dg. The elements c1, . . . , cg+1 of (2.2) all are homogeneous of
degree

(7.6) d = g(d1 + 1) − dg.

Proposition 7.7. Let I be a homogeneous Gorenstein ideal of grade g > 0
in a graded polynomial ring R = Z[{xij}]. Define A, J , and S as in (7.1) (with
s = g + 1). Assume that there is an integer dg as defined in (7.5). Define d as
in (7.6). Suppose that w1, . . . , wg+1 are elements of J with w̄1, . . . , w̄g+1 linearly
independent in the (Z/pZ)-vector space

(7.8) Sd/(Ad + pSd)

for all prime integers p. Suppose further that I satisfies Gg+2 and T 2(R/I) = 0.
Then
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(a) J is a geometric (g + 1)−residual intersection of I,

(b) J is a prime ideal of height g + 1,

(c) J = (w1, . . . , wg+1, a1, . . . , ag+1),

(d) if H1(I) is Cohen-Macaulay, then J is perfect.

Note. Recall from [18] and Theorem 2.19 (a) that if I is licci and satisfies
Gg+2, then I is strongly Cohen-Macaulay and T 2(R/I) = 0.

Proof. Lemma 7.2 (b) shows that (a) holds, and then Theorem 6.1 (a) implies
that J is unmixed of grade g+1. Since grade(IS+J) ≥ g+2 by (1.6), we conclude
that I is not contained in the union of the associated primes of J . It follows, as in
the proof of Theorem 3.3 (vii) in [22], that J is prime. This shows (b). Assertion
(d) follows from Theorem 6.1 (a) and (b) since R is regular. It remains to prove
part (c). From Corollary 2.18 we see that J is equal to the ideal (c1, . . . , cg+1) + A

of (2.3). Let G be the ideal (w1, . . . , wg+1) + A of S. The ideals J and G each are
generated by a1, . . . , ag+1 together with g + 1 elements of degree d. We know that
G ⊆ J . The proof is complete when we show that Jd ⊆ Gd.

Fix a prime integer p. Our hypothesis guarantees that the (Z/pZ)−vector
spaces

Gd + pSd

Ad + pSd

and
Jd + pSd

Ad + pSd

are equal. Thus, Gd + pSd = Jd + pSd. The ideal J is prime, and p is not in J
(for degree reasons), so p is regular on S/J . It follows that there is an inclusion
of finitely generated Z−modules Jd ⊆ Gd + pJd. Nakayama’s Lemma yields that
(Jd)(p) = (Gd)(p) for all prime integers p, and thus Jd = Gd.

Before giving actual examples, we point out that the residual intersections
calculated using Proposition 7.7 (d) behave very nicely under base change.

Observation 7.9. Let J be a perfect ideal of grade s in a commutative noethe-
rian ring S. Suppose that J = (A : I) is an s−residual intersection in S and that
T is an S−algebra. If

(a) JT is a proper ideal of T with grade at least s, and

(b) grade (J + I)T ≥ s + 1,

then, by the “persistence of perfection”, JT is a perfect ideal of grade s and
JT = (AT :IT ) is a geometric s−residual intersection.
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Proof. It suffices to show that (AT : IT )P ⊆ JTP for all P ∈ Ass(T/JT ).
Every such prime ideal P has grade s; consequently, IT is not contained in P .
Thus,

ATP ⊆ JTP ⊆ (ATP :ITP ) = (ATP :TP ) = ATP .

Example 7.10. We first determine the generic 4−residual intersection of a
grade three Gorenstein ideal. Let n ≥ 3 be an odd integer, X be an n × n
alternating matrix of indeterminates, Z be an n× 4 matrix of indeterminates, and
S be the ring Z[X,Z]. Each variable is given degree one. Let I be the ideal of S
generated by the maximal order pfaffians of X. Select generators f1, . . . , fn for I
in the usual way so that [f1, . . . , fn]X = 0. Define A and J as in (7.1). The ideal
I is licci and G∞, so Proposition 7.7 applies. The resolution of S/I is

0 → S(−n) → S(−(d1 + 1))n → S(−d1)
n → S

where d1 = (n − 1)/2; and therefore, the integer d of (7.6) is

d =
3(n + 1)

2
− n =

(n + 3)

2
.

Let Y be the (n + 4) × (n + 4) alternating matrix

(7.11) Y =

[
X Z

−ZT 0

]
,

and let wi be the pfaffian of Y with row and column n + i deleted. We will use
Proposition 7.7 to show that J = (w1, w2, w3, w4, a1, a2, a3, a4). It is clear that each
wi is a homogeneous polynomial of degree d.

To show that each wi is in J we use a formula about the lower order pfaffians
of an arbitrary N × N alternating matrix Y with N odd. For each index set
(i) = (i1, . . . , ir), let σ(i) represent the sign of the permutation which arranges
i1, . . . , ir, j1, . . . , jN−r into ascending order where

{i1, . . . , ir, j1, . . . , jN−r} = {1, . . . , N} and j1 < · · · < jN−r.

(If some index is repeated, then σ(i) = 0.) Let Y(i) represent σ(i) times the pfaffian
of Y with rows and columns i1, . . . , ir removed. If a, b, c, d, `, and m are indices,
then

(7.12) Y`maYbcd − Y`mbYacd + Y`mcYabd − Y`mdYabc = Y`Ymabcd − YmY`abcd.

(See, for example, [27, Corollary 2.1].) Fix i and j with 1 ≤ i ≤ n and 1 ≤ j ≤ 4.
Apply (7.12) to the matrix Y of (7.11) with ` = i, m = n+ j, a = n+1, b = n+2,
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c = n + 3, and d = n + 4. Observe that Ym = ±wj, Y`abcd = ±fi, Ymabcd = 0,
and Ypqr = ±as for {p, q, r, s + n} = {n + 1, n + 2, n + 3, n + 4}. It follows that
wjfi ∈ A.

Let W be the subspace of the vector space on line (7.8) which is generated
by w1, w2, w3, w4. If we set xij = 0 for 1 ≤ i ≤ 3, then the vector space of (7.8)
becomes

(7.13) ((Z/pZ)[{xij | i > 3}, Z])d.

The image of W in (7.13) is X123I3(Z
′) where Z ′ is the generic 3× 4 matrix which

consists of the top three rows of Z. It is now obvious that W has dimension four.
Using this example as a model, two of the authors [30] have found the generators

of the generic s−residual intersection of a height 3 Gorenstein ideal for all s ≥ 4.
They have also resolved these ideals. In the notation of this example, with Z
generic of size n× s, the residual intersection J is generated by the pfaffians of all
principal submatrices of Y containing X.

Example 7.14. We next calculate the generic (g + 1)−residual intersection
of a generic deviation two Huneke-Ulrich Gorenstein ideal of grade g. Fix an odd
integer g ≥ 3 and let m equal g + 1. Let X be an m × m alternating matrix
of indeterminates; Y1×m, Um×m, and V1×m be matrices of indeterminates; and S
be the ring Z[X,Y, U, V ]. Let ` = [`1, . . . , `m] be the product Y X and let Pf(X)
be the pfaffian of X. The ideal I = (`1, . . . , `m, Pf(X)) is the generic Huneke-
Ulrich Gorenstein ideal of grade g. These ideals were introduced in [21, Lemma
5.12]. They were resolved in [26] and also in [24]. Recently, Srinivasan [34] has
proved that the minimal resolution of the algebras defined by these ideals is a
DG−algebra. The ideals are known to be licci, and they obviously satisfy the
condition G∞.

Let Z be the matrix

Z =

[
U
V

]
.

Define A and J as in (7.1) using the given generating set for I. The variables xij

and yi are all given degree one. The integer d1 of (7.4) is

d1 = deg(Pf(X)) =
m

2
=

(g + 1)

2
.

We let each vi have degree one and each uij have degree d1 −1. We learn from [26,
Theorem 6.1] that the integer dg of (7.5) is

dg = 4d1 − 3 = 2g − 1;
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thus, the integer d of (7.6) is

d =
g(g + 3)

2
− (2g − 1) =

(
g
2

)
+ 1.

If i and j are integers, then let

(7.15) σ(ij) =


1 if i < j
0 if i = j

−1 if j < i.

Let Xij be σ(ij) times the pfaffian of X with rows and columns i and j removed;
U(i; b) be the determinant of U with row i and column b removed; Zi be the
determinant of Z with row i removed; and Z(i, j; b) be σ(ij) times the determinant
of Z with rows i and j and column b removed. For each integer b with 1 ≤ b ≤ m,
let

wb =
m∑

i=1

(−1)i+1 yi U(i; b) +
∑

1≤i<j≤m

Xij Z(i, j; b).

We apply Proposition 7.7 in order to show that

J = (a1, . . . , am, w1, . . . , wm).

It is not difficult to see that each wb is a homogeneous polynomial of degree d.
We next prove that each wb is in J . There is no conceptual difficulty in verifying
directly that wbI ⊆ A for all b. However, it is computationally simpler to observe
that it suffices to prove that wb ∈ JS∆ where ∆ is the determinant of U . (Indeed,
J is a prime ideal contained in (X,Y )S, and ∆ 6∈ (X,Y )S. One way to see that
J ⊆ (X,Y )S is to recall that

µ(IS(X,Y )) = µ(I(X,Y )) = m + 1 > µ(AS(X,Y ));

hence, JS(X,Y ) 6= S(X,Y ).) Consequently, we make our calculations in S∆. Let

[w′
1, . . . , w

′
m] = [w1,−w2, w3,−w4, . . . ,−wm] UT , and

[a′
1, . . . , a

′
m] = [a1, . . . , am] U−1.

One may use the Laplace expansion for determinants as well as the Laplace ex-
pansion of Pfaffians: ∑

j

(−1)j xij Xkj = (−1)i+1 δik Pf(X)

in order to verify:
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(a) a′
b = `b + ( 1

∆
)(−1)b Zb Pf(X)

(b) w′
b = ∆yb +

∑m
i=1 (−1)b Zi Xib

(c)
∑m

i=1 (−1)b+i `i Xib = yb Pf(X).

Using these formulas we see that

m∑
i=1

(−1)b+iXib∆a′
i = ∆

m∑
i=1

(−1)b+i`iXib + Pf(X)
m∑

i=1

(−1)bZiXib

= Pf(X)(∆yb +
m∑

i=1

(−1)bZiXib) = Pf(X)w′
b.

Thus (w1, . . . , wm)(Pf(X))S∆ ⊆ AS∆. It follows from (a) that

(w1, . . . , wm)(IS∆) ⊆ AS∆;

and thus, wb ∈ J for all b.
Let W be the subspace of the vector space on line (7.8) which is generated by

w1, . . . , wm. If we set all xij and all vi equal to zero, then the vector space of (7.8)
becomes (Z/p)[Y, U ]d, and the image of W is spanned by the entries of Y [adj(U)]T .
It is now immediate that W has dimension m.

Example 7.16. We can also use Proposition 7.7 to calculate the generic
(g+1)−residual intersection of the Herzog ideal of grade g. Let g ≥ 3 be an integer,
Xg×(g−1), Y1×g, t1×1, U(g−1)×(g+1), and Vg×(g+1) be matrices of indeterminates, and
S be the ring Z[X,Y, t, U, V ]. For each integer i with 1 ≤ i ≤ g, let

∆i = (−1)i+1det (X with row i deleted).

Let ∆ be the matrix [∆1, . . . ,∆g]. The ideal

I = I1(Y X) + I1(∆ + tY )

is called the grade g Herzog ideal. It is a Gorenstein ideal two links from a complete
intersection. These ideals (with t = 0) were resolved in [12]; an algebra structure
was put on their resolutions in [29]. It is shown in [2] that every Gorenstein ideal
in a local ring which is two links from a complete intersection is a Herzog ideal. A
straightforward calculation yields that the Herzog ideals satisfy the condition G∞.
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Let Z and a = [a1, . . . , ag+1] be the matrices

Z =

[
U
V

]
and a = [Y X | ∆ + tY ]Z = Y XU + ∆V + tY V.

Define A and J as in (7.1). If we give all xij, yi, and vij degree one; and all uij

and t degree g − 2, then

d1 = g − 1, dg = 3g − 4, and d = g2 − 3g + 4.

Let M be the g × (g + 1) matrix

M = XU + tV.

Fix integers i and j, with 1 ≤ i, j ≤ g + 1. Let

Mj = det (M with column j removed);

let σ(ij) be +1, 0, or −1 as defined in (7.15); and let U (j) be the (g +1)×1 matrix
whose ith entry is

(−1)i+1σ(ij) det (U with columns i and j deleted).

We will show that J = (a1, . . . , ag+1, w1, . . . , wg+1) where wj is the element of S
defined by the equation

(7.17) Mj − t(∆ + tY )V U (j) = t2wj.

We show that wj exists by viewing the left side of (7.17) as a polynomial in
the variable t with coefficients from Z[X,Y, U, V ]. The constant term of Mj is zero
because it is the determinant of the product

Xg×(g−1)(U with one column removed)(g−1)×g.

If (XU)(i; b, j) represents σ(bj) times the determinant of (XU) with row i and
columns b and j deleted, then the linear coefficient in Mj is obviously equal to∑

1≤i≤g
1≤b≤g+1

(−1)i+bvib(XU)(i; b, j) = ∆V U (j).

Of course, the linear coefficient of t(∆ + tY )V U (j) is also equal to ∆V U (j). The
existence of wj has been established.
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Every entry of M is a homogeneous polynomial of degree g − 1; consequently,
Mj is a homogeneous form of degree

g(g − 1) = d + 2(g − 2).

It is not difficult to see that t(∆ + tY )V U (j) is a form of the same degree; hence,
each wj is a form of degree d.

The ideal J is prime and is generated by g + 1 elements of degree d1 + 1 and
g + 1 elements of degree d. The element t has degree g − 2, and g − 2 is less than
both d1 + 1 and d. Thus, t is a regular element on S/J . We prove that wj is in J
by showing that t2wj ∈ J . Cramer’s rule shows that

∆X = 0.

It follows that

(7.18) (∆ + tY )M = ta, and

(7.19) (∆ + tY )X = tY X.

(Indeed, (∆ + tY )M = (∆ + tY )(XU + tV ) = t(Y XU + ∆V + tV ).) We conclude
from (7.18) that Ig(M) · I1(∆ + tY ) ⊆ A; and hence from (7.19) we see that
tIg(M) ⊆ (A :I) = J ; thus

(M1, . . . ,Mg+1) = Ig(M) ⊆ J.

Cramer’s rule also yields that
UU (j) = 0;

thus from (7.18) we see that

t(∆ + tY )V U (j) = (∆ + tY )(XU + tV )U (j) = (∆ + tY )M U (j) = taU (j).

In other words, t(∆ + tY )V U (j) is an element of A ⊆ J ; and the left side of (7.17)
is in J .

As always we let W be the subspace of the vector space on line (7.8) generated
by w1, . . . , wg+1. If we set all xij = 0 and t = 0, then (7.8) becomes (Z/p)[U, V, Y ]d
and the image of W is generated by the entries of the vector

Y V [U (1) | U (2) | . . . | U (g+1)].

Once again, it is clear that W has dimension g + 1.
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It is worth noting that for the next class of examples, our approximation K

accurately calculates the residual intersection J without these ideals being Cohen-
Macaulay.

Example 7.20. Gorenstein determinantal ideals are not licci (except for com-
plete intersections); nonetheless, they are amenable to our techniques. Let X be
a generic m × m matrix, t be an integer with 1 < t < m, B a Gorenstein
ring, and R = B[X]. If I is the ideal It(X) of R, then I is a Gorenstein ideal
of grade g = (m − t + 1)2. (See [36, pp. 451–452] or [6, Corollary 8.9].) Fur-
thermore, we show in Proposition 7.21 that T 2(R/I) = 0. If we form S, A, and
J as in (7.1) with s = g + 1, then J = K by Corollary 2.18 and J is prime by
Proposition 7.7 (b). However, S/J is not Cohen-Macaulay; in fact, a depth chase
involving [9] and the proofs of Theorem 6.1 (d) and Proposition 7.21 yields that
depth (S/J)(X,Z) = dim (S/J)(X,Z) − 3.

If t = m − 1 or if B contains the field of rational numbers, then the last shift
in the R−resolution of R/I is known to be dg = m(m − t + 1). (This formula
was communicated to us by Joe Brennan. It is derived using Lascoux’s description
of the resolution. In the case t = m − 1, the Gulliksen Neg̊ard complex [11] is a
resolution of R/I for any commutative noetherian ring B.) We may use (7.6) in
order to see that J is generated by g + 1 forms of degree t + 1 together with g + 1
forms of degree (m − t + 1)(mt − t2 + 1).

Proposition 7.21. (See also [35], [8], and [39].) Let X be a generic m × m
matrix, t be an integer with 1 < t < m, B be a commutative noetherian ring, and
R = B[X]. If I is the ideal It(X) in R, then T 2(R/I) = 0, but (Hom(I, R/I))(X)

is not Cohen-Macaulay.

Proof. Let Ω be the module of differentials of R/I over B, and consider the
fundamental exact sequence (cf. [32, Theorem 58]):

(7.22) I/I2 δ−→ ⊕ R/I → Ω → 0,

as well as, the syzygetic sequence (5.3):

(7.23) H1(I)
α−→ ⊕ R/I → I/I2 → 0.

If ∆ is a (t − 1) × (t − 1) minor of X, then it is well known that (I)∆ is gen-
erated by a regular sequence. It follows that the grade of the annihilators of the
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(R/I)−modules ker(δ) and ker(α) is at least the grade of the ideal It−1(X)(R/I),
which is at least two. Thus, Exti

R/I(ker(δ), R/I) and Exti
R/I(ker(α), R/I) are zero

for i ≤ 1; hence, (7.22), (7.23), and Definition 5.2 imply that

(7.24) T 2(R/I) ∼= Ext2
R/I(Ω, R/I).

On the other hand, by [35, 6.8.1] (cf. also [39, Theorem 4.4.1] or [6, Theorem
15.10]),

(7.25) Exti
R/I(Ω, R/I) = 0 for 1 ≤ i ≤ 2.

It follows that T 2(R/I) = 0.
To see that (Hom(I, R/I))(X) is not Cohen-Macaulay, simply compute the

dual of (7.22) and use (7.25) to see that Hom(Ω, R/I) is a first syzygy-module
of Hom(I, R/I). However, by [39, Theorem 3.2] (see also [6, Remark 15.8]),

depth(Hom(Ω, R/I))(X) = dim(R/I)(X) − 1;

and therefore,

depth(Hom(I, R/I))(X) = dim(R/I)(X) − 2.

We next apply our theory in the situation that I is a perfect ideal of grade
2. The generators of generic residual intersections of I were found by C. Huneke.
Consequently, our proof that J = L in this case, does not yield the generators for
a new class of residual intersections. However, it is interesting to observe that L

gives rise to a minimal generating set of J .

Example 7.26. Let R be a commutative noetherian ring, X be an n× (n− 1)
matrix of indeterminates, Z be an n × s matrix of indeterminates, and S be the
ring R[X,Z]. The ideal I = In−1(X) is a generic perfect ideal of grade 2. It is licci
and G∞. Let

fi = (−1)i+1det(X with row i removed).

Form A and J as in (7.1). If P is the ideal In(X | Z), then the proof of Theorem
4.1 in [19], combined with Observation 7.9, yields that J = P .

Assume, henceforth, that s = 3 and that R contains the field of rational num-
bers. We conclude from Corollary 2.17 (by way of Lemma 7.3 and Observation
7.9) that J = L. On the other hand, we know from (2.11) that L is equal to

(K, y) + ({w(i) | (i) is an ordered 2-tuple selected from 1, . . . , n + 1})
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where K is generated by n + 1 elements. It is easily seen that one of the ele-
ments w(i) is already an element of (K, y). Consequently, J can be generated by
(1/2)(n + 1)(n + 2) elements. This is marvelously efficient generation since actu-

ally J = In(X | Y ), which is plainly minimally generated by

(
n + 2

n

)
elements.

8. The Minimal Number of Generators for J.

We conclude by estimating the minimal number of generators required for a
(g + 1)−residual intersection of a grade g Gorenstein ideal.

Theorem 8.1. Let I be a grade g > 0 Gorenstein ideal in a Gorenstein local
ring (R, M). Suppose that I is generically a complete intersection and also that
H1(I) is Cohen-Macaulay. Let J = (A : I) be a (g + 1)−residual intersection and
let t = dim((A+MI)/MI). If T 2(R/I) = 0 and (R, I) admits a deformation (R̃, Ĩ)
with Ĩ satisfying the condition Gg+2, then

(a) µ(J) ≤ 2g + 2,

(b) g + 1 − t ≤ µ(J/A), and

(c) 2g + 2 − t ≤ µ(J) if t ≤ g − 2.

In particular, if A ⊆ MI, then µ(J) = 2g + 2.

Note. If the ideal I is licci and generically a complete intersection, then the
other hypotheses are automatically satisfied. Indeed, T 2(R/I) = 0 by Theorem
2.19 (a), I is strongly Cohen-Macaulay by [18], and (R, I) admits a deformation
(R̃, Ĩ) with Ĩ satisfying G∞ by [22, Theorem 5.3].

Beginning of the proof. From Corollary 2.18 we already know that J = K;
hence, from (2.3),

J = (a1, . . . , ag+1, c1, . . . , cg+1),

so in any event µ(J) ≤ 2g + 2. Thus it suffices to prove (b) and (c). To this end,
we may assume that t ≤ g since nothing is to be shown if t = g + 1.

We follow the procedure used in the proof of Theorem 5.1 in [22] in order to
construct a suitable localization of a generic (g + 1)−residual intersection

J = ( A : Ĩ R ) ⊆ R

of Ĩ. The ideal J is a geometric residual intersection by Lemma 7.2 (b) and

H1(Ĩ R ) is still Cohen-Macaulay by [20, Lemma 2.15]. Thus, we may apply
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Theorem 6.1 (c) in order to conclude, as in the proof of Theorem 5.1 in [22],

that ( R , J ), ( R / A , Ĩ R / A ), and ( R / A , J / A ) are deformations of

(R, J), (R/A, I/A), and (R/A, J/A) respectively. Since, moreover, T 2( R /Ĩ R ) =
0 by [37, Lemma 2.9], we do not change any of our assumptions or conclusions if

we replace J = (A : I) by J = ( A : Ĩ R ). Reverting to our original notation we
may therefore assume that J is a geometric (g + 1)−residual intersection of I,
and I satisfies the condition Gg+2.

Before proceeding any further with the proof of Theorem 8.1 we offer two
examples. In Example 8.2 we show that the bounds of Theorem 8.1 hold if I is a
complete intersection; we are then able to ignore this case for the rest of the proof.
Example 8.3 appears to be a special case of Theorem 8.1; however, the rest of the
proof amounts to reducing the general case to this special case.

Example 8.2. Let I, in the notation of Theorem 8.1, be a complete inter-
section. If f is a 1 × g matrix whose entries generate I, and X is a g × (g + 1)
matrix such that the entries of fX generate A, then J = A+Ig(X) by [22, Example
3.4 and Theorem 4.7]. (In fact, the entire resolution of R/J may be found in [5,
Theorem 4.8].) At this point it is easy to calculate the exact values:

µ(J) = 2g + 2 − t if t ≤ g − 2
µ(J) = g + 1 if t = g − 1
µ(J/A) = g + 1 − t if t ≤ g − 1.

(The integer t is necessarily smaller than g in this case because A is a proper sub-
ideal of I and µ(I) = g.) Observe that the lower bounds given in Theorem 8.1 (b)
and (c) are attained in this example. Observe also, that the bound given in part
(c) does not necessarily hold if t > g − 2.

Example 8.3. Let (S, N) be a Gorenstein local ring, and let I be a grade g > 0
Gorenstein ideal of S which is not a complete intersection. Suppose that T 2(S/I) =
0, and I satisfies the condition Gg+2. Let X be a (g− t+1)× (g− t+1) matrix of

indeterminates, let S = S[X]
N

where N is the maximal ideal (N + (X))S[X]

of S[X], and let f be a 1 × n matrix whose entries generate I. Suppose that the

S −ideal J = ( B S : I S ) is a geometric (g + 1)−residual intersection of I S ,

where B is the S[X]-ideal generated by the entries of b for

b = [b1, . . . , bg+1] = f

 It 0
0 X
0 0

 ,
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where It is the t × t identity matrix. We will identify a generating set for J and
show that the inequalities of Theorem 8.1 hold for this example. Let F be a minimal
S−resolution of S/I. Let (K, ∂) be the Koszul complex on the elements f1, . . . , fg+1

of S[X]. In particular, let ε1, . . . , εg+1 be a basis for K1 with ∂1(εi) = fi. Let
α : K → F ⊗ S[X] be a comparison map that extends the identity map in degree
zero. For each i, with 1 ≤ i ≤ g + 1, let

pi = (−1)i+1αg(ε1 ∧ . . . ∧ ε̂i ∧ . . . ∧ εg+1) ∈ Fg ⊗ S[X] = S[X].

Let (E, d) be the Koszul complex on the elements b1, . . . , bg+1 of S[X]. In partic-
ular, let e1, . . . , eg+1 be a basis for E1 with d1(ei) = bi. Let β1 : E1 → K1 be the
map represented by the matrix

Y =

[
It 0
0 X

]
,

and let β : E → K be the DG−algebra map induced by β1. For each i, with
1 ≤ i ≤ g + 1, let

ci = (−1)i+1αgβg(e1 ∧ . . . ∧ êi ∧ . . . ∧ eg+1) ∈ Fg ⊗ S[X] = S[X].

Since J = K, by Corollary 2.18, we know, from (2.3), that

J = (c1, . . . , cg+1, b1, . . . , bg+1) S .

If p is the matrix [p1, . . . , pg+1], then it is immediate that (up to sign), ci is the
determinant of the matrix obtained by deleting the ith column of

[Y pT ] =

 It 0
pT

0 X

 .

We establish inequality (b) of Theorem 8.1 for this example by showing that

c̄t+1, . . . , c̄g+1 begins a minimal generating set for J /( B S ). Let “˜ ” denote

reduction mod I S . Observe that

( J , det X)˜ = (Ig+1(Y |pT ))˜;

consequently, ( J , det X)˜ is generated by the maximal order minors of the
(g − t + 1) × (g − t + 2) matrix 

pt+1

X
...

pg+1

 .

42



Since J is a geometric (g + 1)−residual intersection of I S , it follows from

(1.6) that grade (I S + J ) ≥ g + 2; and, therefore, grade ( J )˜ ≥ 2 because

I is a perfect ideal of grade g. In particular, grade ( J , det X)˜ ≥ 2, and

hence ( J , det X)˜ is a determinantal ideal having generic grade, which is two.
Since I is not a complete intersection, each pj is a non-unit and it is clear that

(det X)˜, c̃t+1, . . . , c̃g+1 is a minimal generating set for ( J , det X)˜. It follows
that

(8.4) c̃t+1, . . . , c̃g+1

begins a minimal generating set for ( J )˜ = ( J + I S )/I S = J / B S . (The
last equality holds due to Theorem 6.1 (a).)

Assume t ≤ g − 2. We establish inequality (c) of Theorem 8.1 for this example
by showing that

b1, . . . , bg+1, ct+1, . . . , cg+1

begins a minimal generating set for J . We have carefully constructed the b’s and
the c’s to be elements of S[X], so that we can take advantage of the fact that each
b is a homogeneous form in S[X] of degree (in (X)) at most 1 and each c is a

homogeneous form of degree at least (g− t) ≥ 2. Recall that B is the S[X]−ideal

(b1, . . . , bg+1). Let J be the S[X]−ideal ( B + (c1, . . . , cg+1)). (Thus, J = J S .)

Degree considerations show that every S[X]/ N relation on b̄1, . . . , b̄g+1 in

J/ N J is equivalent to a relation in B / N B , and is therefore trivial (because

b1, . . . , bg+1 is a minimal generating set for B ). We know from (8.4) that c̄t+1,

. . ., c̄g+1 are linearly independent in the S[X]/ N vector space J/( N J + B ). We
conclude that

b̄1, . . . , b̄g+1, c̄t+1, . . . , c̄g+1

are linearly independent in J/ N J = J / N J .

We prove Theorem 8.1 by showing that is is legal to “replace” the given residual
intersection by the residual intersection of Example 8.3. The process has three
steps: we extend the original ring and form universal linear combinations of the
generators of I; then we deform to a generic situation; finally, we specialize to the
“semi-generic” situation of Example 8.3. The next three lemmas describe these
steps. Throughout this discussion:

(8.5) I is an ideal of height g > 0; h1, . . . , ht is a regular sequence in I, and the
ideal I/(h1, . . . , ht) satisfies the condition Gs−t+1 for some s ≥ g.
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Lemma 8.6. Let R be a ring. Assume the hypotheses of (8.5). Suppose that
I = (h1, . . . , ht, ht+1, . . . , hn). Let U be an (n−t)×(s−t) matrix of indeterminates,
and let f be the matrix

f = [h1, . . . , hn]

[
It 0
0 U

]
.

Fix an integer i, with g ≤ i ≤ s, and a prime ideal Q of R[U ]. If either

(a) ht(Q) ≤ i − 1, or

(b) ht(Q) ≤ i and IR[U ] ⊆ Q,

then (f1, . . . , fi)Q = (IR[U ])Q. In particular, the ideal (f1, . . . , fs)/(f1, . . . , ft) of
the ring R[U ]/(f1, . . . , ft) satisfies the condition Gs−t+1.

Proof. It suffices to do the calculation in R/(h1, . . . , ht); consequently, we may
assume that t = 0. In this case, the result is Lemma 7.2(a).

The next Lemma gives sufficient conditions for deforming an arbitrary residual
intersection into a more general one.

Lemma 8.7. Let J = (B : I) be a geometric s−residual intersection in the
Gorenstein local ring (S, N). Assume that I satisfies the condition Gs, and that
I is strongly Cohen-Macaulay, or s = g + 1 and H1(I) is Cohen-Macaulay. In
addition, assume the hypotheses of (8.5) and let f1, . . . , fn be a generating set of I
with fi = hi for 1 ≤ i ≤ t. Suppose that B is generated by the entries of b where

b = [f1, . . . , fn]

[
It 0
0 N

]

for some (n− t)× (s− t) matrix N with entries in N. Let Z be an (n− t)× (s− t)
matrix of indeterminates and S be the ring S[Z](N, (Z)). Let

(8.8) B be the ideal of S generated by the entries of

b = [f1, . . . , fn]

[
It 0
0 Z

]
,

and let J be the ideal (B :IS) of S.

Then J is a geometric s−residual intersection of IS with respect to B; and

(S, IS), (S, J), (S/B, IS/B), and (S/B, J/B)
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are deformations of

(S, IS), (S, J), (S/B, IS/B), and (S/B, J/B),

respectively.

Proof. We know from Lemma 8.6 that (IS)Q = BQ for all prime ideals Q of
S with ht(Q) ≤ s − 1 or ht(Q) ≤ s and IS ⊆ Q. It follows that J = (B : IS) is
a geometric s−residual intersection. If I is strongly Cohen-Macaulay, then apply
[19, Theorem 3.1] to see that S/J is Cohen-Macaulay, depthS/B ≥ dim S−s, and
ht(J) = s. If x is the sequence of elements {zij − nij} of S, then it is clear that
x is a regular sequence on both S and S/IS. Let “ ′ ” denote reduction mod (x).
It is obvious that S′ = S, (IS)′ = I, and B′ = B. We conclude, from [22, Prop.
4.2] (if I is strongly Cohen-Macaulay), or, from Theorem 6.1 (c) (if s = g + 1 and
H1(I) is Cohen-Macaulay), that x is a regular sequence on both S/B and S/J.
We also conclude that J′ = J . The proof is now complete.

The next result is harder to state than to prove. It gives sufficient conditions
for replacing an “arbitrary” residual intersection by a “semi-generic” residual in-
tersection like the one discussed in Example 8.3.

Lemma 8.9. Let J = (B : I) be a geometric s−residual intersection in the
Gorenstein local ring (R, M). Suppose that I is strongly Cohen-Macaulay, or that
s = g + 1 and H1(I) is Cohen-Macaulay. Suppose further that the conditions of
(8.5) are satisfied. Extend h1, . . . , ht to be a generating set h1, . . . , ht, ht+1, . . . hn

for I where n ≥ s. Suppose that B is generated by the entries of b, where

b = [h1, . . . , hn]

[
It 0
0 M

]

for some (n − t) × (s − t) matrix M with entries in M. Let X be a matrix of
indeterminates of shape (s − t) × (s − t). Then there exists a Gorenstein local
faithfully flat extension (S, N) of R and a generating set {f1, . . . , fn} of IS (with

fi = hi for i ≤ t) such that, if S is the local ring S[X](N, (X)), B is the ideal of

S generated by the entries of b for

(8.10) b = [f1, . . . , fn]

 It 0
0 X
0 0

 ,

and J is the ideal ( B :I S ) of S , then J = ( B :I S ) is a geometric s−residual
intersection and each pair of pairs:
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(a) (S, IS) and ( S , I S ),

(b) (S, JS) and ( S , J ),

(c) (S/BS, IS/BS) and ( S / B , I S / B ),

(d) (S/BS, JS/BS) and ( S / B , J / B ),

has a common deformation. In particular, µ(J) = µ( J ) and µ(J/B) = µ( J /B).

Proof. Notice that t ≤ g ≤ s ≤ n. Let U be an (n − t) × (s − t) matrix of
indeterminates and let (S, N) be the local ring R[U ]MR[U ]. The matrix

E =


It 0 0

0
0 U

In−s


is invertible over S and the ideal IS is generated by the entries of f = [h1, . . . , hn]E.
Observe that

(8.11) b = fE−1

[
It 0
0 M

]
= f

[
It 0
0 N

]

for some (n− t)× (s− t) matrix N with entries in N. Let Z be an (n− t)× (s− t)

matrix of indeterminates; let S be the ring S [Z](N, (X), (Z)); and form b, B, and J

as in (8.8).
The proof is completed by applying Lemma 8.7 twice. In the first application

we “replace” the matrix N of (8.11) with the matrix Z and conclude that

(S, IS), (S, J), (S/B, IS/B), and (S/B, J/B)

are deformations of

( S , I S ), ( S , J S ), ( S /B S , I S /B S ), and ( S /B S , J S /B S ),

respectively. (The indeterminates {xij} are harmless in the last four pairs. We mod
out by these indeterminates in order to see that the last four pairs are deformations
of

(S, IS), (S, JS), (S/BS, IS/BS), and (S/BS, JS/BS),

respectively.) In the second application of Lemma 8.7 we “replace” the matrix[
X
0

]
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of (8.10) with the matrix Z. Once we show that

(8.12) J = ( B :I S ) is a geometric s−residual intersection,

then we conclude from Lemma 8.7 that

(S, IS), (S, J), (S/B, IS/B), and (S/B, J/B)

are deformations of

( S , I S ), ( S , J ), ( S / B , I S / B ), and ( S / B , J / B ),

respectively.
We conclude the proof by establishing (8.12). Apply Lemma 8.6 to the regular

sequence f1, . . . , ft in the ideal I of the ring R. We obtain two conclusions:

(8.13) (f1, . . . , fs)Q = (IS)Q for all prime ideals Q of S with ht(Q) ≤ s − 1, or
ht(Q) ≤ s and IS ⊆ Q; and

(8.14) the ideal (f1, . . . , fs)/(f1, . . . , ft) of the ring S/(f1, . . . , ft) satisfies the con-
dition Gs−t+1.

Conclusion (8.14) is exactly the hypothesis we need to apply Lemma 8.6 to the
regular sequence f1, . . . , ft in the ideal (f1, . . . , fs) of the ring S. We conclude that

(8.15) B
Q

= (f1, . . . , fs) Q

for all prime ideals Q of S with ht( Q ) ≤ s−1, or ht( Q ) ≤ s and (f1, . . . , fs) ⊆
Q . Let Q be a prime ideal of S with ht( Q ) ≤ s − 1, or ht( Q ) ≤ s and

I S ⊆ Q . We see from (8.15) that B
Q

= (f1, . . . , fs) Q
. On the other hand,

if we let Q = Q ∩ S, then we may apply (8.13) to see that (f1, . . . , fs)Q = (IS)Q.

Thus, B
Q

= (IS)
Q

, (8.12) is established, and the proof is complete.

The conclusion of the proof of Theorem 8.1. Recall that J = (A :I) is a
geometric (g + 1)−residual intersection in the local ring (R, M) and

t = dim((A + MI)/MI).

(We may make a flat extension of R, if necessary, in order to assume that the
residue field of R is infinite.) Use the technique mentioned in the first paragraph
of section one in order to select a generating set b1, . . . , bg+1 for A so that
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(8.16) b1, . . . , bg is a regular sequence on R; b̄1, . . . , b̄t is a basis for (A + MI)/MI;
and (b1, . . . , bg)P = IP for all prime ideals P of R with I ⊆ P and ht(P ) = g.

Let {h1, . . . , hn}, with n ≥ g + 1, be a generating set for I which extends h1 = b1,
. . . , ht = bt. If we add an element of (b1, . . . , bt) to bi for i > t, then the conditions
of (8.16) still hold. Consequently, we may alter bt+1, . . . , bg+1 in order to assume
that the conditions of (8.16) hold and

[b1, . . . , bg+1] = [h1, . . . , hn]

[
It 0
0 M

]
for some (n − t) × (g − t + 1) matrix M with entries in M. Let b represent the
vector [b1, . . . , bg+1].

We claim that the ideal I/(h1, . . . , ht) satisfies the condition Gg−t+2. Let “ ′ ”
denote reduction modulo the regular sequence b1, . . . , bt. (Recall that t ≤ g.) Let
P ′ be a prime ideal in R′ with I ′ ⊆ P ′, g − t ≤ dim R′

P ′ ≤ g − t + 1, and let P
be the preimage of P ′ in R. If dim R′

P ′ = g − t, then P is a minimal prime of I;
hence, IP = (b1, . . . , bg)P , and therefore, µ(I ′

P ′) ≤ g − t = dim R′
P ′ . If dim R′

P ′ =
g − t + 1, then, since J is a geometric residual intersection, IP = (b1, . . . , bg+1)P

and therefore, µ(I ′
P ′) ≤ g + 1 − t = dim R′

P ′ . Thus, I ′ satisfies Gg−t+2.
Recall that s = g + 1 and H1(I) is Cohen-Macaulay. Now that we have veri-

fied the hypotheses of (8.5), we may apply Lemma 8.9. The residual intersection

J = (I1( b ) :I S ) of Example 8.3 is obtained from the present residual intersec-
tion J = (I1(b) :I) by forming a faithfully flat extension, a deformation and a

specialization. In particular, µ(J) = µ( J ) and µ(J/I1(b)) = µ( J /I1( b )). The

module T 2( S /I S ) = 0, so the proof is completed by appealing to Examples 8.3
and 8.2.
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