
Introduction.

Let u1×fff , Xfff×fff , and vfff×1 be matrices of indeterminates over a commutative
noetherian ring R0, and let H(fff) be the ideal I1(uX)+ I1(Xv)+ I1(vu−AdjX) of
the polynomial ring R = R0[{ui, vi, xij | 1 ≤ i, j ≤ fff}]. Vasconcelos observed that
on numerous occasions, some specialization of H(fff) is the defining ideal for the
symbolic square algebra A[Pt, P (2)t2] of the prime ideal P in the commutative ring
A. He conjectured [19] thatH(fff) is a perfect prime Gorenstein ideal of grade 2fff . In
[16], we found the minimal homogeneous resolution of R/H(fff) by free R−modules;
thereby establishing Vasconcelos’ conjecture. This resolution is obtained by merging
four Koszul complexes:

(*)
F(1) ←→ F(2)
l l

F(3) ←→ F(4),

where F(1) and F(4) are both Koszul complexes on the entries of [u v], F(2) is the
Koszul complex on the entries of [uX v], and F(3) is the Koszul complex on the
entries of [u Xv]. The arrows in (*) represent maps given by the various minors
of X.

In the present paper, we consider the next natural question, which is, “What
happens when the matrix X is not square?” In this case, the corresponding ideal,
K, is equal to I1(uX) + I1(Xv) + Ifff (X), where X is an ggg × fff matrix, with fff ≤ ggg,
v is an fff × 1 matrix, and u is a 1× ggg matrix. In other words, K is the ideal which
defines the variety of complexes

0→ R→ Rfff → Rggg → R,

where the middle map has rank less than fff . It quickly becomes clear that the best
way to resolve R/K is to produce a family of complexes which resolves “half” of
the divisor class group of R/K.

Two distinct starting points give rise to a family of complexes with similar, and
very pretty, properties. The first starting point is the theory of residual intersec-
tions. Let I be a grade two perfect ideal, or a grade three Gorenstein ideal, or a
grade g complete intersection, and let

Rn
P−→ Rg

a−→ R→ R/I → 0

be exact. Assume that the ring R is the polynomial ring k[P,X], where k is a field,
X is a g × f generic matrix, and P is as generic as possible. Given this data with
grade I ≤ f , let K be the f−residual intersection I1(aX) : I, ρ be the map

ρ = [P X ] : E = Rn ⊕Rf −→ G = Rg,

and m and s be the integers m = f+1−grade I and s = f . Then, there is a family
of complexes {C(z)} which satisfies the following properties.

(a) The complex C(0) resolves R/K.
(b) The divisor class group of R/K is the infinite cyclic group Z[coker ρ].
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(c) If −1 ≤ z, then C(z) resolves a representative of the class z[coker ρ] from
C` R/K.

(d) The canonical class in the C` R/K is equal to m[coker ρ].

(e) C(z) ∼= (C(m−z))∗ [−s].
(f) If M is a reflexive R/K−module of rank one and [M ] = z[coker ρ] in

C` R/K for some integer z, then M is a Cohen-Macaulay module if and
only if −1 ≤ z ≤m + 1.

(g) If ρ̃ =
[
P X̃

]
, where X̃ is the submatrix of X which consists of columns 1

to f−1, then, for each integer z, there is a short exact sequence of complexes

0 −→ C(z)(ρ̃ ) −→ C(z) −→ C(z−1)(ρ̃ )[−1] −→ 0.

Indeed, if I is a grade two perfect ideal, then n = g − 1, P is the g × g − 1 matrix
of indeterminates whose g − 1 × g − 1 minors generate I, ρ is the g × (f + g − 1)
matrix of indeterminates [P X], K is generated by the g × g minors of ρ (see [11,
Thm. 4.1] or [12, pg. 4]), and C(z) is the Eagon-Northcott type complex

· · · → D1G
∗⊗∧z+g+1

E → D0G
∗⊗∧z+g

E → S0G⊗
∧z

E → S1G⊗
∧z−1

E → . . . ,

with SzG⊗
∧0

E in position 0; see, for example, [6, Sect. 2C]. If I is a grade three
Gorenstein ideal, then n = g, P : G∗ = Rn → Rg = G is the g × g alternating
matrix of indeterminates whose g− 1 order pfaffians generate I, E = G∗⊕F , K is
generated by the pfaffians of all principal submatrices of

(
P X

−Xt 0

)
which contain

P , and C(z) is the complex

· · · →
(
S1G⊗

∧m−z−1
E

)∗
→

(
S0G⊗

∧m−z
E

)∗
→ Qz

→ S0G⊗
∧z

E → S1G⊗
∧z−1

E → . . . ,

with SzG⊗
∧0

E in position 0, where

S•G⊗
∧•

E = S•G⊗∧• E
(S0G⊗∧g G∗,η) ,

and η is the element of G⊗E which corresponds to E∗ = G⊕F ∗ proj−−→ G under the
natural identification of Hom(E∗, G) and G⊗E. See [17]. If I is a grade g complete
intersection, then n =

(
g
2

)
, a is a 1×g matrix of indeterminates, P :

∧2
Rg → Rg is

the Koszul complex map, K is equal to I1(aX) + Ig(X), the complex C(0) is given
in [5], and the entire family {C(z)} is given in [13].

There is a second starting point which produces an analogous family of com-
plexes. In this case, there is no ideal I, there is no presentation map P of I, and
there is no interpretation in terms of residual intersection. The best examples of
this second starting point come from the theory of varieties of complexes. Start
with the data

0→ R
v−→ F

X−→ G
u−→ R,



TWO VECTORS AND A RECTANGULAR MATRIX 3

where F and G are free R−modules with rankF = fff ≤ ggg = rankG, v, X, and u
are matrices of indeterminates, and R = k[v,X, u] for some field k. Let K be the
R−ideal

K =
{
Ifff (X) + I1(uX) in case 1,
I1(Xv) + Ifff (X) + I1(uX) in case 2,

and ρ be the R−module homomorphism

ρ =
{ [1⊗X∗(u) X∗] : (F ∗ ⊗ F )⊕G∗ → F ∗ in case 1,

[ v 1⊗X∗(u) X∗ ] :
∧2

F ∗ ⊕ (F ∗ ⊗ F )⊕G∗ → F ∗ in case 2.

The integer s plays the role of the projective dimension of R/K as an R−module;
hence,

s =
{
ggg in case 1, and
ggg + fff − 1 in case 2.

The integer m is defined by property (d); hence,

m =
{
ggg − fff − 1 in case 1, and
ggg − fff in case 2.

Then, in each case (1) and (2), there is a family of complexes {C(z)} which satisfy
properties (a)—(g), provided (g) is modified to read

(0.1) 0 −→ C(z)(ρ̃ ) −→ C(z) ⊗R R/(uggg) −→ C(z−1)(ρ̃ )[−1] −→ 0.

Case (1) is treated in [13]; the present paper is devoted to finding the family of
complexes {C(z)} in case (2). In fact, given the data of case (2), we produce two
families of complexes. The complexes {I(z)} of section 2 are not minimal, but the
maps are well understood. The complexes {M(z)} of section 4 are minimal, but the
maps are very complicated, and less well understood.

We begin by recording what is known about R/K in case (2). Theorem 0.2 has
been established by De Concini and Strickland [10] using Hodge algebra techniques.

Theorem 0.2. Let R0 be a commutative noetherian ring, 2 ≤ fff ≤ ggg be integers,
vfff×1, Xg×fff and u1×ggg be matrices of indeterminates, R be the polynomial ring
R0[v,X, u], and K be the R−ideal I1(uX) + Ifff (X) + I1(Xv).

(a) The ring R/K is reduced (respectively, Cohen-Macaulay, a domain, a normal
domain) if and only if R0 satisfies the same property.

(b) The ideal K is generically perfect of grade fff + ggg − 1.

(c) The ring R/K satisfies Serre’s condition (Si) if and only if R0 satisfies (Si).

The proof and notation of Theorem 0.3 may be found in Bruns [4]. The form
of the divisor class group of R/K, but not its generators, may also be found in
Yoshino [20].
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Theorem 0.3. Retain the hypotheses of Theorem 0.2, with R0 a normal domain.
Let

b3 = I1(v)+K
K , p2 = (v1)+If−1(columns 2 to f of X)+K

K , a2 = If−1(rows 1 to f−1 of X)+K
K ,

r2 = If−1(X)+K
K , and p1 = (ug)+If−1(rows 1 to f−1 of X)+K

K

represent various ideals of R/K.

(a) If fff < ggg, then b3, a2, and p2 all are height one prime ideals of R/K. Further-
more, C`R/K = C`R0 ⊕ Z, where the summand Z is generated by the class [b3]
and the equations

[b3] = [a2] = −[p2]

hold in C`R/K.

(b) If fff = ggg, then b3, p2, r2, and p1 all are height one prime ideals of R/K.
Furthermore, C`R/K = C`R0 ⊕ Z⊕ Z where one summand Z is generated by the
class [b3], the other summand Z is generated by [r2], and the equations

[b3] = −[p2] and [r2] = −[p1]− [p2]

hold in C`R/K.

(c) If ωR0 is the canonical module of R0, then the class of the canonical module
of R/K in C`R/K is [ωR0R/K] + (ggg − fff)[b3].

(d) If P is a prime ideal of R, then (R/K)P is a regular local ring if and only if
(R0)R0∩P is a regular local ring and Ifff−1(X) + I1(u)I1(v) 6⊆ P .

Section 1 is devoted to collecting the relevant facts; especially from the theory of
multilinear algebra. In 2, we define I(z), prove that it is a complex, give examples,
and establish the duality between I(z) and I(ggg−fff−z). In 3, we identify the zeroth
homology of the complex I(z); we establish homomorphisms from H0(I(z)) to ideals
of H0(I(0)) = R/K (these homomorphisms are shown to be isomorphisms in section
8); and we record the short exact sequence of complexes (0.1) for the I(z). In 4, we
split off a split exact summand of I(z) in order to produce the complex M(z), which
is minimal whenever the data is local or homogeneous of positive degree. This
section concludes with a list of examples. The modulesM(p, q, r), which comprise
the complex M(z), are defined and shown to be free in 5. Section 6 is a calculation
about binomial coefficients which is used to find the rank of M(p, q, r). In 7, we
prove the results which are stated in section 4; thereby completing the proof that
M(z) is homologically equivalent to I(z). In sections 8 and 9 we prove that the
complex I(z) is acyclic. The proof is by induction on ggg and uses the short exact
sequence (0.1). The inductive step is in 8 and the base case, ggg = fff − 1, is in 9.

1. Preliminary results.

In this paper “ring” means commutative noetherian ring with one. The grade
of a proper ideal I in a ring R is the length of the longest regular sequence on
R in I. An R−module M is called perfect if the grade of the annihilator of M is
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equal to the projective dimension of M . The ideal I of R is called perfect if R/I is
a perfect R−module. An excellent reference on perfect modules is [6, Sect. 16C].
For any R−module F , we write F ∗ = HomR(F,R). If f : F → G is a map of
R−modules, then we define Ir(f) to be the image of the map

∧r
F ⊗ (

∧r
G)∗ → R,

which is induced by the map
∧r

f :
∧r

F → ∧r
G. (In particular, if F and G are

free modules, then Ir(f) is the ideal in R which is generated by the r × r minors
of any matrix representation of f .) Let F be a free R−module of finite rank. We
make much use of the exterior algebra

∧•
F , the symmetric algebra S•F , and the

divided power algebra D•F . In particular,
∧•

F and
∧•

F ∗ are modules over one
another, and S•F and D•F ∗ are modules over one another. Indeed, if αi ∈

∧i
F ∗,

bj ∈
∧j

F , Ai ∈ Si(F ∗), and Bj ∈ Dj(F ), then

αi(bj) ∈
∧j−i

F, bj(αi) ∈
∧i−j

F ∗, Ai(Bj) ∈ Dj−i(F ), and Bj(Ai) ∈ Si−j(F ∗).

(We view
∧i

F , SiF , and DiF to be meaningful for every integer i; in particular,
these modules are zero whenever i is negative.) The exterior, symmetric, and
divided power algebras A all come equipped with co-multiplication ∆: A→ A⊗A.
The following facts are well known; see [7, section 1], [8, Appendix], and [16, section
1].

Proposition 1.1. Let F be a free module of rank fff over a commutative noetherian
ring R and let br ∈

∧r
F , b′p ∈

∧p
F , and αq ∈

∧q
F ∗.

(a) If r = 1, then (br(αq)) (b′p) = br ∧ (αq(b′p)) + (−1)1+qαq(br ∧ b′p).
(b) If q = fff , then (br(αq)) (b′p) = (−1)(fff−r)(fff−p)

(
b′p(αq)

)
(br).

(c) If p = fff , then [br(αq)](b′p) = br ∧ αq(b′p).
(d) If X : F → G is a homomorphism of free R−modules and δs+r ∈

∧s+r
G∗,

then (
∧s

X∗) [((
∧r

X)(br)) (δs+r)] = br

[(∧s+r
X∗

)
(δs+r)

]
.

Note. The exponent which is given in (b) is correct. An incorrect value has ap-
peared elsewhere in the literature.

The following data is in effect throughout most of the paper.

Data 1.2. Let F and G be free modules of rank fff and ggg, respectively, over the
commutative noetherian ring R. Let u ∈ G∗, v ∈ F , and X : F → G be an
R−module homomorphism.

Note 1.3. We will always take Ap ∈ SpF
∗, Bp ∈ DpF , αq ∈

∧q
F ∗, br ∈

∧r
F ,

cs ∈
∧s

G, and δq ∈
∧q

G∗. In particular, a lower case subscript will give the
position of a homogeneous element, whenever possible.

Convention 1.4. Orient F and G by fixing basis elements ωF ∈
∧fff

F , ωF∗ ∈ ∧fff
F ∗,

ωG ∈
∧ggg

G, and ωG∗ ∈ ∧ggg
G∗ with ωF (ωF∗) = 1 and ωG(ωG∗) = 1. All of our

maps are coordinate free; however, sometimes the easiest way to describe a map is
to tell what it does to a basis. Consequently, we fix bases f [1], . . . , f [fff ] for F and
g[1], . . . , g[ggg] for G. Let ϕ[1], . . . , ϕ[fff ] and γ[1], . . . , γ[ggg] be the corresponding dual
bases for F ∗ and G∗, respectively.
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Convention 1.5. (a) Sometimes we think as the data of 1.2 as matrices:

u = [u1 . . . uggg ] , X =

 x11 . . . x1fff

...
...

xggg1 . . . xgggfff

 , and v =

 v1...
vfff

 .
(b) If {ui}∪{xjk}∪{v`} is a list of indeterminates over a commutative noetherian
ring R0, and R is the polynomial ring R0[{ui}∪{xjk}∪{v`}], then we say that the
data of 1.2 is generic.

Convention 1.6. The bases and orientation elements of Convention 1.4 are related
by the following equations:

ωF = f [1] ∧ . . . ∧ f [fff ], ωF∗ = ϕ[fff ] ∧ . . . ∧ ϕ[1],

ωG = g[1] ∧ . . . ∧ g[ggg], and ωG∗ = γ[ggg] ∧ . . . ∧ γ[1].

If I represents the ordered i−tuple of integers a1 < a2 < · · · < ai, (we write |I| = i),
then let

fI = f [a1] ∧ . . . ∧ f [ai] and ϕI = ϕ[ai] ∧ . . . ∧ ϕ[a1].

Notice that the element ∑
|I|=i

ϕI ⊗ fI

of
∧i

F ∗ ⊗ ∧i
F is canonical in the sense that it does not depend on the choice

of dual bases f [1], . . . , f [fff ] and ϕ[1], . . . , ϕ[fff ]. (Indeed, this element corresponds
to the identity map under the canonical identification of Hom(

∧i
F,

∧i
F ) with∧i

F ∗ ⊗ ∧i
F .) The above sum is taken over all ordered i−tuples of {1, . . . , fff}.

(The ambient set in which I lies, in this case {1, . . . , fff}, will always be clear from
context.)

Convention 1.7. If bq ∈
∧q

F , then we use (bq ⊗ 1) ∗ to represent the homomor-
phism

∧q
F ∗ ⊗M → M , which sends αq ⊗ m to bq(αq) · m, for any R−module

M .

Example 1.8. Adopt Data 1.2. The easiest way to prove the identity∑
|I|=1

ϕI ⊗X(fI) =
∑

|K|=1

X∗(γK)⊗ gK ∈ F ∗ ⊗G,

is observe that both sides become X(b1), upon application of (b1 ⊗ 1) ∗ , for an
arbitrary element b1 of F . (Notice that I ⊆ {1, . . . , fff} and K ⊆ {1, . . . , ggg}, and, as
promised, this is clear from the context.)

Lemma 1.9. Adopt Data 1.2. If k is a fixed integer, αp ∈
∧p

F ∗, bq ∈
∧q

F , and
br ∈

∧r
F , then

(a) ∆(αp) =
∑
i

∑
|I|=i

ϕI ⊗ fI(αp),
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(b)
∑

|K|=k
ϕK ⊗ fK(αp) = (−1)k(p−k)

∑
|K|=p−k

fK(αp)⊗ ϕK ,

(c)
∑

|K|=k
ϕK ∧ fK(αp) =

(
p
k

)
αp,

(d) αp(bq ∧ br) =
∑
i

∑
|I|=i

(−1)q(p−i)ϕI(bq) ∧ [fI(αp)](br),

(e)
∑

|K|=k
ϕK ⊗ fK ∧ bq ∧ br =

∑
|K|=k+q

bq(ϕK)⊗ fK ∧ br,

(f)
∑

|K|=k
[bq(ϕK)](fK ∧ br) =

(
fff−q−r
k−q

)
bq ∧ br, and

(g)
∑

|K|=k
ϕK ⊗ fK =

∑
|K|=fff−k

(−1)k(1+fff)fK(ωF∗)⊗ ϕK(ωF ).

Proof. To prove (a), fix i and project onto
∧i

F ∗ ⊗ ∧p−i
F ∗. Both sides become

bi(αp), upon application of (bi ⊗ 1) ∗ . Apply (bk ⊗ 1) ∗ to both sides of (b).
The left side becomes

∑
|K|=k

bk(ϕK) · fK(αp) = bk(αp). The right side becomes

(−1)k(p−k)
∑

|K|=p−k
(bk ∧ fK)(αp) · ϕK =

∑
|K|=p−k

fK [bk(αp)] · ϕK = bk(αp).

Part (c) follows from (a), together with the well-known fact that the composition∧p
F ∗ ∆−→ ∧k

F ∗ ⊗∧p−k
F ∗ µ−→ ∧p

F ∗

is equal to multiplication by
(
p
k

)
. Part (d) is an immediate consequence the mea-

suring identity, [8, Proposition A.2], together with (a). Apply (bk ⊗ 1) ∗ to both
sides of (e). The left side becomes∑

|K|=k
bk(ϕK) · fK ∧ bq ∧ br = bk ∧ bq ∧ br.

The right side becomes∑
|K|=k+q

bk

(
bq(ϕK)

)
· fK ∧ br =

∑
|K|=k+q

(
bk ∧ bq

)
(ϕK) · fK ∧ br = bk ∧ bq ∧ br .

Part (e) shows that the left side of (f) is equal to
∑

|K|=k−q
ϕK(fK ∧ bq ∧ br). One

may finish the proof of (f) by establishing the assertion when bq ∧ br is a basis
vector from

∧q+r
F . Apply (bk ⊗ 1) ∗ to each side of (g); then use part (b) of

Proposition 1.1. �
Remark 1.10. With the exception of section 6, binomial coefficients play only a
minor role in this paper. Nonetheless, it should be mentioned, at the beginning, that(
m
i

)
is defined for all integers m and i. This binomial coefficient is zero whenever

i < 0 or 0 ≤ m < i. See [14,15] for more details.
Each complex I(z) of section 2 is obtained by splicing together two smaller com-

plexes. The next result is the multilinear algebra which is used in the proof of
Theorem 2.11 at this splice. It is not apparent, at first glance, but identities (a)
and (b) are actually dual to one another. The proof we have given of (b) emphasizes
this realtionship. On the other hand, one can give a proof of (b) which mimics the
proof of (a).
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Lemma 1.11. Adopt Data 1.2. Let αp ∈
∧p

F ∗, bq ∈
∧q

F , αr ∈
∧r

F ∗, and M
and w be integers.

(a) If fff + 1 + w ≤ p+ r, then
∑
i∈Z

|I|=i

(−1)ip
(
M−i
w

)
fI(αp) ∧ [ϕI(bq)](αr) = 0.

(b) If w + p+ 1 ≤ q, then
∑
i∈Z

|I|=i

(−1)i(p+1)
(
M−i
w

)
fI

[
αp ∧ [ϕI(bq)](αr)

]
= 0.

Proof. We first prove (a). For each pair of integers (M,w), let

hM,w :
∧•

F ∗ ⊗∧•
F ⊗∧•

F ∗ → ⊗∧•
F ∗

be the homomorphism which is given by

hM,w(αp ⊗ bq ⊗ αr) =
∑
i∈Z

|I|=i

(−1)ip
(
M−i
w

)
fI(αp) ∧ [ϕI(bq)](αr).

It is clear that hM,w is the zero homomorphism whenever w < 0. Lemma 1.9.d
shows that

hM,0(αp ⊗ bq ⊗ αr) = (−1)pqbq(αp ∧ αr);
thus, the conclusion holds whenever w = 0. The proof proceeds by induction on w.
Observe that

(1.12)
b1 [hM,w(αp ⊗ bq ⊗ αr)]

= (−1)phM,w(αp ⊗ b1 ∧ bq ⊗ αr) + hM−1,w−1(b1(αp)⊗ bq ⊗ αr)

for all b1 ∈
∧1

F . Indeed, the left side of (1.12) is equal to A+B, where

A =
∑
i∈Z

|I|=i

(−1)ip
(
M−i
w

)
b1 [fI(αp)] ∧ [ϕI(bq)](αr) and

B =
∑
i∈Z

|I|=i

(−1)ip+p−i
(
M−i
w

)
fI(αp) ∧ b1

(
[ϕI(bq)](αr)

)
.

Use Proposition 1.1.a to write

b1
(
[ϕI(bq)](αr)

)
= [b1 ∧ ϕI(bq)](αr) =

(
[b1(ϕI)](bq)

)
(αr) + (−1)i

(
ϕI(b1 ∧ bq)

)
(αr).

Apply Lemma 1.9.e to see that B = B1 +B2 for

B1 =
∑
i∈Z

|I|=i−1

(−1)ip+p−i
(
M−i
w

)
fI [b1(αp)] ∧ [ϕI(bq)](αr) and

B2 =
∑
i∈Z

|I|=i

(−1)ip+p
(M−i

w

)
fI(αp) ∧ [ϕI(b1 ∧ bq)](αr) = (−1)phM,w(αp ⊗ b1 ∧ bq ⊗ αr).
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A short calculation yields that A + B1 = hM−1,w−1(b1(αp) ⊗ bq ⊗ αr). Now that
(1.12) is established, we continue with the induction. If fff + 1 +w ≤ p+ r and the
induction hypothesis is known to hold at w − 1, then (1.12) shows that

b1 [hM,w(αp ⊗ bq ⊗ αr)] = (−1)phM,w(αp ⊗ b1 ∧ bq ⊗ αr);

hence,

hM,w(αp ⊗ bq ⊗ αr) = (−1)pqbq
[
hM,w(αp ⊗ 1 ⊗ αr)

]
= (−1)pq

(M
w

)
bq(αp ∧ αr) = 0.

Now we prove (b). Assume that w + p+ 1 ≤ q. We prove

(1.13)
∑
i∈Z

|I|=i

(−1)i(p+1)
(
M−i
w

) (
fI

[
αp ∧ [ϕI(bq)](αr)

])
(ωF ) = 0.

Let ∆(αp) =
∑
s, [j]

α
[j]
s ⊗ α′ [j]

p−s, with α
[j]
s ∈ ∧s

F ∗ and α
′ [j]
p−s ∈

∧p−s
F ∗. Fix I, with

|I| = i. Proposition 1.1.c, together with the measuring identity, gives

(
fI

[
αp ∧ [ϕI(bq)](αr)

])
(ωF ) = fI ∧ αp

(
ϕI(bq) ∧ αr(ωF )

)
=

∑
s, [j]

(−1)(q−i)(p−s)fI ∧ α[j]
s [ϕI(bq)] ∧ α′ [j]

p−s[αr(ωF )]

=
∑
s, [j]

(−1)(q−i)(p−s)+iq+iϕI [α[j]
s (bq)] ∧ [fI(α

′ [j]
p−s ∧ αr)](ωF ).

It follows that the left side of (1.13) is∑
s, [j]

(−1)q(p−s)
∑
i∈Z

|I|=i

(−1)i(q−s)
(
M−i
w

)
ϕI [α

[j]
s (bq)] ∧ [fI(α

′ [j]
p−s ∧ αr)](ωF ),

which is zero by part (a). �
The phrase “Koszul complex” has two meanings in this paper. If X : F → R is

a map of free R−modules, then the Koszul complex associated to X is

(1.14) . . .
∂−→ ∧q

F
∂−→ ∧q−1

F
∂−→ . . . ,

where
∂ (bq) =

∑
|I|=1

X(fI) · ϕI(bq),

for all bq ∈
∧q

F . Of course, if bq = b[1] ∧ . . . ∧ b[q], with b[i] ∈ F , then

∂ (bq) =
q∑
i=1

(−1)i+1X(b[i]) · b[1] ∧ . . . ∧ b[i−1] ∧ b[i+1] ∧ . . . ∧ b[q];
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see Lemma 1.9.a, if necessary. If X : F → G is a map of free R−modules, then the
Koszul complex associated to X is

(1.15) . . .
∂−→ S•G⊗R

∧q
F

∂−→ S•G⊗R
∧q−1

F
∂−→ . . . ,

where
∂ (s⊗ bq) =

∑
|I|=1

s ·X(fI)⊗ ϕI(bq),

for all s ∈ S•G and all bq ∈
∧q

F . If the G of (1.15) is equal to R, then the two
complexes are much different. We will always make our meaning clear.

Remark 1.16. It is well known that if the map X, of (1.15), is an isomorphism,
then the graded strand

. . .
∂−→ SpG⊗R

∧q
F

∂−→ Sp+1G⊗R
∧q−1

F
∂−→ . . . ,

of the Koszul complex associated to X, is split exact for all integers p and q,
provided p+ q 6= 0.

A quasi-isomorphism of complexes is a homomorphism of complexes which in-
duces an isomorphism on homology. Two complexes A and B are homologically
equivalent if there is a sequence quasi-isomorphisms between them:

A = A(0) → A(1) ← A(2) → · · · ← A(n−1) → A(n) = B.

We close this section by recording two conventions which simplify the description
of the differential in the complexes of section 2.

Notation 1.17. For each integer n, let θn = (−1)
n(n+1)

2 .

Observation 1.18. If p, q and r are integers then
(a) θpθp+1 = (−1)p+1,
(b) θpθrθp+r = (−1)pr, and
(c) θpθqθp+rθq+r = (−1)(p+q)r.

Proof. It suffices to prove (b) and this is trivial.

Convention 1.19. For each statement “S”, let

χ(S) =
{

1, if S is true, and
0, if S is false.

In particular, χ(i = j) has the same value as the Kronecker delta δij .

2. The complex I(z).

Given the data of 1.2, we create a family of complexes {I(z) | z ∈ Z}. The free
R−modules which are the building blocks for the I(z) are introduced in Definition
2.1. The official modules, maps, and grading of the I(z) are given in Definition 2.3.
The proof that I(z) is a complex occurs in Theorem 2.11. The duality between
I(z) and I(ggg−fff−z) is established in Proposition 2.12. An informal description of
the complexes I(z) is given in Remark 2.2. The calculations which verify all of
the assertions in this remark are equivalent to the proof of Theorem 2.11 and
Proposition 2.12. Some example of I(z) for small fff and ggg are given in Examples
2.5 — 2.10.
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Definition 2.1. Adopt Data 1.2. Let

L(p, q, r, s, t) = SpF
∗ ⊗∧q

F ∗ ⊗∧r
F ⊗∧s

G⊗Rν(t),

U(p, q, r) =
∧p

F ⊗∧q
G∗ ⊗Rµ(r),

T(p, q, r) =
∧p

F ∗ ⊗∧q
G⊗Rλ(r), and

W(p, q, r, s, t) = DpF ⊗
∧q

F ⊗∧r
F ∗ ⊗∧s

G∗ ⊗Rξ(t),

where each of the modules Rν(t), Rµ(r), Rλ(r), and Rξ(t) is a free R−module of
rank one.

Remark 2.2. Retain Data 1.2. Let S be the symmetric algebra SR• F
∗. Define a

DG−algebra L over S and a DG−algebra U over R as follows. Let∧•
S (S ⊗R (F ∗ ⊕ F ⊕G))

be the Koszul complex, in the sense of (1.14), which is associated to the S−module
map

S ⊗R (F ∗ ⊕ F ⊕G)→ S :

α1

b1
c1

 7→ v(α1) + α1 + [X∗(u)](b1) + u(c1),

for α1 ∈ F ∗, b1 ∈ F , and c1 ∈ G. (Notice that v(α1), [X∗(u)](b1), and u(c1) are all
in S0F

∗; however, α1 is in S1F
∗.) The DG−algebra

L =
[∧•

S (S ⊗R (F ∗ ⊕ F ⊕G))
]
<ν>

is obtained from this Koszul complex by adjoining a divided power variable ν which
kills the cycle ∑

|I|=1

ϕI ⊗
 1
fI
1

− ∑
|I|=1

X∗(γI)⊗
 1

1
gI

 .
Let

∧•
R(F ⊕ G∗) be the Koszul complex, in the sense of (1.14), associated to the

R−module map

F ⊕G∗ → R :
[
b1
δ1

]
7→ [X∗(u)](b1) + [X(v)](δ1)

for b1 ∈ F and δ1 ∈ G∗. The DG−algebra

U =
(∧•

R(F ⊕G∗)
)
<µ>

is obtained from this Koszul complex by adjoining a divided power variable µ which
kills the cycle

[ v

−u
]
. In the language of Definition 2.1, we have

L =
⊕
0≤t

L(p, q, r, s, t) and U =
⊕
0≤r

U(p, q, r)
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as R−modules.
Fix a non-negative integer z. Observe that

L′ =
⊕

s+t≤ggg−1

L(p, q, r, s, t) +
⊕
z≤p+t

L(p, q, r, s, t) +
⊕

p+q+t≤z−1

L(p, q, r, s, t)

is a subcomplex of L and
U′ =

⊕
q+r≤z−1

U(p, q, r)

is a subcomplex of U. Let L represent the complex L/L′ and U represent the
complex U/U′. The left most summand of U is U(0, z, 0). For each element δz of∧z

G∗, observe that

Y (δz) =
∑

t≤z−1
|J|=z−t

1⊗ (
∧z−t

X∗)(γJ )⊗1⊗gJ ∧δz(ωG)⊗ν(t) ∈
z−1∑
t=0

L(0, z− t, 0, ggg− t, t)

is a cycle in L. Define τ : U→ L by

τ(bp⊗δq⊗µ(r)) =
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t+q+s1⊗(
∧s X∗)(γJ )∧ϕI ⊗fI ∧bp⊗gJ ∧δq(ωG)⊗ν(t).

Observe that τ is a map of complexes which extends the map

Y : U(0, z, 0)→
z−1∑
t=0

L(0, z − t, 0, ggg − t, t).

Let C(z) be the subcomplex⊕
{(p,q,r)|p+q+r≤fff−1+z and p+r≤fff−1}

U(p, q, r)⊕
⊕

{(p,q,r,s,t)|r+s+t≤fff+ggg−1}
L(p, q, r, s, t)

of the mapping cone of τ . The left most summand of C(z) is L(z − 1, 1, 0, ggg, 0).
We give this module position 0 in C(z) The complex I(z) is obtained by splicing(
C(ggg−fff−z))∗ [−(ggg + fff − 1)] and C(z).

The conventions of 1.17, 1.19, and 1.3 are used in the next definition.

Definition 2.3. Adopt Data 1.2. Fix an integer z. Define the free R−module I(z)

by
I(z) = W(z) ⊕ T(z) ⊕ U(z) ⊕ L(z), where

W(z) =
⊕
T

(z)
W

W(p, q, r, s, t), T(z) =
⊕
T

(z)
T

T(p, q, r),

U(z) =
⊕
T

(z)
U

U(p, q, r), and L(z) =
⊕
T

(z)
L

L(p, q, r, s, t),
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for

T
(z)
W

=

{
(p, q, r, s, t)

∣∣∣∣ 2fff + z + 1 ≤ q + r + s+ t, p+ q + r + t ≤ fff,
r + s+ t ≤ 2fff + z, and 1 ≤ p+ q + t

}
,

T
(z)
T

= {(p, q, r) | p+ q + r ≤ fff − 1, fff − ggg + z ≤ r, 0 ≤ q + r, and p+ r ≤ 2fff − ggg + z − 1},
T

(z)
U

= {(p, q, r) | 0 ≤ r, p+ q + r ≤ fff − 1 + z, p+ r ≤ fff − 1, and z ≤ q + r}, and

T
(z)
L

= {(p, q, r, s, t) | p+ t ≤ z − 1, ggg ≤ s+ t, z ≤ p+ q + t, and r + s+ t ≤ fff + ggg − 1}.

The module I(z) is graded by the following rules:
(a) the position of L(p, q, r, s, t) is q + r + s+ 2t− 1− ggg,
(b) the position of U(p, q, r) is p+ q + 2r,
(c) the position of T(p, q, r) is p+ q + 2r + ggg − fff + 1, and
(d) the position of W(p, q, r, s, t) is 2p+ q + r + s+ 2t− fff .

Define an R−module homomorphism d : I(z) → I(z) as follows. If

x = Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t) ∈ L(p, q, r, s, t) ⊆ L(z),

then

d(x) =



χ(z + 1 ≤ p+ q + t)Ap ⊗ v(αq) ⊗ br ⊗ cs ⊗ ν(t)

+ χ(p+ t ≤ z − 2)
∑

|I|=1

ϕI ·Ap ⊗ fI(αq) ⊗ br ⊗ cs ⊗ ν(t)

+ (−1)qAp ⊗ αq ⊗ [X∗(u)](br) ⊗ cs ⊗ ν(t)

+ χ(ggg + 1 ≤ s+ t)(−1)q+rAp ⊗ αq ⊗ br ⊗ u(cs) ⊗ ν(t)

+ (−1)qχ(ggg + 1 ≤ s+ t)
∑

|J|=1

ϕJ ·Ap ⊗ αq ⊗ fJ ∧ br ⊗ cs ⊗ ν(t−1)

+ (−1)q+r+1
∑

|K|=1

X∗(γK) ·Ap ⊗ αq ⊗ br ⊗ gK ∧ cs ⊗ ν(t−1).

If x = bp ⊗ δq ⊗ µ(r) ∈ U(p, q, r) ⊆ U(z), then

d(x) =



[X∗(u)](bp) ⊗ δq ⊗ µ(r)

+ χ(z + 1 ≤ q + r)(−1)pbp ⊗ [X(v)](δq) ⊗ µ(r)

+ χ(1 ≤ r)χ(z + 1 ≤ q + r)v ∧ bp ⊗ δq ⊗ µ(r−1)

+ χ(1 ≤ r)(−1)p+1bp ⊗ u ∧ δq ⊗ µ(r−1)

+
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t+p+s1 ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t).

If x = αp ⊗ cq ⊗ λ(r) ∈ T(p, q, r) ⊆ T(z), then

d(x) =



(−1)p−1v(αp) ⊗ cq ⊗ λ(r)

+ χ(1 ≤ q + r)(−1)p+qαp ⊗ u(cq) ⊗ λ(r)

+ χ(fff − ggg + z + 1 ≤ r)χ(1 ≤ q + r)αp ∧ [X∗(u)] ⊗ cq ⊗ λ(r−1)

+ χ(fff − ggg + z + 1 ≤ r)(−1)pαp ⊗ cq ∧ [X(v)] ⊗ λ(r−1)

+
∑
0≤t

|I|=q+r−t

σz(p, q, r, t)fI ⊗
[
(
∧fff−p+t−q−r X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗) ⊗ µ(t),
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where σz(p, q, r, t) = (−1)r+z+qfffθqθp
(
fff−1−p−q−r+t
r+ggg−fff−z

)
. If

x = Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t) ∈W(p, q, r, s, t) ⊆W(z),

then d(x) is equal to

Bp ⊗ bq ∧ v ⊗ αr ⊗ δs ⊗ ξ(t−1)

+
∑

|I|=1

ϕI(Bp) ⊗ bq ∧ fI ⊗ αr ⊗ δs ⊗ ξ(t)

+ χ(2 ≤ p+ q + t)(−1)qBp ⊗ bq ⊗ αr ∧ [X∗(u)] ⊗ δs ⊗ ξ(t−1)

+ χ(2 ≤ p+ q + t)(−1)q+rBp ⊗ bq ⊗ αr ⊗ δs ∧ u⊗ ξ(t−1)

+ (−1)q+r+1
∑

|I|=1

ϕI(Bp) ⊗ bq ⊗ fI(αr) ⊗ δs ⊗ ξ(t+1)

+ (−1)q+r+s
∑

|I|=1

ϕI(Bp) ⊗ bq ⊗ αr ⊗ [X(fI )](δs) ⊗ ξ(t+1)

+ δp0B0
∑

ε≤q+s+t−fff−z−1
|I|=ε

(−1)fff+ggg+t+qr+ε+q+sggg [ϕI (bq)](αr) ⊗ δs(ωG) ∧ (
∧ε X)(fI ) ⊗ λ(q+s+t−ggg−1−ε).

Notes. (a) When we want to emphasize the data which was used to construct
(I(z), d), we write I(z)[u,X, v].
(b) The definition of d uses many module and algebra operations. For example,
the module action of

∧•
F on

∧•
F ∗ is used in v(αq), the multiplication of the

symmetric algebra S•F ∗ is used in ϕJ · Ap, the exterior multiplication of
∧•

G is
used in gK ∧ cs, and the module action of S•F ∗ on D•F is used in ϕI(Bp).

Remark 2.4. Retain Data 1.2. Suppose that R is a graded ring and that each map
of

0→ R(−3) v−→ R(−2)fff X−→ R(−1)ggg u−→ R

is homogeneous of degree zero. A quick check verifies that, if 0 ≤ z, then I(z) is a
homogeneous complex with degree zero maps, provided

(a) the shift of L(p, q, r, s, t) is p+ q + 2r + s+ 3t− ggg − z,
(b) the shift of U(p, q, r) is 2p+ 2q + 3r − z,
(c) the shift of T(p, q, r) is p+ q + 3r + 2ggg − fff − z, and
(d) the shift of W(p, q, r, s, t) is 2p+ 2q + r + 2s+ 3t− fff − 3− z.

For example, by (b) we mean that

U(p, q, r) = R[−(2p+ 2q + 3r − z)](fff
p)(ggg

q).

(If z = −1, then the appropriate grading on I(z) is obtained by subtracting 1 from
each shift in (a)–(d). This convention allows R[0] to be summand of I(z)0 , whenever
−1 ≤ z. See Corollary 4.11.b or Example 4.12.)

Example 2.5. If ggg = 0 and fff = 1, then I(z) is acyclic for −1 ≤ z; indeed, I(z) is
equal to

0→ T(0, 0, 0) = R, if −1 = z,
0→ U(0, 0, 0) = R, if 0 = z,
0→ L(z − 1, 1, 0, 0, 0) = R, if 1 ≤ z,

where each module R is in position zero.
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Example 2.6. If ggg = fff = 1, then the complexes I(z) of Definition 2.3 are

−1 = z : 0→W(0, 1, 0, 1, 0) d1−→ T(0, 1,−1)→ 0,

0 = z : 0→ T(0, 0, 0) d1−→ U(0, 0, 0)→ 0,

1 = z : 0→ U(0, 1, 0) d1−→ L(0, 1, 0, 1, 0)→ 0, and

2 ≤ z : 0→ L(z − 2, 1, 0, 0, 1) d1−→ L(z − 1, 1, 0, 1, 0)→ 0.

Furthermore, each complex is 0→ R
X−→ R→ 0.

Example 2.7. If ggg = 1 and fff = 2, then I(0) is

0→
U(0, 0, 1)
⊕

T(0, 0, 1)

d2−→
U(0, 1, 0)
⊕

U(1, 0, 0)

d1−→ U(0, 0, 0),

where, in the notation of Convention 1.5.a,

d2 =

−u1 0
v1 −x2

v2 x1

 and d1 = [x1v1 + x2v2 u1x1 u1x2 ] .

If the ideal generated by the entries of d1 has grade 2, then I(0) and I(−1) (which is
the shifted dual of I(0)) are both acyclic.

Example 2.8. If ggg = 1 and fff = 2, then I(1) is

0→ U(0, 1, 1) d3−→

L(0, 2, 1, 1, 0)
⊕

U(0, 0, 1)
⊕

U(1, 1, 0)

d2−→

L(0, 2, 0, 1, 0)
⊕

L(0, 1, 1, 1, 0)
⊕

U(0, 1, 0)

d1−→ L(0, 1, 0, 1, 0),

with

d3 =


−x2

x1

x1v1 + x2v2
v1
v2

 , d2 =


u1x1 u1x2 0 0 0
v2 0 1 −x1 0
0 v2 0 0 −x1

−v1 0 0 −x2 0
0 −v1 1 0 −x2

0 0 −u1 u1x1 u1x2

 , and

d1 =
[
v2 −u1x1 −u1x2 0 0 −x1

−v1 0 0 −u1x1 −u1x2 −x2

]
.

The above complex is homologically equivalent to

0→ R
δ3−→ R4 δ2−→ R5 δ1−→ R2, with
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δ3 =


−x2

x1

v1
v2

 , δ2 =


u1x1 u1x2 0 0

0 v2 0 −x1

−v1 0 −x2 0
−v2 −v1 x1 −x2

u1v2 0 0 u1x2

 , and

δ1 =
[
v2 −u1x2 0 0 −x1

−v1 0 −u1x1 −u1x2 −x2

]
.

This complex is easily seen to be acyclic when the data is generic in the sense of
Convention 1.5.b.

Example 2.9. If ggg = fff = 2, then the complex I(0) is

0→ T(0, 0, 1) d3−→

T(1, 0, 0)
⊕

T(0, 1, 0)
⊕

U(0, 0, 1)

d2−→

U(1, 0, 0)
⊕

U(0, 1, 0)
⊕

T(0, 0, 0)

d1−→ U(0, 0, 0)→ 0.

If the bases λ(1) for T(0, 0, 1); ϕ[1], ϕ[2] for T(1, 0, 0); g[1], g[2] for T(0, 1, 0); µ(1) for
U(0, 0, 1); f [1], f [2] for U(1, 0, 0); γ[1], γ[2] for U(0, 1, 0); −λ(0) for T(0, 0, 0); and µ(0)

for U(0, 0, 0), are chosen, then, in the notation of Convention 1.5.a,

d2 =


0 0 x22 −x12 v1
0 0 −x21 x11 v2
−x22 x21 0 0 −u1

x12 −x11 0 0 −u2

−v1 −v2 u1 u2 0

 ,

and the entries of d1 and d3 are the maximal order pfaffians of d2.

Example 2.10. If ggg = 4 and fff = 2, then the complex I(2) is

0→T(0,0,1)
d5−→

U(0,2,1)

⊕
T(0,1,0)

⊕
T(1,0,0)

d4−→

L(0,2,0,4,1)

⊕
L(0,2,1,3,1)

⊕
U(0,3,0)

⊕
U(0,1,1)

⊕
U(1,2,0)

⊕
T(0,0,0)

d3−→

L(0,2,1,4,0)

⊕
L(0,1,1,3,1)

⊕
L(0,2,0,3,1)

⊕
L(0,1,0,4,1)

⊕
L(1,2,1,4,0)

⊕
U(0,2,0)

d2−→

L(0,2,0,4,0)

⊕
L(0,1,0,3,1)

⊕
L(1,2,0,4,0)

⊕
L(1,1,1,4,0)

d1−→L(1,1,0,4,0).

Theorem 2.11. The modules and maps of Definition 2.3 form a complex.

Proof. A straightforward calculation shows that if x is an element of I(z) of position
i, then d(x) is an element of I(z) of position i−1. We record the interesting parts of
the calculation that d ◦ d(x) = 0. If x is in L(z), then the calculation is completely
routine. Next, we let x = bp ⊗ δq ⊗ µ(r) ∈ U(p, q, r) ⊆ U(z). Decompose d ◦ d(x)
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as A + B + C + D, where every term of A is in U(z), every term of B + C + D
is in L(z), every term of B involves u, every term of C involves v, and the terms
of D involve neither u nor v. There is no difficulty seeing that A = 0. We have
B = B1 +B2 +B3 +B4, where

B1 =
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t+p+1 ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ [X∗(u)](bp) ⊗ gJ ∧ δq(ωG) ⊗ ν(t),

B2 = χ(1 ≤ r)
∑

{(t,s)|t≤z−1, q+1≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t+1+s ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ (u ∧ δq)(ωG) ⊗ ν(t),

B3 =
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+p+s+r+q ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ [X∗(u)](fI ∧ bp) ⊗ gJ ∧ δq(ωG) ⊗ ν(t),

and

B4 =
∑

{(t,s)|t≤z−1, q+1≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ bp ⊗ u(gJ ∧ δq(ωG)) ⊗ ν(t).

The module action of
∧•

F ∗ on
∧•

F yields that B1 +B3 is equal to∑
{(t,s)|t≤z−1, q≤s+t}

|J|=s
|I|=r+q−s−t

(−1)ps+p+s+r+q ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ [X∗(u)](fI) ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t),

which, according to Lemma 1.9.e, is the same as∑
{(t,s)|t≤z−1, q≤s+t}

|J|=s
|I|=r+q−s−t−1

(−1)ps+p+t+1 ⊗ (
∧s+1X∗)(γJ ∧ u) ∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t).

The factor χ(1 ≤ r) may be removed from B2, without affecting its value, because
if r ≤ 0, then |I| < 0 and the rest of B2 is already zero. We see, from Lemmas 1.9.e
and 1.1, that B2 +B4 is equal to∑

{(t,s)|t≤z−1, q+1≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ bp ⊗ u(gJ ) ∧ δq(ωG) ⊗ ν(t)

=
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−1−t

(−1)ps+p+t ⊗ (
∧s+1X∗)(γJ ∧ u) ∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t).

It is now clear that B = 0. The calculation that C = 0 is similar to the calculation
for B; hence, we omit it. We see that D = D1 +D2 +D3, where

D1 =
∑

{(t,s)|t≤z−2, q≤s+t}
|J|=s

|I|=r+q−s−t
|K|=1

(−1)ps+t+p+sϕK ⊗ fK((
∧s X∗)(γJ ) ∧ ϕI) ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t),

D2 =
∑

{(t,s)|t≤z−2, q≤s+t}
|J|=s

|I|=r+q−s−t−1
|K|=1

(−1)ps+p+s+r+qϕK ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fK ∧ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t),

and

D3 =
∑

{(t,s)|t≤z−2, q−1≤s+t}
|J|=s

|I|=r+q−s−t−1
|K|=1

(−1)ps+tX∗(γK) ⊗ (
∧s X∗)(γJ ) ∧ ϕI ⊗ fI ∧ bp ⊗ gK ∧ gJ ∧ δq(ωG) ⊗ ν(t).
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Apply Lemmas 1.9.e and 1.1.d to see that D1 +D2 is equal to

∑
{(t,s)|t≤z−2, q≤s+t}

|J|=s
|I|=r+q−s−t

|K|=1

(−1)ps+t+p+sϕK ⊗ fK

(
(
∧s X∗)(γJ )

)
∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t)

=
∑

{(t,s)|t≤z−2, q−1≤s+t}
|J|=s+1

|I|=r+q−s−t−1
|K|=1

(−1)ps+t+1+sϕK ⊗ (
∧s X∗)

(
[X(fK)](γJ )

)
∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t).

On the other hand, Lemma 1.9.e yields that D3 is equal to∑
{(t,s)|t≤z−2, q−1≤s+t}

|J|=s+1
|I|=r+q−s−t−1

|K|=1

(−1)ps+t+sX∗(γK) ⊗ (
∧s X∗)(gK(γJ )) ∧ ϕI ⊗ fI ∧ bp ⊗ gJ ∧ δq(ωG) ⊗ ν(t).

Example 1.8 shows that D = 0.
Let x = αp⊗ cq⊗λ(r) ∈ T(p, q, r) ⊆ T(z). Decompose d◦d(x) as A+B+C+D,

where every term of A is in T(z), every term of B + C is in U(z), every term of B
involves v, every term of C involves u, and every term of D is in L(z). There is no
difficulty seeing that A = 0. We have B = B1 +B2 +B3 +B4, where

B1 =


(−1)p−1

∑
0≤t

|I|=q+r−t

σz(p− 1, q, r, t)fI ⊗
[
(
∧fff+1−p−q−r+t X)

(
(ϕI ∧ v(αp))[ωF ]

)
∧ cq

]
(ωG∗)

⊗µ(t),

B2 =


χ(fff − ggg + z + 1 ≤ r)(−1)p

∑
0≤t

|I|=q+r−t

σz(p, q + 1, r − 1, t)fI

⊗
[
(
∧fff−p−q−r+t X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq ∧ [X(v)]

]
(ωG∗) ⊗ µ(t),

B3 =


χ(fff + z − ggg + 1 ≤ p+ r)

∑
0≤t

|I|=q+r−t

σz(p, q, r, t)(−1)q+r−tfI

⊗[X(v)]
([

(
∧fff−p−q−r+t X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗)

)
⊗ µ(t), and

B4 =


χ(fff + z − ggg + 1 ≤ p+ r)

∑
0≤t

|I|=q+r−t−1

σz(p, q, r, t+ 1)v ∧ fI

⊗
[
(
∧fff+1−p−q−r+t X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗) ⊗ µ(t).

Notice that the factor χ(fff − ggg + z + 1 ≤ p + r) may be adjoined to B1 without
changing its value, because fff − ggg + z ≤ r (since (p, q, r) ∈ T (z)

T
) and 1 ≤ p (or else

B1, which contains the factor v(αp), is already zero). Also notice that

σz(p− 1, q, r, t) = (−1)pσz(p, q, r, t + 1).

It follows that B1 +B4 is equal to
χ(fff − ggg + z + 1 ≤ p+ r)

∑
0≤t

|I|=q+r−t

(−1)q+r−t−1σz(p, q, r, t+ 1)fI

⊗
[
(
∧fff+1−p−q−r+t X)

(
v ∧ (ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗ ) ⊗ µ(t).
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In B2, the condition fff −ggg+ z+1 ≤ r holds automatically (if this hypothesis is not
met, then the binomial coefficient is zero, see Remark 1.10); consequently, in term
B2,

χ(fff − ggg + z + 1 ≤ r) = 1 = χ(fff − ggg + z + 1 ≤ r + p).

Observe that

(−1)q+r−t−1σz(p, q, r, t+ 1) + (−1)fff+t−rσz(p, q + 1, r − 1, t) + (−1)q+r−tσz(p, q, r, t) = 0;

and therefore, B = 0. The calculation of C is similar; we have omitted it. We have
D is equal to

∑
0≤t

|I|=q+r−t

σz(p, q, r, t)
∑

{(τ,s)|τ≤z−1, ggg−fff+p+r−t≤s+τ}
|J|=s

|K|=ggg−fff+p+r−s−τ

(−1)(q+r−t)s+τ+q+r−t+s

⊗(
∧s X∗)(γJ ) ∧ ϕK ⊗ fK ∧ fI

⊗gJ ∧
([

(
∧fff−p−q−r+t X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗)

)
(ωG) ⊗ ν(τ).

Apply Lemma 1.9.e and Proposition 1.1.d to see that D is equal to
∑
0≤t

|I|=q+r−t

σz(p, q, r, t)
∑

{(τ,s)|τ≤z−1, ggg−fff+p+r−t≤s+τ}
|J|=s+fff−p+t−q−r

|K|=ggg−fff+p−s−τ+q−t+2r

(−1)τ+q+r−t+(ggg−fff+p−τ+q−t)s

⊗fI(ϕK) ∧
(
ϕI

[
αp[ωF ]

]) [
(
∧fff−p+t−q−r+s X∗)(γJ )

]
⊗ fK ⊗ gJ ∧ cq ⊗ ν(τ).

Replace s by ` − fff − t + p + q + r and t by q + r − i in order to obtain that D is
equal to

∑
i≤q+r
|I|=i

(−1)r+z+qfffθpθq
(fff−1−p−i
r+ggg−fff−z

) ∑
{(τ,`)|τ≤z−1, ggg−q≤`+τ}

|J|=`
|K|=ggg−`−τ+r

(−1)τ+i+(ggg−fff+p−τ+i+r)(`−fff+i+p)

⊗fI(ϕK) ∧
(
ϕI

[
αp[ωF ]

]) [
(
∧` X∗)(γJ )

]
⊗ fK ⊗ gJ ∧ cq ⊗ ν(τ).

Notice that i ≤ q + r is not a real restriction, because we every non-zero term
already has

i = |I| ≤ |K| = ggg − `− τ + r ≤ q + r;

thus, D is equal to

(−1)r+z+qfffθpθq
∑

{(τ,`)|τ≤z−1, ggg−q≤`+τ}
|J|=`

|K|=ggg−`−τ+r

(−1)τ+(ggg−fff+p−τ+r)(`−fff+p)⊗

∑
i

|I|=i

(−1)i(`+ggg−τ+r)
(fff−1−p−i
r+ggg−fff−z

)
fI(ϕK) ∧

(
ϕI

[
αp[ωF ]

]) [
(
∧` X∗)(γJ )

]
⊗ fK

⊗gJ ∧ cq ⊗ ν(τ).

In the language of the proof of Lemma 1.11, we have that D is equal to
(−1)r+z+qfffθpθq

∑
{(τ,`)|τ≤z−1, ggg−q≤`+τ}

|J|=`
|K|=ggg−`−τ+r

(−1)τ+(ggg−fff+p−τ+r)(`−fff+p)⊗

hfff−1−p,r+ggg−fff−z

(
ϕK ⊗ αp[ωF ] ⊗ (

∧` X∗)(γJ )
)
⊗ fK ⊗ gJ ∧ cq ⊗ ν(τ).
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The hypothesis “fff + 1 + w ≤ p+ r” from Lemma 1.11 is satisfied because

fff + 1 + (r + ggg − fff − z) ≤ |K|+ |J |,

since τ ≤ z − 1. We conclude that D = 0.
Let x = Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t) ∈W(p, q, r, s, t) ⊆W(z). Decompose d ◦ d(x) as

A + B + C +D + E, where every term of A is in W(z), every term of B + C +D
is in T(z), every term of B involves v, every term of C involves u, the terms of D
involve neither u nor v, and every term of E is in U(z). There is no difficulty seeing
that A = 0. We have B = B1 +B2 +B3, where

B1 =


δp0B0

∑
ε≤q+s+t−1−fff−z

|I|=ε

(−1)fff+ggg+t+qr+r+ε+sggg [ϕI(v ∧ bq)](αr)

⊗δs(ωG) ∧ (
∧ε X)(fI ) ⊗ λ(q+s+t−ggg−1−ε),

B2 =


δp0B0

∑
ε≤q+s+t−fff−z−1

|I|=ε

(−1)fff+ggg+t+qr+sggg+r−1[v ∧ ϕI(bq)](αr)

⊗δs(ωG) ∧ (
∧ε X)(fI ) ⊗ λ(q+s+t−ggg−1−ε), and

B3 =


δp0B0

∑
ε≤q+s+t−fff−z−1

|I|=ε

(−1)fff+ggg+t+qr+sggg+r
[(
v(ϕI)

)
(bq)

]
(αr)

⊗δs(ωG) ∧ (
∧ε X)(fI ) ⊗ λ(q+s+t−ggg−ε−1).

Apply Proposition 1.1.a to see that B = 0. We have C = C1 +C2 +C3 +C4, where

C1 =


δp0B0χ(2 ≤ q + t)

∑
ε≤q+s+t−fff−z−2

|I|=ε

(−1)fff+ggg+t−1+qr+ε+q+sggg+r

[ϕI(bq)]([X∗(u)] ∧ αr) ⊗ δs(ωG) ∧ (
∧ε X)(fI) ⊗ λ(q+s+t−ggg−2−ε),

C2 =


δp0B0χ(2 ≤ q + t)

∑
ε≤q+s+t−fff−z−1

|I|=ε

(−1)fff+t−1+qr+ε+r+sggg

[ϕI(bq)](αr) ⊗ (δs ∧ u)(ωG) ∧ (
∧ε X)(fI) ⊗ λ(q+s+t−ggg−1−ε),

C3 =


δp0B0χ(2 ≤ q + t)

∑
ε≤q+s+t−fff−z−1

|I|=ε

(−1)fff+t+qr+sggg+r−s+ε

[ϕI(bq)](αr) ⊗ u(δs(ωG) ∧ (
∧ε X)(fI )) ⊗ λ(q+s+t−ggg−1−ε), and

C4 =


δp0B0χ(2 ≤ q + t)

∑
ε≤q+s+t−fff−z−2

|I|=ε

(−1)fff+ggg+t+qr+sggg+r

[X∗(u)] ∧ [ϕI(bq)](αr) ⊗ δs(ωG) ∧ (
∧ε X)(fI) ⊗ λ(q+s+t−ggg−ε−2).

Apply Lemma 1.9.e to see that C2 + C3 is equal to


δp0B0χ(2 ≤ q + t)

∑
ε≤q+s+t−fff−z−2

|I|=ε

(−1)fff+ggg+t+qr+sggg+r+1

[
[X∗(u)]

(
ϕI(bq)

)]
(αr) ⊗ δs(ωG) ∧ (

∧ε X)(fI ) ⊗ λ(q+s+t−ggg−2−ε).



TWO VECTORS AND A RECTANGULAR MATRIX 21

Proposition 1.1.a yields that C = 0. We have D is equal to


δp1
∑

ε≤q+s+t−fff−z
|J|=ε

(−1)fff+ggg+t+qr+r+ε+1+sggg[ϕJ (Bp ∧ bq)](αr) ⊗ δs(ωG) ∧ (
∧ε X)(fJ )

⊗λ(q+s+t−ggg−ε)

+ δp1
∑

ε≤q+s+t−fff−z
|J|=ε

(−1)fff+ggg+t+qr+sggg+r[Bp ∧ ϕJ (bq)](αr) ⊗ δs(ωG) ∧ (
∧ε X)(fJ )

⊗λ(q+s+t−ggg−ε)

+ δp1
∑

ε≤q+s+t−fff−z
|J|=ε

(−1)fff+t+1+qr+sggg+r+ggg
[(
Bp(ϕJ )

)
(bq)

]
(αr) ⊗ δs(ωG) ∧ (

∧ε X)(fJ )

⊗λ(q+s+t−ggg−ε),

which is zero by Proposition 1.1.a. We have E is equal to
δp0B0

∑
ε≤q+s+t−fff−z−1

|I|=ε

(−1)fff+ggg+t+qr+ε+q+sggg
∑
0≤τ

|J|=q+t−1−τ

σz(r − q + ε,ggg − s+ ε, q + s+ t− ggg − 1 − ε, τ)fJ⊗[
(
∧fff−r−ε−t+1+τ X)

(
(ϕJ ∧ [ϕI(bq)](αr))[ωF ]

)
∧ δs(ωG) ∧ (

∧ε X)(fI)
]
(ωG∗ ) ⊗ µ(τ)

=



δp0B0
∑

ε≤q+s+t−fff−z−1
|I|=ε

(−1)fff+qr+sggg+ε(t+τ+q)+s−1+z+(ggg−s)fff
∑
0≤τ

|J|=q+t−1−τ

θr−qθggg−s

( fff+τ−t−r−ε
q+s+t−ε−fff−z−1

)
fJ⊗[

(
∧fff−r−t+1+τ X)

((
fI

[
ϕJ ∧ [ϕI(bq)](αr)

])
[ωF ]

)]
(δs) ⊗ µ(τ).

No harm is done if we remove the condition ε ≤ q + s + t − fff − z − 1; because, if
this condition fails, then the binomial coefficient is zero. The fact that (p, q, r, s, t)
is in T (z)

W
ensures that parameters in every non-zero term of E satisfies

ε+ t+ r ≤ q + t+ r = p+ q + r + t ≤ fff ;

consequently, the top line of the binomial coefficient is non-negative and we may
apply

(
a
b

)
=

(
a
a−b

)
. It follows that E is equal to



δp0B0(−1)fff+qr+sggg+s−1+z+(ggg−s)fff
∑
0≤τ

|J|=q+t−1−τ

θr−qθggg−sfJ⊗
(

∧fff−r−t+1+τ X)

 ∑
ε∈Z

|I|=ε

(−1)ε(|J|+1)( fff+τ−t−r−ε
2fff+τ−2t−r−q−s+1+z)

(
fI

[
ϕJ∧[ϕI (bq)](αr)

])
[ωF ]


 (δs)

⊗µ(τ).

The fact that (p, q, r, s, t) is in T (z)
W

ensures that w + |J |+ 1 ≤ q, for

w = 2fff + τ − 2t− r − q − s+ 1 + z.

Apply Lemma 1.11.b in order to conclude that E = 0. �
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Proposition 2.12. The complexes I(z) and
(
I(ggg−fff−z)

)∗
[−(ggg+fff−1)], of Definition

2.3, are isomorphic for all integers z.

Proof. Consider the map ψ : I(z) → (
I(ggg−fff−z)

)∗
[−(ggg + fff − 1)], which is given by

ψ(x) =
{

<x , >, if x ∈ L(z) ⊕ U(z),

−θfff+ggg<x , >, if x ∈ T(z) ⊕W(z),

where the perfect pairings

W(p, q, r, s, t) ⊗ L(p′, q′, r′, s′, t′)
< , >−−−−−−→ R, and

L(p′, q′, r′, s′, t′)⊗W(p, q, r, s, t)
< , >−−−−−−→ R,

are defined by:

<x, y> = <y, x> = δp p′δq q′δr r′δs s′ · χ
(

p+q+r+s+t+t′=fff+ggg
)
·Bp(Ap′) · bq(αq′ ) ·αr(br′ ) · δs(cs′ ),

for

x = Bp⊗bq⊗αr⊗δs⊗ξ(t) ∈ W(p, q, r, s, t) and y = Ap′⊗αq′⊗br′⊗cs′⊗ν(t′) ∈ L(p′, q′, r′, s′, t′),

and the perfect pairings

T(p, q, r)⊗ U(p′, q′, r′)
< , >−−−−−−→ R, and

U(p′, q′, r′)⊗ T(p, q, r)
< , >−−−−−−→ R,

are defined by

<x, y> = <y, x> = δp p′δq q′ · χ
(
p+ q + r + r′ = fff − 1

)
· αp(bp′) · cq(δq′), for

x = αp ⊗ cq ⊗ λ(r) ∈ T(p, q, r) and y = bp′ ⊗ δq′ ⊗ µ(r′) ∈ U(p′, q′, r′).

A short calculation shows that

(p, q, r, s, t) ∈ T (z)
L
⇐⇒ (p, q, r, s,fff + ggg − p− q − r − s− t) ∈ T (ggg−fff−z)

W
, and

(p, q, r) ∈ T (z)
U
⇐⇒ (p, q,fff − 1− p− q − r) ∈ T (ggg−fff−z)

T
.

Moreover, it is easy to see that ψ carries the module in I(z) of position i to the
dual of the module in I(ggg−fff−z) of position ggg+fff − 1− i. For example, U(p, q, r) has
position p+ q + 2r in I(z), and T(p, q,fff − 1− p− q − r) has position

p+ q + 2(fff − 1− p− q − r) + ggg − fff + 1 = ggg + fff − 1− (p+ q + 2r)

in I(ggg−fff−z). At this point we have established that ψ is an isomorphism of graded
modules. It remains to show that if x is an element of L(z), U(z), T(z), or W(z) in
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position i, and y is an element of L(ggg−fff−z), U(ggg−fff−z), T(ggg−fff−z), or W(ggg−fff−z) in
position ggg + fff − i, then

(2.13) <x, dy> =
{ −θfff+ggg<x, dy>, if x ∈ T(z) and y ∈ T(ggg−fff−z),

<x, dy>, otherwise.

There are four cases to consider:
(1) x ∈ L(z) and y ∈W(ggg−fff−z), (2) x ∈ U(z) and y ∈W(ggg−fff−z),
(3) x ∈ U(z) and y ∈ T(ggg−fff−z), (4) x ∈ T(z) and y ∈ T(ggg−fff−z).
Cases (1) and (3) are easy; we omit them.

Case (2). Take x = bp ⊗ δq ⊗ µ(r) ∈ U(p, q, r) ⊆ U(z) and

y = Bp′ ⊗ bq′ ⊗ αr′ ⊗ δs′ ⊗ ξ(t′) ∈W(p′, q′, r′, s′, t′) ⊆W(ggg−fff−z).

We compute that <x, dy> is equal to
δp′0B0

∑
ε≤q′+s′+t′−ggg+z−1

|I|=ε

δp r′+ε−q′δq ggg−s′+εχ(p+ q + r + q′ + s′ + t′ − ggg − ε = fff)

(−1)fff+ggg+t′+q′r′+ε+q′+s′gggbp
(
[ϕI (bq′ )](αr′ )

)
· δq

(
δs′ (ωG) ∧ (

∧ε X)(fI )
)

=


δp′0B0χ(−p+ q − q′ + r′ + s′ = ggg)χ(p+ q′ + r + t′ = fff)χ(p− r′ ≤ s′ + t′ − ggg + z − 1)

(−1)fff+ggg+t′+q′r′+p−r′+s′ggg∑
|I|=p+q′−r′

bp
(
[ϕI(bq′ )](αr′ )

)
· [δs′ (ωG)]

([
(
∧p+q′−r′

X)(fI)
]
(δq)

)
.

In <x, dy>, we have χ(p− r′ ≤ s′ + t′ − ggg + z − 1) = χ(p+ q + r ≤ fff + z − 1) = 1.
The last equality holds because (p, q, r) ∈ T(z)

U
. Apply Proposition 1.1 to see that

<x, dy> is equal to
δp′0B0χ(−p+ q − q′ + r′ + s′ = ggg)χ(p+ q′ + r + t′ = fff)(−1)r+p+q+q′r′∑

|I|=p+q′−r′
bp

(
[ϕI(bq′ )](αr′ )

)
·
[
(
∧p+q′−r′

X)(fI ) ∧ δq(ωG)
]
(δs′).

On the other hand, we compute that <dx, y> is equal to
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)ps+t+p+sδ0 p′δr+q−t q′δp+r+q−s−t r′δggg−q+s s′χ(p+ q + 2r − t+ t′ = fff)

1(Bp′) ·
[
(
∧s X∗)(γJ ) ∧ ϕI

]
(bq′ ) ·

[
fI ∧ bp

]
(αr′) ·

[
gJ ∧ δq(ωG)

]
(δs′)

=


δp′ 0B0χ(−p+ q − q′ + r′ + s′ = ggg)χ(p+ r + q′ + t′ = fff)χ(r + q − q′ ≤ z − 1)

χ(r′ ≤ p+ r)(−1)pq′+r+q′+p+s′−ggg∑
|J|=q+s′−ggg

|I|=ggg−q+q′−s′

[
(
∧q+s′−ggg X∗)(γJ )

]
[ϕI(bq′ )] · bp

[
fI(αr′ )

]
·
[
gJ ∧ δq(ωG)

]
(δs′ ).

In <dx, y>, we have χ(r′ ≤ p+ r) = χ(q′ + r′ + t′ ≤ fff) = 1, and

χ(r + q − q′ ≤ z − 1) = χ(fff + ggg − z + 1 ≤ q′ + r′ + s′ + t′) = 1.
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In each case, the last equality holds because (p′, q′, r′, s′, t′) ∈ T
(ggg−fff−z)
W

. Apply
Lemma 1.9.b to see that <dx, y> is equal to

δp′ 0B0χ(−p+ q − q′ + r′ + s′ = ggg)χ(p+ r + q′ + t′ = fff)(−1)r+q′+p+q′(ggg−q−s′+p)−q∑
|J|=q+s′−ggg

|I|=q+s′−ggg

[
(
∧q+s′−ggg X∗)(γJ )

]
[fI ] · bp

[
[ϕI(bq′ )](αr′)

]
·
[
gJ ∧ δq(ωG)

]
(δs′ ).

In <dx, y>, we have q + s′ − ggg = p + q′ − r′. The definition of the dual of a
homomorphism gives that[

(
∧q+s′−ggg

X∗)(γJ )
]
[fI ] = γJ

[
(
∧q+s′−ggg

X)(fI)
]
;

thus, <dx, y> is equal to
δp′ 0B0χ(−p+ q − q′ + r′ + s′ = ggg)χ(p+ r + q′ + t′ = fff)(−1)r+p+q′r′−q∑

|I|=p+q′−r′
bp

[
[ϕI(bq′ )](αr′ )

]
·
[
(
∧p+q′−r′

X)(fI ) ∧ δq(ωG)
]
(δs′ ),

which is equal to <x, dy>, and (2.13) holds for case (2).

Case (4). Take x = αp ⊗ cq ⊗ λ(r) ∈ T(p, q, r) ⊆ T(z) and

y = αp′ ⊗ cq′ ⊗ λ(r′) ∈ T(p′, q′, r′) ⊆ T(ggg−fff−z).

We see that <x, dy> is equal to
∑
0≤t

|I|=q′+r′−t

σggg−fff−z(p′, q′, r′, t)χ(p = q′ + r′ − t)χ(q = ggg − fff + p′ + r′ − t)χ(p+ q + r + t = fff − 1)

αp(fI) · cq
([

(
∧fff−p′+t−q′−r′

X)
(
(ϕI ∧ αp′)[ωF ]

)
∧ cq′

]
(ωG∗)

)

=


∑

|I|=p

σggg−fff−z(p′, q′, r′, q′ + r′ − p)χ(p ≤ q′ + r′)χ(q = ggg − fff + p′ + p− q′)

χ(q + r + q′ + r′ = fff − 1)αp(fI) · cq
([

(
∧fff−p′−p X)

(
(ϕI ∧ αp′ )[ωF ]

)
∧ cq′

]
(ωG∗)

)
.

Notice that χ(p ≤ q′ + r′) = χ(p+ q + r ≤ fff − 1) = 1; so, <x, dy> is equal to σggg−fff−z(p′, q′, r′, q′ + r′ − p)χ(−p− p′ + q + q′ = ggg − fff)

χ(q + r + q′ + r′ = fff − 1)cq
([

(
∧fff−p′−p X)

(
(αp ∧ αp′ )[ωF ]

)
∧ cq′

]
(ωG∗)

)
.

On the other hand, <dx, y> is equal to

∑
0≤t

|I|=q+r−t

σz(p, q, r, t)χ(q + r − t = p′)χ(ggg − fff + p+ r − t = q′)

χ(p+ q + 2r − t+ r′ = 2fff − ggg − 1)

fI(αp′ ) ·
([

(
∧fff−p+t−q−r X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗)

)
(cq′ )

=


∑

|I|=p′
σz(p, q, r, q + r − p′)χ(ggg − fff = −p− p′ + q + q′)χ(p′ ≤ q + r)

χ(q + q′ + r + r′ = fff − 1)

fI(αp′) ·
([

(
∧fff−p−p′

X)
(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗)

)
(cq′ ).

In <dx, y>, χ(p′ ≤ q + r) = χ(p′ + q′ + r′ ≤ fff − 1) = 1; thus, <dx, y> is equal to (−1)pp′+q(fff−p′−p)+q′(q+fff−p′−p)σz(p, q, r, q + r − p′)χ(ggg − fff = −p− p′ + q + q′)
χ(q + q′ + r + r′ = fff − 1)cq

([
(
∧fff−p−p′

X)
(
(αp ∧ αp′ )[ωF ]

)
∧ cq′

]
(ωG∗)

)
.

The proof of (2.13) for case (4) is complete because

(−1)pp
′+q(fff−p′−p)+q′(q+fff−p′−p)

σz(p,q,r,q+r−p′) = −θfff+gggσggg−fff−z(p′,q′,r′,q′+r′−p). �
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3. Properties of the complexes I(z).

The zeroth homology of the complex I(z) is identified in Corollary 3.5. In Obser-
vation 3.3, we establish homomorphisms from H0(I(z)) to ideals of H(I(0)). (These
maps are shown to be isomorphisms in section 8.) Proposition 3.6 contains the
short exact sequence of complexes for I(z) which was promised in (0.1); this exact
sequence is critical to the proof, in Theorem 8.6, that I(z) is acyclic.

Definition 3.1. Adopt Data 1.2. Let K be the R−ideal

K = Ifff (X) + I1(X∗(u)) + I1(X(v)),

N be the R−module which is defined by the exact sequence:

G∗ ⊕∧2
F ∗ ⊕ (F ∗ ⊗ F )

[X∗ v 1⊗X∗(u) ]−−−−−−−−−−−−−−−−→ F ∗ → N → 0,

and N be the R−module defined by the exact sequence:

[
(F ∗ ⊗∧fff−1

G∗)⊕∧fff−2
G∗ ⊕ (F ⊗∧fff

G∗)
]

h−→
R/K
⊕∧fff−1
G∗
→ N→ 0,

where

h(α1 ⊗ δfff−1) =

[ [
(
∧fff−1

X)[α1(ωF )]
]
(δfff−1)

v(α1) · δfff−1

]
, h(δfff−2) =

[
0

u ∧ δfff−2

]
, and

h(b1 ⊗ δfff ) =
[

0
[X(b1)](δfff )

]
.

Remark 3.2. It is not difficult to see that N and N are modules over R/K. The
only interesting part of this argument is the proof that the element

(
∧r

X)(br)](δfff ) ∧ δr−1

of
∧fff−1

G∗ is in the image of h for 1 ≤ r ≤ fff . This proof proceeds by induction
on r. If 2 ≤ r, then

h
(
b1 ⊗

[
(
∧r−1

X)(br−1)
]
(δfff ) ∧ δr−1

)
= [(

∧r
X)(b1 ∧ br−1)](δfff ) ∧ δr−1 + an element of imh.

Observation 3.3. If the notation of Theorem 0.3, Convention 1.4, and Definition
3.1 are adopted, then there are R/K−module surjections N � b3, N � a2, and
N � p2.

Proof. It is clear that the map F ∗ → R, which is given by α1 7→ v(α1), induces a
surjection of N onto b3. Let δfff−1 be the element γ[1] ∧ . . . ∧ γ[fff−1] of

∧fff−1
G∗. It
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is not difficult to see that the map m : F ∗ → R, which is given by m(α1) is equal
to

[
(
∧fff−1

X∗)(δfff−1)
]
[α1(ωF )], induces a surjection of N onto a2. For example, if

α2 ∈
∧2

F ∗, then Proposition 1.1 shows that m(v(α2)) is equal to[
(
∧fff−1

X∗)(δfff−1)
] [

[v(α2)](ωF )
]

=
[
(
∧fff−1

X∗)(δfff−1)
] [
v ∧ α2(ωF )

]
= (−1)fff [α2(ωF )]

(
v

[
(
∧fff−1

X∗)(δfff−1)
])

= (−1)fff [α2(ωF )]
[
(
∧fff−2

X∗) ([X(v)](δfff−1))
]
∈ K.

If bfff−1 is the element f [2] ∧ . . . ∧ f [fff ] of
∧fff−1

F , then it is not difficult to see that
the map

m2 : R/K ⊕∧fff−1
G∗ → R/K,

which is given by

m2

[
r

δfff−1

]
= v(bfff−1[ωF∗ ]) · r −

[
(
∧fff−1

X)(bfff−1)
]
(δfff−1),

induces a surjection of N onto p2. For example, if α1 ∈ F ∗ and δfff−1 ∈
∧fff−1

G∗,
then m2 ◦ h(α1 ⊗ δfff−1) is equal to

v(bfff−1[ωF∗ ]) ·
[
(
∧fff−1

X) (α1[ωF ])
]
(δfff−1)− v(α1) ·

[
(
∧fff−1

X)(bfff−1)
]
(δfff−1)

=
[
(
∧fff−1

X)
( (

v [bfff−1(ωF∗) ∧ α1]
)

[ωF ]
)]

(δfff−1)

=
[
(
∧fff−1

X)
(
v ∧ [bfff−1(ωF∗) ∧ α1] [ωF ]

)]
(δfff−1)

=
[
X(v) ∧ (

∧fff−2
X)

(
[bfff−1(ωF∗) ∧ α1] [ωF ]

)]
(δfff−1) ∈ K. �

Let I(z)i denote the submodule of I(z) in position i.

Lemma 3.4.

(a) Every non-zero summand of I(z) of the form L(p, q, r, s, t) has position at
least 0.

(b) If L(p, q, r, s, t) is a non-zero summand of I(z)0 , then (p, q, r, s, t) is equal to
(z − 1, 1, 0, ggg, 0).

(c) If L(p, q, r, s, t) is a non-zero summand of I(z)1 , then (p, q, r, s, t) is equal to
(z − 2, 1, 0, ggg − 1, 1), (z − 1, 2, 0, ggg, 0), (z − 1, 1, 1, ggg, 0), or (z − 2, 2, 0, ggg, 0).

(d) Every non-zero summand of I(z) of the form U(p, q, r) has position at least
z.

(e) If U(p, q, r) is a non-zero summand of I(z)z , then (p, q, r) is equal to (0, z, 0).
(f) If U(p, q, r) is a non-zero summand of I(z)z+1, then (p, q, r) is equal to (1, z, 0),

(0, z + 1, 0), or (0, z − 1, 1).
(g) Every non-zero summand of I(z) of the form T(p, q, r) has position at least

z + 1.
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(h) If T(p, q, r) is a non-zero summand of I(z)z+1, then (p, q, r) is equal to
(0, ggg − fff − z,fff − ggg + z).

(i) Every non-zero summand of I(z) of the form W(p, q, r, s, t) has position at
least z + 2.

(j) If W(p, q, r, s, t) is a non-zero summand of I(z)z+2, then p = 0, q = fff ,
r ≤ fff − 1, r + s = 2fff + z, and t = 1− fff .

(k) If −1 ≤ z and j is negative, then I(z)j = 0.

Proof. If L(p, q, r, s, t) is a non-zero summand of I(z), then

0 ≤ (s+ t− ggg) + (z − 1 − p− t) + (p+ q + t− z) + r + t = q + r + s+ 2t− 1 − ggg

= the position of L(p, q, r, s, t) in I
(z).

If U(p, q, r) is a non-zero summand of I(z), then

z ≤ (q + r − z) + p+ r + z = p+ q + 2r = the position of U(p, q, r) in I(z).

If T(p, q, r) is a non-zero summand of I(z), then

z+1 ≤ p+(q+r)+(r−fff+ggg−z)+z+1 = p+q+2r+ggg−fff+1 = the position of T(p, q, r) in I
(z).

If W(p, q, r, s, t) is a non-zero summand of I(z), then

z + 2 ≤ (p+ q + t− 1) + (q + r + s+ t− 2fff − z − 1) + (fff − q) + p+ z + 2

= 2p+ q + r + s+ 2t− fff = the position of W(p, q, r, s, t) in I(z). �

Corollary 3.5. Adopt the notation of Definition 3.1 with 1 ≤ fff . Then,

H0(I(z)) =


N, if −1 = z,
R/K, if 0 = z, and
Sz(N), if 1 ≤ z.

Proof. Lemma 3.4 and Definition 2.3 yield that[
χ(2 ≤ fff)U(0, 1, 0) ⊕ χ(2 ≤ fff)U(1, 0, 0) ⊕ T(0, ggg − fff,fff − ggg)

]
d1−→ U(0, 0, 0) → H0(I(0)) → 0

is exact, where

d1(1⊗ δ1 ⊗ µ(0)) = 1⊗ [X(v)](δ1)⊗ µ(0),

d1(b1 ⊗ 1⊗ µ(0)) = [X∗(u)](b1)⊗ 1⊗ µ(0), and

d1(1⊗ cggg−fff ⊗ λ(fff−ggg)) = (−1)ggg+gggfffθggg−fff ⊗ [(
∧fff

X)(ωF ) ∧ cggg−fff ](ωG∗)⊗ µ(0).

The calculation of H0(I(1)) is due to the exact sequence[
L(0, 2, 0, ggg, 0) ⊕ χ(2 ≤ fff)L(0, 1, 1, ggg, 0) ⊕ U(0, 1, 0)

]
d1−→ L(0, 1, 0, ggg, 0) → H0(I(1)) → 0,
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where

d1(1⊗ α2 ⊗ 1⊗ ωG ⊗ ν(0)) = 1⊗ v(α2)⊗ 1⊗ ωG ⊗ ν(0),

d1(1⊗ α1 ⊗ b1 ⊗ ωG ⊗ ν(0)) = −1⊗ α1 ⊗ [X∗(u)](b1)⊗ ωG ⊗ ν(0), and

d1(1⊗ δ1 ⊗ µ(0)) = −1⊗X∗(δ1)⊗ 1⊗ ωG ⊗ ν(0).

Fix z with 2 ≤ z. We have the exact sequence

I(z)1
d1−→ L(z − 1, 1, 0, ggg, 0)→ H0(I(z))→ 0,

where I(z)1 is equal to

L(z−2, 1, 0, ggg−1, 1)⊕L(z−1, 2, 0, ggg, 0)⊕χ(2 ≤ fff)L(z−1, 1, 1, ggg, 0)⊕L(z−2, 2, 0, ggg, 0),

d1(Az−2 ⊗ α1 ⊗ 1⊗ δ1(ωG)⊗ ν(1)) = X∗(δ1) ·Az−2 ⊗ α1 ⊗ 1⊗ ωG ⊗ ν(0),

d1(Az−1 ⊗ α2 ⊗ 1⊗ ωG ⊗ ν(0)) = Az−1 ⊗ v(α2)⊗ 1⊗ ωG ⊗ ν(0),

d1(Az−1 ⊗ α1 ⊗ b1 ⊗ ωG ⊗ ν(0)) = −Az−1 ⊗ α1 ⊗ [X∗(u)](b1)⊗ ωG ⊗ ν(0), and

d1(Az−2 ⊗ α2 ⊗ 1⊗ ωG ⊗ ν(0)) =
∑
|I|=1

ϕI ·Az−2 ⊗ fI(α2)⊗ 1⊗ ωG ⊗ ν(0).

Notice that d1 : L(z − 2, 2, 0, ggg, 0) → L(z − 1, 1, 0, ggg, 0) is the Koszul complex map
which is induced by the identity map on F ∗. Since

Sz−2F
∗ ⊗∧2

F ∗ ∂−→ Sz−1F
∗ ⊗∧1

F ∗ ∂−→ SzF
∗ → 0

is an exact sequence (see Remark 1.16); it follows that

Sz−1F
∗ ⊗G∗

⊕
Sz−1F

∗ ⊗∧2
F ∗

⊕
SzF

∗ ⊗ F

−→ SzF
∗ → H0(I(z))→ 0

is exact, where the map is given by

Az−1 ⊗ δ1 7→ Az−1 ·X∗(δ1),

Az−1 ⊗ α2 7→ Az−1 · v(α2), and

Az ⊗ b1 7→ Az · [X∗(u)](b1).

Finally, we compute H0(I(−1)). If fff = 1, then it is not difficult to see that
HO(I(−1)) and N are both equal to R/K. Henceforth, we take 2 ≤ fff . Identify I(−1)

0

with R⊕∧fff−1
G∗ by way of

n0 : U(0, 0, 0)⊕ T(0, ggg − fff + 1, fff − ggg − 1)→ R⊕∧f−1
G∗,
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where

n0(1⊗ 1⊗ µ(0)) =
[

1

0

]
and n0(1⊗ cggg−fff+1 ⊗ λ(fff−ggg−1)) =

[
0

cggg−fff+1(ωG∗ )

]
.

Identify I(−1)
1 with the R−module M , which is equal to

χ(3 ≤ fff)G∗ ⊕χ(3 ≤ fff)F ⊕ (F ∗ ⊗∧fff−1G∗)⊕∧fff−2G∗ ⊕∧fff G∗ ⊕ ⊕
r≤fff−1

(
∧r F ∗ ⊗∧2fff−1−r G∗),

by using the isomorphism n1 : M → I(−1)
1 , which is given by

n1(δ1) = 1⊗ δ1 ⊗ µ(0) ∈ χ(3 ≤ fff)U(0, 1, 0),

n1(b1) = b1 ⊗ 1⊗ µ(0) ∈ χ(3 ≤ fff)U(1, 0, 0),

n1(α1 ⊗ δfff−1) = α1 ⊗ δfff−1(ωG)⊗ λ(fff−ggg−1) ∈ T(1, ggg − fff + 1, fff − ggg − 1),

n1(δfff−2) = 1⊗ δfff−2(ωG)⊗ λ(fff−ggg−1) ∈ T(0, ggg − fff + 2, fff − ggg − 1),

n1(δfff ) = 1⊗ δfff (ωG)⊗ λ(fff−ggg) ∈ T(0, ggg − fff,fff − ggg),
n1(αr ⊗ δ2fff−1−r) = 1⊗ ωF ⊗ αr ⊗ δ2fff−1−r ⊗ ξ(1−fff) ∈W(0, fff , r, 2fff − 1− r, 1− fff).

Let h′ = n0 ◦ d1 ◦ n1. We have an exact sequence

M
h′
−→

R
⊕∧fff−1
G∗
→ H0(I(−1))→ 0,

where

h′(δ1) =
[

[X(v)](δ1)
0

]
, h′(b1) =

[
[X∗(u)](b1)

0

]
,

h′(α1 ⊗ δfff−1) =

[
(−1)fff+ggg+1+fffgggθggg−fff+1 ·

[
(
∧fff−1

X)[α1(ωF )]
]
(δfff−1)

v(α1) · δfff−1

]
,

h′(δfff−2) =
[

0
(−1)ggg+fffu ∧ δfff−2

]
,

h′(δfff ) =

 (−1)ggg+1+fffgggθggg−fff · (fff − 1)
[
(
∧fff

X)(ωF )
]
(δfff )

(−1)ggg−fff [X(v)](δfff )

, and

h′(αr ⊗ δ2fff−1−r) =
[

0
±

[
(
∧fff−r

X) (αr(ωF ))
]
[δ2fff−1−r]

]
.

Recall the map h from Definition 3.1. We make two observations. First, observe
that

h : F ⊗∧fff
G∗ → R⊕∧fff−1

G∗ and h′ :
⊕

r≤fff−1

∧r
F ∗⊗∧2fff−1−r

G∗ → R⊕∧fff−1
G∗
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have the same image because

h′ ((b1 ∧ bfff−1−r)(ωF∗)⊗ δ2fff−1−r) = ±h
(
b1 ⊗

[
(
∧fff−r−1

X)(bfff−r−1)
]
(δ2fff−1−r)

)
.

For our second observation, use Lemma 1.9.c to see that

∑
|K|=1

h′
(
X∗(γK)⊗ gK(δfff )

)
=

[
(−1)ggg+fffgggθggg−fff+1fffδfff

(
(
∧fff

X)(ωF )
)

[X(v)](δfff )

]
;

hence, it follows that[
[(

∧fff X)(ωF )](δfff )
0

]
= (−1)ggg+fffgggθggg−fff

h′(δfff ) + (−1)ggg+fff+1
∑

|K|=1

h′
(
X∗(γK) ⊗ gK(δfff )

) .

At this point it is not difficult to see that H0(I(−1)) ∼= N. �

Proposition 3.6. Adopt the data of 1.2 and 1.4. Let G̃ =
ggg−1⊕
i=1

g[i], G̃∗ =
ggg−1⊕
i=1

γ[i],

X̃ : F → G̃ be the composition F
X−→ G = G̃⊕Rg[ggg] proj−−→ G̃, ũ be the restriction of

u to G̃, and u be the element

u = [ ũ 0 ] : G = G̃⊕Rg[ggg] → R

of G∗. Form the complexes (̃I(z), d̃) and the modules K̃, Ñ , and Ñ using the data
X̃ : F → G̃, ũ ∈ G̃∗, and v ∈ F . Form the complexes (I, d) and the modules K and
N using the data X : F → G, u ∈ G∗, and v ∈ F . Then, for every integer z, there
is a short exact sequence of complexes

0→ Ĩ(z) −→ I
(z) −→ Ĩ(z−1)[−1]→ 0.

Furthermore, these short exact sequences induce the following long exact sequences
of homology:

· · · → H1(̃I(−1))→ H1(̃I(0))→ H1(I
(0)

) −→ Ñ −→ K/K̃ → 0,

when 0 = z, and

· · · → H1(̃I(z−1))→ H1(̃I(z))→ H1(I
(z)

)→ Sz−1Ñ
X∗(γ[ggg])−−−−−→ SzÑ −→ SzN −→ 0

when 1 ≤ z, where S0Ñ is taken to mean R/K̃.

Proof. The modules L̃(p, q, r, s, t), . . . , W̃(p, q, r, s, t) of Definition 2.1 are formed
using G̃ in place of G. The modules L(p, q, r, s, t), . . . ,W(p, q, r, s, t) are exactly the
same as L(p, q, r, s, t), . . . ,W(p, q, r, s, t). Define

Φ: L̃(p, q, r, s − 1, t)→ L(p, q, r, s, t), Φ: Ũ(p, q, r)→ U(p, q, r),

Φ: T̃(p, q − 1, r + 1)→ T(p, q, r), and Φ: W̃(p, q, r, s, t)→W(p, q, r, s, t)
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by

Φ(Ap ⊗ αq ⊗ br ⊗ cs−1 ⊗ ν(t)) = Ap ⊗ αq ⊗ br ⊗ cs−1 ∧ g[ggg] ⊗ ν(t),

Φ(bp ⊗ δq ⊗ µ(r)) = bp ⊗ δq ⊗ µ(r),

Φ(αp ⊗ cq−1 ⊗ λ(r+1)) = (−1)fffαp ⊗ g[ggg] ∧ cq−1 ⊗ λ(r), and

Φ(Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t)) = (−1)fff+gggBp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t).

Define

Ψ: L(p, q, r, s, t)→ L̃(p, q, r, s, t − 1), Ψ: U(p, q, r)→ Ũ(p, q − 1, r),

Ψ: T(p, q, r)→ T̃(p, q, r), and Ψ: W(p, q, r, s, t)→ W̃(p, q, r, s − 1, t)

by

Ψ(Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t)) =

{
Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t−1), if cs ∈ ∧s G̃,

0, if cs = cs−1 ∧ g[ggg], cs−1 ∈ ∧s−1 G̃,

Ψ(bp ⊗ δq ⊗ µ(r)) =

{
0, if δq ∈ ∧q G̃∗,

(−1)gggbp ⊗ δq−1 ⊗ µ(r), if δq = δq−1 ∧ γ[ggg], δq−1 ∈ ∧q−1 G̃∗,

Ψ(αp ⊗ cq ⊗ λ(r)) =

{
αp ⊗ cq ⊗ λ(r), if cq ∈ ∧q G̃,

0, if cq = cq−1 ∧ g[ggg], cq−1 ∈ ∧q−1 G̃, and

Ψ(Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t)) =

{
0, if δs ∈ ∧s G̃∗,

Bp ⊗ bq ⊗ αr ⊗ δs−1 ⊗ ξ(t), if δs = γ[ggg] ∧ δs−1, δs−1∈
∧s−1G̃∗.

It is clear that

0→ L̃(p, q, r, s − 1, t) Φ−→ L(p, q, r, s, t) Ψ−→ L̃(p, q, r, s, t − 1)→ 0

is a short exact sequence of R−modules for all integers p, q, r, s, and t. It is also
clear that

(p, q, r, s − 1, t) ∈ T̃ (z)
L
⇐⇒ (p, q, r, s, t) ∈ T (z)

L ⇐⇒ (p, q, r, s, t − 1) ∈ T̃ (z−1)
L

.

If i = q+r+s+2t−1−ggg, then L(p, q, r, s, t) has position i in I
(z)

; L̃(p, q, r, s−1, t) has
position i in Ĩ(z); and L̃(p, q, r, s, t− 1) has position i− 1 in Ĩ(z−1). (Of course, this
means that L̃(p, q, r, s, t−1) has position i in Ĩ(z−1)[−1].) The analogous statements
about

0→ Ũ(p, q, r) Φ−→ U(p, q, r) Ψ−→ Ũ(p, q − 1, r)→ 0,

0→ T̃(p, q − 1, r + 1) Φ−→ T(p, q, r) Ψ−→ T̃(p, q, r)→ 0, and

0→ W̃(p, q, r, s, t) Φ−→W(p, q, r, s, t) Ψ−→ W̃(p, q, r, s − 1, t)→ 0
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are also easy to establish. A straightforward calculation shows that Φ and Ψ are
maps of complexes. Some of the facts which are used in this calculation are:

(a) X∗(u) = X̃∗(ũ) ∈ F ∗,
(b) u(g[ggg]) = 0,
(c) u = ũ as elements of G∗,
(d) ωG = ωG̃ ∧ g[ggg], ωG∗ = γ[ggg] ∧ ωG̃∗ ,
(e) if δq is in

∧q
G̃∗, then [X(v)](δq) = [X̃(v)](δq) and δq(ωG) = δq(ωG̃) ∧ g[ggg],

and
(f) σz(p, q, r, t) = (−1)f+q+1σ̃z(p, q − 1, r + 1, t) = −σ̃z−1(p, q, r, t).

Now that we have established that

0→ Ĩ(z)
Φ−→ I

(z) Ψ−→ Ĩ(z−1)[−1]→ 0

is a short exact sequence of complexes, we consider the induced long exact sequence

· · · → H1(̃I(z))→ H1(I
(z)

)→ H0(̃I(z−1)) ∂−→ H0(̃I(z))
Φ∗−−→ H0(I

(z)
)→ 0

of homology for non-negative z. Use Corollary 3.5 to evaluate H0. It is clear
that Φ∗ : SzÑ → SzN is the natural quotient map. For positive z, we use the
snake lemma to verify that the connecting homomorphism ∂ : Sz−1Ñ → SzÑ is

multiplication by the element X∗(γ[ggg]) of the symmetric algebra SR/K̃• (Ñ). �

4. The complex M(z).

In this section we split off a split exact summand N(z) from the complex I(z) of
section 2. The resulting quotient is isomorphic to the complex we call (M(z),m).
The module structure of M(z) is given in Theorem 4.5. The differentialm is given in
Theorem 4.8. The theorems are proved in section 7. The present section concludes
with numerical information about, and examples of, the complexes M(z).

Definition 4.1. Adopt Data 1.2. For all integers p, q, r, and z, let

V(p, q, r, z) =M(p, q, r)[F ∗]⊗∧ggg−z+1+p
G, and

S(p, q, r, z) = K(p, q, r)[F ]⊗∧p+fff+z+1
G∗,

where the functorsM and K are defined in Definitions 5.2 and 5.4.

Definition 4.2. Adopt the notation of Definitions 4.1 and 2.1. For each integer z,
define the graded R−module M(z) by

M(z) =
⊕
S

(z)
S

S(p, q, r, z)⊕
⊕
S

(z)
T

T(p, q, r)⊕
⊕
S

(z)
U

U(p, q, r)⊕
⊕
S

(z)
V

V(p, q, r, z),

where

S
(z)
S

= {(p, q, r) | 0 ≤ p ≤ ggg − fff − z − 1, 1 ≤ q ≤ fff, 1 ≤ r ≤ fff},
S

(z)
T

= {(p, q, r) | 0 ≤ p, ggg − fff − z ≤ q, fff − ggg + z ≤ r, p+ q + r ≤ fff − 1},
S

(z)
U

= {(p, q, r) | 0 ≤ p, z ≤ q, 0 ≤ r, p+ q + r ≤ fff − 1 + z},
S

(z)
V

= {(p, q, r) | 0 ≤ p ≤ z − 1, 1 ≤ q ≤ fff, 1 ≤ r ≤ fff},



TWO VECTORS AND A RECTANGULAR MATRIX 33

(a) the position of V(p, q, r, z) in M(z) is fff + z − 2− p+ q − r,
(b) the position of U(p, q, r) in M(z) is p+ q + 2r,
(c) the position of T(p, q, r) in M(z) is p+ q + 2r + ggg − fff + 1, and
(d) the position of S(p, q, r, z) in M(z) is fff + z + 1 + p− q + r.

Observation 4.3. The graded modules

M(z) and
(
M(ggg−fff−z)

)∗
[−(ggg + fff − 1)],

of Definition 4.2, are isomorphic for all integers z.

Proof. It is clear that the sets S(z)
S

and S(ggg−fff−z)
V

are equal. Also,

(p, q, r) ∈ S(z)
T
⇐⇒ (p, q,fff − 1− p− q − r) ∈ S(ggg−fff−z)

U
.

The ideas of Propositions 2.12 and 5.5 produce isomorphisms[ ⊕
S

(ggg−fff−z)
U

U(p, q, r)
]∗

[−(ggg + fff − 1)] ∼=
⊕
S

(z)
T

T(p, q, r) and

[ ⊕
S

(ggg−fff−z)
V

V(p, q, r,ggg − fff − z)
]∗

[−(ggg + fff − 1)] ∼=
⊕
S

(z)
S

S(p, q, r, z)(4.4)

of graded R−modules. �

Theorem 4.5. Adopt Data 1.2. For each integer z, let I(z) be the complex of
Definition 2.3 and M(z) be the graded R−module of Definition 4.2. Then there
exists a split exact subcomplex N(z) of I(z) such that the graded modules I(z)/N(z)

and M(z) are isomorphic.

Before we are able to describe the differential m of M(z) in Theorem 4.8 we must
identify graded-module maps σ : M(z) → I(z) and τ : I(z) → M(z). This project is
accomplished in the next two definitions.

Definition 4.6. Define

quot: SpF ∗ ⊗∧q
F ∗ ⊗∧r

F ∗ ⊗∧ggg−z+1+p
G→ V(p, q, r, z),

s : V(p, q, r, z)→ SpF
∗ ⊗∧q

F ∗ ⊗∧r
F ∗ ⊗∧ggg−z+1+p

G,

incl : S(p, q, r, z)→ DpF ⊗
∧q

F ⊗∧r
F ⊗∧p+fff+z+1

G∗, and

t : DpF ⊗
∧q

F ⊗∧r
F ⊗∧p+fff+z+1

G∗ → S(p, q, r, z)

by: “quot” is the natural quotient map, s is a fixed splitting of “quot”, “incl” is
the natural inclusion map, and t is a fixed splitting of “incl”.

Note. Theorem 5.11 and Proposition 5.5 ensure the existence of s and t.
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Definition 4.7. Define the map of graded modules σ : M(z) → I(z) by

V(p, q, r, z) s−→ SpF
∗ ⊗∧q

F ∗ ⊗∧r
F ∗ ⊗∧ggg−z+1+p

G

nat−−→ L(p, q,fff − r,ggg − z + 1 + p, z − 1− p) ↪→ I(z),

U(p, q, r) ↪→ I(z), T(p, q, r) ↪→ I(z), and

S(p, q, r, z) incl−−→ DpF ⊗
∧q

F ⊗∧r
F ⊗∧p+fff+z+1

G∗

nat−−→W(p, q,fff − r, p+ fff + z + 1, r − p− q) ↪→ I(z).

Define the map of graded modules τ : I(z) →M(z) by

L(p, q, r, s, t)
χ(p+t=z−1)·χ(ggg=s+t)·nat−−−−−−−−−−−−−−−−−→ SpF

∗ ⊗∧q
F ∗ ⊗∧fff−r

F ∗ ⊗∧ggg−z+1+p
G

quot−−−→ V(p, q,fff − r, z) ↪→M(z),

U(p, q, r)
χ(z≤q)·id−−−−−−→M(z), T(p, q, r)

χ(ggg−fff−z≤q)·id−−−−−−−−−−→M(z), and

W(p, q, r, s, t)
χ(2fff+z+1=q+r+s+t)·χ(p+q+r+t=fff )·nat−−−−−−−−−−−−−−−−−−−−−−−−−−−→

DpF ⊗
∧q

F ⊗∧fff−r
F ⊗∧s

G∗ t−→ S(p, q,fff − r, z) ↪→M(z).

Note. The map “nat” is the natural isomorphism which is induced by αr 7→ αr(ωF )
for αr ∈

∧r
F ∗ and br 7→ br(ωF∗) for br ∈

∧r
F .

Theorem 4.8. There exists an R−module homomorphism P : I(z) → I(z), with
P (I(z)i ) ⊆ I(z)i+1, such that the following statements hold.

(a) The complex I(z)/N(z) of Theorem 4.5 is isomorphic to (M(z),m), where the
differential m : M(z) →M(z) is the composition

M(z) σ−→ I(z)
d−→ I(z)

1−d◦P−−−−→ I(z)
τ−→M(z).

(b) If ψ : I(z) → M(z) is given by ψ = τ ◦ (1 − d ◦ P ), then ψ is a map of
complexes.

(c) If ρ : M(z) → I(z) is given by ρ = (1−P ◦d)◦σ, then ρ is a map of complexes
and ψ ◦ ρ is the identity map on M(z).

(d) The image of m is contained in [I1(u) + I1(v) + I1(X)] M(z).

Remark 4.9. If I(z) is a homogeneous complex, in the sense of Remark 2.4, then
the map 1− d ◦ P of Theorem 4.8 is a homogeneous map of degree zero. If 0 ≤ z,
then M(z) is a homogeneous complex with degree zero maps, provided

(a) the shift of V(p, q, r, z) is −p+ q − 2r + 2fff − 2 + z,
(b) the shift of U(p, q, r) is 2p+ 2q + 3r − z,
(c) the shift of T(p, q, r) is p+ q + 3r + 2ggg − fff − z, and
(d) the shift of S(p, q, r, z) is p− q + 2r + 2fff − 1 + z.
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If z = −1, then the appropriate grading on M(z) is obtained by subtracting 1 from
each shift in (a)–(d).

Next we record numerical information about the complex M(z). The shifts in
M(z) are given in Remark 4.9; the rank of V(p, q, r, z) and S(p, q, r, z) may be
computed using the note which follows Theorem 5.11. In Proposition 4.10 we record
the first and last contributions of S, T, U, and V, respectively, to M(z). Corollary
4.11 gives the left and right ends of M(z). We let M(z)

i denote the submodule of
M(z) in position i.

Proposition 4.10. Adopt Let fff and ggg be positive integers with fff − 1 ≤ ggg.
(a) If V(p, q, r, z) is a non-zero summand of M(z)

i , then
0 ≤ i ≤ min{2fff + z − 3, ggg + 2fff − 2}.

(b) If V(p, q, r, z) is a non-zero summand of M(z)
0 , then (p, q, r) = (z − 1, 1, fff).

(c) If V(p, q, r, z) is a non-zero summand of M(z)
1 , then (p, q, r) is equal to

(z − 2, 1, fff), (z − 1, 2, fff), or (z − 1, 1, fff − 1).
(d) If V(p, q, r, z) is a non-zero summand of M(z)

2fff+z−3, then (p, q, r) = (0, fff , 1).

(e) If U(p, q, r) is a non-zero summand of M(z)
i , then

z ≤ i ≤ min{2fff + z − 2, 2fff + ggg − 2}.
(f) If U(p, q, r) is a non-zero summand of M(z)

z , then (p, q, r) = (0, z, 0).
(g) If U(p, q, r) is a non-zero summand of M(z)

2fff−2+z, then (p, q, r) = (0, z,fff − 1).

(h) If T(p, q, r) is a non-zero summand of M(z)
i , then

z + 1 ≤ i ≤ min{2fff + z − 1, fff + ggg − 1}.
(i) If T(p, q, r) is a non-zero summand of M(z)

z+1, then (p, q, r) is equal to
(0, ggg − fff − z,fff − ggg + z).

(j) If T(p, q, r) is a non-zero summand of M(z)
2fff+z−1, then z ≤ ggg − fff and (p, q, r) is

equal to (0, ggg − fff − z, 2fff − ggg + z − 1).
(k) If T(p, q, r) is a non-zero summand of M(z)

fff+ggg−1, then ggg − fff ≤ z and (p, q, r) is
equal to (0, 0, fff − 1).

(l) If ggg < fff + z + 1, then the summand
⊕

S(p, q, r, z) in M(z) is zero.
(m) If S(p, q, r, z) is a non-zero summand of M(z)

i , then z + 2 ≤ i ≤ fff + ggg − 1.
(n) If S(p, q, r, z) is a non-zero summand of M(z)

z+2, then z ≤ ggg − fff − 1 and (p, q, r)
is equal to (0, fff , 1).

(o) If S(p, q, r, z) is a non-zero summand of M(z)
fff+ggg−1, then z ≤ ggg−fff−1 and (p, q, r)

is equal to (ggg − fff − z − 1, 1, fff).

Proof. The position of V(p, q, r, z) in M(z) is (z − 1− p) + (q − 1) + (fff − r), with

0 ≤ z − 1− p ≤ min{ggg, z − 1}, 0 ≤ q − 1 ≤ fff − 1, and 0 ≤ fff − r ≤ fff − 1.

Assertions (a)–(d) are now obvious. Definition 4.2 also gives that

z ≤ the position of U(p, q, r) = p+ q + 2r = 2(p+ q + r)− p− q
≤ 2(fff − 1 + z)− z = 2fff − 2 + z.
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Also, p+ q + 2r ≤ 2(p+ r) + q ≤ 2(fff − 1) + ggg. Assertions (e)–(g) follow. Use

z + 1 = (ggg − fff − z) + 2(fff − ggg + z) + ggg − fff + 1 ≤ the position of T(p, q, r)

= p+ q + 2r + ggg − fff + 1 = 2(p+ q + r)− p− q + ggg − fff + 1

≤ 2(fff − 1) + min{fff + z − ggg, 0}+ (ggg − fff + 1) = min{2fff − 1 + z,ggg + fff − 1}
for (h)–(k). The same type of argument also establishes (l)–(o). �
Corollary 4.11. Let fff and ggg be integers with 2 ≤ fff and fff − 1 ≤ ggg.
(a) If i ≤ −1 and −1 ≤ z, then M(z)

i = 0.
(b) The module M(z)

0 is equal to
U(0, 0, 0)⊕ T(0, ggg − fff + 1, fff − ggg − 1) ∼= R⊕∧fff−1

G∗ if −1 = z,
U(0, 0, 0) ∼= R if 0 = z,
V(z − 1, 1, fff , z) ∼= SzF

∗ if 1 ≤ z.
If the hypotheses of Remark 2.4 are in effect, then

M(z)
0 =

{
R[0]⊕R[−(f − 2)](

ggg
fff−1) if −1 = z,

R[0](
fff+z−1

z ) if 0 ≤ z.
(c) The module M(z)

1 is equal to

{
U(0, 1, 0)⊕ U(1, 0, 0)⊕ T(1, ggg − fff + 1, fff − ggg − 1)
⊕T(0, ggg − fff + 2, fff − ggg − 1)⊕ S(0, fff, 1, z)

}
if −1 = z and 3 ≤ fff ,

U(0, 1, 0)⊕ U(1, 0, 0)⊕ T(0, ggg − fff,fff − ggg) if 0 = z,

V(0, 2, fff, z)⊕ V(0, 1, fff − 1, z)⊕ U(0, 1, 0) if z = 1,

V(z − 2, 1, fff, z)⊕ V(z − 1, 2, fff, z)⊕ V(z − 1, 1, fff − 1, z) if 2 ≤ z.
(d) If −1 ≤ z ≤ ggg−fff +1, then M(z)

i = 0, whenever ggg+fff ≤ i, and M(z)
ggg+fff−1 is equal

to
S(ggg − fff − z − 1, 1, fff, z) ∼= Dggg−fff−zF if −1 ≤ z ≤ ggg − fff − 1,
T(0, 0, fff − 1) ∼= R if ggg − fff = z,

T(0, 0, fff − 1)⊕ U(0, ggg − fff + 1, fff − 1) ∼= R⊕∧fff−1
G if ggg − fff + 1 = z.

If the hypotheses of Remark 2.4 are in effect, then

M(z)
ggg+fff−1 =


R[−(ggg + 3fff − 4)](

ggg
fff−1) if −1 = z,

R[−(ggg + 3fff − 3)](
ggg−z−1

fff−1 ) if 0 ≤ z ≤ ggg − fff ,
R[−(ggg + 3fff − 4)]1 ⊕R[−(2fff + ggg − 2)](

ggg
fff−1) if ggg − fff + 1 = z.

(e) If ggg − fff + 2 ≤ z ≤ ggg, then M(z)
i = 0 for 2fff + z − 1 ≤ i and

M(z)
2fff+z−2 = U(0, z,fff − 1) ∼= ∧z

G∗ ∼= R[−(3fff − 3 + z)](
ggg
z).

(f) If ggg + 1 ≤ z, then M(z)
i = 0 for ggg + 2fff − 1 ≤ i and

M(z)
ggg+2fff−2 = V(z − 1− ggg,fff, 1, z) ∼= Sz−gggF ∗ ∼= R[−(3fff + ggg − 3)](

z−ggg+fff−1
fff−1 ).

Proof. Use Proposition 4.10, Example 5.3, and Remark 4.9. �
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Example 4.12. Fix fff = 3 and ggg = 6. We record the graded module M(z) for
−1 ≤ z ≤ 6. We use the notation of the command “numinfo” from the computer
system Macaulay. In other words, 2 : 1 3 : 42 4: 21 in position 2 of M(1) means that
M(1)

2 is equal to R(−2)⊕R(−3)42 ⊕R(−4)21.

M(−1) is
position degrees
0 0: 1 1: 15
1 2: 120
2 3: 315 4: 75
3 4: 405 5: 351 6: 20
4 5: 309 6: 565 7: 120
5 6: 125 7: 471 8: 216
6 7: 21 8: 201 9: 190
7 9: 35 10: 84
8 11: 15

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M(0) is
position degrees
0 0: 1
1 2: 9 3: 20
2 3: 1 4: 156
3 5: 276 6: 65
4 6: 191 7: 258 8: 15
5 7: 84 8: 261 9: 83
6 8: 15 9: 127 10: 99
7 10: 24 11: 51
8 12: 10

M(1) is
position degrees
0 0: 3
1 1: 9 2: 8
2 2: 1 3: 42 4: 21
3 4: 9 5: 174
4 6: 210 7: 33
5 7: 57 8: 127 9: 6
6 8: 10 9: 69 10: 36
7 10: 15 11: 26
8 12: 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M(2) is
position degrees
0 0: 6
1 1: 26 2: 15
2 2: 36 3: 69 4: 10
3 3: 6 4: 127 5: 57
4 5: 33 6: 210
5 7: 174 8: 9
6 8: 21 9: 42 10: 1
7 10: 8 11: 9
8 12: 3

M(3) is
position degrees
0 0: 10
1 1: 51 2: 24
2 2: 99 3: 127 4: 15
3 3: 83 4: 261 5: 84
4 4: 15 5: 258 6: 191
5 6: 65 7: 276
6 8: 156 9: 1
7 9: 20 10: 9
8 12: 1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M(4) is
position degrees
0 0: 15
1 1: 84 2: 35
2 2: 190 3: 201 4: 21
3 3: 216 4: 471 5: 125
4 4: 120 5: 565 6: 309
5 5: 20 6: 351 7: 405
6 7: 75 8: 315
7 9: 120
8 10: 15 11: 1
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M(5) is
position degrees
0 0: 21
1 1: 125 2: 48
2 2: 309 3: 291 4: 28
3 3: 405 4: 737 5: 174
4 4: 295 5: 999 6: 456
5 5: 111 6: 765 7: 650
6 6: 15 7: 314 8: 540
7 8: 51 9: 261
8 10: 65
9 11: 6

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

M(6) is
position degrees
0 0: 28
1 1: 174 2: 63
2 2: 456 3: 397 4: 36
3 3: 650 4: 1,059 5: 231
4 4: 540 5: 1,545 6: 631
5 5: 258 6: 1,325 7: 951
6 6: 64 7: 663 8: 855
7 7: 6 8: 177 9: 461
8 9: 19 10: 141
9 11: 21
10 12: 1

Example 4.13. Fix fff = 6 and ggg = 9. We record the graded module M(0).

pos. degrees
0 0: 1
1 2: 15 6: 84
2 3: 1 4: 105 7: 846
3 5: 15 6: 455 8: 3,591 9: 624
4 6: 1 7: 105 8: 1,365 9: 8,570 10: 4,500 11: 720
5 8: 15 9: 455 10: 15,828 11: 14,061 12: 5,349 13: 540
6 9: 1 10: 105 11: 14,028 12: 24,824 13: 17,256 14: 3,996 15: 216
7 11: 15 12: 3,941 13: 27,099 14: 31,512 15: 12,865 16: 1,611 17: 36
8 12: 1 13: 1,113 14: 12,564 15: 35,624 16: 23,556 17: 5,196 18: 270
9 14: 141 15: 3,864 16: 19,629 17: 27,012 18: 9,490 19: 876
10 15: 1 16: 504 17: 6,264 18: 16,094 19: 10,956 20: 1,596
11 18: 840 19: 5,265 20: 6,816 21: 1,849
12 20: 720 21: 2,270 22: 1,182
13 22: 315 23: 399
14 24: 56

5. The functor M(p, q, r).

In this section we introduce a family of functors {M(p, q, r)}, which are univer-
sally free in the sense of [1, Def. 2.1]. Given the data of 1.2, many of the summands
of the minimal complex M(z) of section 4 have the formM(p, q, r)[F ∗]⊗∧s

G, for
some integers p, q, r, and s.

Data 5.1. Let F be a free module of rank fff over the commutative noetherian ring
R, and let B(p, q, r) be the R−module SpF ⊗

∧q
F ⊗∧r

F .

Definition 5.2. Adopt Data 5.1. For all integers p, q, and r, define

M(p, q, r)[F ] =



B(p, q, r)
im(∂h + ∂v)

if 1 ≤ p,

B(p, q, r)
im ∆

if 0 = p,

0 if p < 0, where
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∂h : B(p− 1, q + 1, r)→ B(p, q, r) and ∂v : B(p− 1, q, r + 1)→ B(p, q, r)

are the Koszul maps, in the sense of (1.15), induced by the identity map on F , and

∆:
∧q+r

F → ∧q
F ⊗∧r

F = B(0, q, r)

is the co-multiplication map.

Example 5.3. We use the Schur functor notation of [2, Def. II.1.3] or [3, pg. 466].
The hook λ = (q, 1p) represents the partition

λ = (q, 1, . . . , 1︸ ︷︷ ︸
p times

).

Apply Remark 1.16 to see that
(a) if q ≤ 0 or r ≤ 0, thenM(p, q, r)[F ] = 0,
(b) if 0 ≤ p, thenM(p, 1, fff )[F ] ∼=M(p,fff, 1)[F ] ∼= Sp+1F ,
(c) if 0 ≤ p, thenM(p,fff ,fff)[F ] ∼= SpF ,
(d) if 1 ≤ p, q, thenM(p, q,fff )[F ] andM(p,fff, q)[F ] are both isomorphic to the

Schur functor L(q,1p)F .
(e) if 1 ≤ q, then M(0, q, 1)[F ] and M(0, 1, q)[F ] are both isomorphic to the

Schur functor L(q,1)F .

Definition 5.4. Let F be a free module of rank fff over the commutative noetherian
ring R, and let B′(p, q, r) be the R−module DpF ⊗

∧q
F ⊗∧r

F . For all integers
p, q, and r, define K(p, q, r)[F ] to be

Ker

B′(p, q, r)

 δh
δv


−−−−→ B′(p− 1, q + 1, r)⊕B′(p− 1, q, r + 1)

 if 1 ≤ p,

Ker
(
B′(0, q, r)

µ−→ ∧q+r
F

)
if 0 = p,

0 if p < 0,

where
δh(Bp ⊗ bq ⊗ b′r) =

∑
|I|=1

ϕI(Bp)⊗ bq ∧ fI ⊗ b′r,

δv(Bp ⊗ bq ⊗ b′r) =
∑
|I|=1

ϕI(Bp)⊗ bq ⊗ b′r ∧ fI ,

and µ is exterior multiplication.

The following observation is an immediate consequence of the definitions.

Proposition 5.5. The modules K(p, q, r)[F ] and (M(p, q, r)[F ∗])∗ are naturally
isomorphic for all free R−modules F .

The main results in this section are Theorem 5.7, where we resolveM(p, q, r)[F ],
and Theorem 5.11, where we prove that M(p, q, r)[F ] is a free R−module.
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Definition 5.6. Adopt Data 5.1. For non-negative integers p, q, and r, define
B(p, q, r) = B(p, q, r)(F ) to be the total complex of the following (extended) double
complex:

∧p+q+r F
±∆−−→ B(0, q, p+ r)

±∆

y ↘ ∂v

y
..
.

..

.

∂v

y ∂v

y
. . .

∂h−−→ B(p− 2, q + 1, r + 1)
∂h−−→ B(p− 1, q, r + 1)

∂v

y ∂v

y
B(0, p+ q, r)

∂h−−→ . . .
∂h−−→ B(p− 1, q + 1, r)

∂h−−→ B(p, q, r).

The module B(a, b, c) has position b + c in B(p, q, r), the module
∧p+q+r

F has
position p+ q + r+ 1. If the module

∧p+q+r
F is ignored, for the time being, then

the rest of the diagram is a double complex. The horizontal map

∂h : B(a, b, c)→ B(a+ 1, b− 1, c)

is the Koszul complex map associated to the identity map on F . The vertical map
map ∂v : B(a, b, c) → B(a + 1, b, c − 1) is (−1)b times the Koszul complex map
associated to the identity map on F . The module

∧p+q+r
F maps to each module

of the form B(0, b, c), where b+ c = p+ q + r and q ≤ b ≤ p+ q. The map∧p+q+r
F → B(0, b, c)

is equal to (−1)b times the co-multiplication map
∧p+q+r

F → ∧b
F ⊗∧c

F .

Theorem 5.7. Adopt Data 5.1. If p, q, and r are non-negative integers, then the
complex B(p, q, r) of Definition 5.6 is a resolution of M(p, q, r)[F ].

Proof. It is clear thatHq+r(B(p, q, r)) =M(p, q, r)[F ]. We prove thatHi(B(p, q, r))
is zero for q + r + 1 ≤ i. Let B′(p, q, r) be the subcomplex

B′(p, q, r) =
⊕

a+b+c=p+q+r
b≤q−1 or c≤r−1

B(a, b, c)

of B(p+ q + r, 0, 0). Observe that

0→ B′(p, q, r)→ B(p+ q + r, 0, 0)→ B(p, q, r)→ 0

is a short exact sequence of complexes. The long exact sequence of homology
completes the proof as soon as we show

(a) B(M, 0, 0) is split exact for all integers M , and

(b) Hi(B′(p, q, r)) = 0, whenever q + r ≤ i.
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We first prove (a). Let K be the Koszul complex associated to the R−module
map

F ⊕ F [ id 0 ]−−−−−→ F.

It is well known that the homology of K is given by Hi(K) =
∧i

F for all integers
i. In particular, the non-zero homology of the graded strand

K(M) : 0→ S0F ⊗
∧M (F ⊕ F )→ · · · → SMF ⊗

∧0(F ⊕ F )→ 0

of K, is concentrated in position M . We kill the cycles of K(M); thereby creating
the split exact complex K̃(M):

0→ ∧M
F

δ−→ S0F ⊗
∧M (F ⊕ F )→ · · · → SMF ⊗

∧0(F ⊕ F )→ 0,

where δ sends
∧M

F onto the summand
∧0

F ⊗∧M
F of

∧M (F ⊕ F ) =
M∑̀
=0

∧`
F ⊗∧M−`

F.

It is easy to see that the commutative diagram

F ⊕ F [ id 0 ]−−−−−→ F[
1 −1
0 1

]y id

y
F ⊕ F [ id id ]−−−−−−→ F

induces an isomorphism from K̃(M) to B(M, 0, 0).
Now we prove (b). Fix an integer i, with q + r ≤ i. Let M = p+ q + r, and let

z be an i−cycle in B′(p, q, r). Decompose z as

z =
q−1∑
k=0

xk +
i∑

k=i−r+1

xk

where xk ∈ B(M − i, k, i− k). Suppose we have found y ∈ B′(p, q, r) such that

z − d(y) =
N∑
k=0

x′k +
i∑

k=i−r+1

xk

for some N ≤ q − 1, where d is the differential in B′(p, q, r). Apply d to the cycle
z − d(y) in order to see that

∂v(x′N ) = 0 ∈ B(M − i+ 1, N, i−N − 1).

(This is the key point in the argument. It is essential to notice that ∂h(xi−r+1) is
not an element of B(M − i+ 1, N, i−N − 1), because r − 1 < i−N − 1.) Recall,
from Remark 1.16, that the vertical maps

B(M − i− 1, N, i−N + 1) ∂v−→ B(M − i,N, i−N) ∂v−→ B(M − i+ 1, N, i−N − 1)
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form an exact complex. Thus, there is an element

y′ ∈ B(M − i− 1, N, i−N + 1) ⊆ B′(p, q, r)

such that ∂v(y′) = x′N . We now have

z − d(y + y′) =
N−1∑
k=0

x′′k +
i∑

k=i−r+1

xk

for some x′′k ∈ B(M − i, k, i − k). Repeat the procedure to see that z = d(Y ) for
some Y ∈ B′(p, q, r). �

Our first goal in this section has been accomplished. We complete the section
by finding a basis for M(p, q, r)[F ], thereby ensuring that M(p, q, r)[F ] is a free
module. Some notation is needed.

Remark 5.8. Let f [1], . . . , f [fff ] be the basis for F of Convention 1.4. If a1, . . . , ap,
b1, . . . , bq, c1, . . . , cr are integers, between 1 and fff , then we let

a1 · · · ap ⊗ b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr
represent the element

f [a1] · · · f [ap] ⊗ f [b1] ∧ . . . ∧ f [bq ] ⊗ f [c1] ∧ . . . ∧ f [cr]

of B(p, q, r). Whenever possible, we insist that

(5.9) a1 ≤ · · · ≤ ap, b1 < · · · < bq, and c1 < · · · < cr.

Definition 5.10. If p, q, r, and fff are integers, then define

R(p, q, r,fff ) =
r∑
i=1

fff∑
k=1

k∑
`=1

(
p+ `− 1

p

)(
`− 1
i− 1

)(
k − 1
q − 1

)(
fff − k
r − i

)
.

Theorem 5.11. For all integers p, q, and r, the R−moduleM(p, q, r)[F ] of Defi-
nition 5.2 is free of rank R(p, q, r,fff ).

Note. As soon as the proof of Theorem 5.11 (including the proof of Theorem 6.7) is
complete, then Theorem 5.7 shows that if p, q, r, and fff are non-negative integers,
then R(p, q, r,fff ) is equal to

∑
{(a,b)|0≤a,b and a+b≤p}

(−1)a+b
(
fff − 1 + p− a− b

fff − 1

)(
fff

q + a

)(
fff

r + b

)
+(−1)p+1

(
fff

p+ q + r

)
;

moreover, the rank ofM(p, q, r)[F ] is equal to this common value.

Proof of Theorem 5.11. If p ≤ −1, q ≤ 0, r ≤ 0, or fff ≤ 0, then the module B(p, q, r)
and the integer R(p, q, r,fff ) are both equal to zero. Henceforth, we assume that
0 ≤ p and 1 ≤ q, r,fff .
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We next take p = 0. Define s : B(0, q, r)→ ∧q+r
F by

s(b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr) =
{

0 if c1 ≤ bq
f [b1] ∧ . . . ∧ f [bq] ∧ f [c1] ∧ . . . ∧ f [cr ] if bq < c1.

(The conventions of Remark 5.8, including the inequalities of (5.9), are in effect.)
It is clear that s ◦∆ is equal to the identity on

∧q+r
F . It follows that

B(0, q, r) = im ∆⊕ ker s;

and therefore,M(0, q, r)[F ] is isomorphic to ker s. Pick a basis B1 for
∧q+r

F . Let

S1 = {∆(x1) ∈ B(0, q, r) | x1 ∈ B1}, and

S2 = {b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr ∈ B(0, q, r) | (5.9) holds and c1 ≤ bq}.
It is clear that ker s is generated by S2 and that B(0, q, r) is generated by S1 ∪ S2.
Observe that

|S1|+ |S2| =
(

fff

q + r

)
+

[(
fff

q

)(
fff

r

)
−

(
fff

q + r

)]
=

(
fff

q

)(
fff

r

)
= rankB(0, q, r).

It follows that S1∪S2 is a basis for B(0, q, r); and therefore, ker s is a free module of
rank

(
fff
q

)(
fff
r

)−(
fff
q+r

)
, which, according to Proposition 6.6, is the same as R(0, q, r,fff ).

Henceforth, we take 1 ≤ p. The proof is by induction on p. The Koszul complex

(5.12) 0 → B(0, p+ q, r) → . . .
∂h−−→ B(p− 1, q + 1, r)

∂h−−→ B(p, q, r) → · · · → B(p+ q, 0, r) → 0

is split exact; hence, B(p− 1, q + 1, r)/ im ∂h is a free module of rank

(5.13)
p−1∑
`=0

(−1)`
(
fff + p− `− 2

fff − 1

)(
fff

q + 1 + `

)(
fff

r

)
.

The induction hypothesis ensures thatM(p−1, q, r+1)[F ] is a free module of rank

(5.14) R(p− 1, q, r + 1, fff).

Pick bases

B1 for
B(p− 1, q + 1, r)

im ∂h
and B2 forM(p− 1, q, r + 1)[F ].

Let
S1 = {∂h(x1) ∈ B(p, q, r) | x1 ∈ B1},

S2 = {∂v(x2) ∈ B(p, q, r) | x2 ∈ B2}, and

S3 = {a1 · · · ap ⊗ b1 ∧ . . .∧ bq ⊗ c1 ∧ . . .∧ cr ∈ B(p, q, r) | (5.9) holds and ap ≤ ci ≤ bq for some i}.
We will prove that

(a) |S3| = R(p, q, r,fff ),
(b) |S1|+ |S2|+ |S3| = rankB(p, q, r),
(c) im(∂h + ∂v) = RS1 +RS2, and
(d) B(p, q, r) = RS1 +RS2 +RS3.
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Once assertions (a) —(d) are established, then it is clear that S1∪S2∪S3 is a basis
for B(p, q, r) and thatM(p, q, r)[F ] is a free module of rank R(p, q, r,fff ).

Observe that S3 is the disjoint union
r⋃
i=1

Ti, where Ti is equal to

{a1 · · · ap ⊗ b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr | (5.9) holds and ap ≤ ci ≤ bq < ci+1}

for 1 ≤ i ≤ r − 1, and

Tr = {a1 · · · ap ⊗ b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr | (5.9) holds and ap ≤ cr ≤ bq} .

Observe that

|Ti| =
fff∑
k=1

k∑
`=1

(
p+ `− 1

p

)(
`− 1
i− 1

)(
k − 1
q − 1

)(
fff − k
r − i

)
.

Indeed, if bq is represented by k and ci is represented by `, then there are
(
p+`−1
p

)
ways to choose a1 ≤ · · · ≤ ap, with ap ≤ ci;

(
`−1
i−1

)
ways to choose c1 < · · · < ci−1,

with ci−1 < ci;
(
k−1
q−1

)
ways to choose b1 < · · · < bq−1, with bq−1 < bq; and

(
fff−k
r−i

)
ways to choose ci+1 < · · · < cr, with bq < ci+1. It is now clear that |S3| is equal to
R(p, q, r,fff ), and (a) is established. The values of |S1| and |S2| are given in (5.13)
and (5.14), respectively. Theorem 6.7 yields (b). It is clear, from the fact that
(5.12) is a complex, that RS1 = im ∂h. We know that the diagrams

B(p− 2, q + 1, r + 1) ∂h−−−−→ B(p− 1, q, r + 1)

∂v

y ∂v

y
B(p− 1, q + 1, r) ∂h−−−−→ B(p, q, r)

for 2 ≤ p, and

∧q+r+1
F

(−1)q∆−−−−−→ B(0, q, r + 1)

(−1)q+1∆

y ∂v

y
B(0, q + 1, r) ∂h−−−−→ B(1, q, r)

commute; see Theorem 5.7, if necessary. It follows that im ∂v ⊆ RS2 + im ∂h; and
therefore, (c) is established.

We now prove (d). Let x = a1 · · · ap ⊗ b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr be an element
of B(p, q, r) which satisfies (5.9).

Claim 1. If max{ap, cr} ≤ bq, then x ∈ RS3 + im(∂v + ∂h).

Proof. If ap ≤ cr, then x ∈ S3. If cr < ap, then

∂v(a1 · · · ap−1 ⊗ b1 ∧ . . . ∧ bq ⊗ c1 ∧ . . . ∧ cr ∧ ap) = y + (−1)rx,

for some element y of RS3.
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Claim 2. If max{bq, cr} ≤ ap, then x ∈ RS3 + im(∂v + ∂h).

Proof. Apply Claim 1 to see that

∂h(a1 · · · ap−1 ⊗ b1 ∧ . . . ∧ bq ∧ ap ⊗ c1 ∧ . . . ∧ cr) = y + (−1)qx,

for some element y of RS3 + im(∂h + ∂v).

At this point we have

cr ≤ bq or cr ≤ ap =⇒ x ∈ RS3 + im(∂h + ∂v).

The proof of (d) proceeds by induction. The induction hypothesis ensures that

ci ≤ bq or ci ≤ ap =⇒ x ∈ RS3 + im(∂h + ∂v),

for some i, with 1 ≤ i ≤ r. Henceforth, we assume that max{ap, bq} < ci. We prove

ci−1 ≤ bq or ci−1 ≤ ap =⇒ x ∈ RS3 + im(∂h + ∂v).

(In this discussion, we may treat c0 as 0.)

Claim 3. If max{ap, ci−1} ≤ bq, then x ∈ RS3 + im(∂v + ∂h).

Proof. If ap ≤ ci−1, then x ∈ S3. If ci−1 < ap, then

∂v(a1 · · · ap−1⊗ b1 ∧ . . .∧ bq⊗ c1 ∧ . . .∧ ci−1 ∧ ap ∧ ci ∧ · · · ∧ cr) = y+(−1)i−1x+ y′,

where

y =
i−1∑
k=1

(−1)k+1a1 · · · ap−1·ck⊗b1∧. . .∧bq⊗c1∧. . .∧ĉk∧· · ·∧ci−1∧ap∧ci∧· · ·∧cr, and

y′ =
r∑
k=i

(−1)ka1 · · · ap−1 ·ck⊗b1∧ . . .∧bq⊗c1∧ . . .∧ci−1∧ap∧ci∧· · ·∧ ĉk∧· · ·∧cr.

The induction hypothesis ensures that y′ ∈ RS3 + im(∂v + ∂h). Each term of y is
in S3.

Claim 4. If max{bq, ci−1} ≤ ap, then x ∈ RS3 + im(∂v + ∂h).

Proof. Apply Claim 3 to see that

∂h(a1 · · · ap−1 ⊗ b1 ∧ . . . ∧ bq ∧ ap ⊗ c1 ∧ . . . ∧ cr) = y + (−1)qx,

for some element y of RS3 + im(∂h + ∂v).

So, (d) is established, and the proof is complete. �
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6. Binomial coefficients.

In this section we prove the binomial coefficient identities, Proposition 6.6 and
Theorem 6.7, which were used in the proof of Theorem 5.11. We begin by recalling
some elementary facts about binomial coefficients. More details may be found in
[14, 15]; in particular, identity (e) is Lemma 1.3 of [14].

Observation 6.1. The following statements hold for all integers a, b, and c:

(a) if 0 ≤ a < b, then
(
a
b

)
= 0,

(b)
(
a
b−1

)
+

(
a
b

)
=

(
a+1
b

)
,

(c) if 0 ≤ a, then
(
a
b

)
=

(
a
a−b

)
,

(d)
(
a
b

)
= (−1)b

(
b−a−1
b

)
, and

(e) if 0 ≤ a, then
∑
k∈Z

(−1)k
(
b+k
c+k

)(
a
k

)
= (−1)a

(
b
a+c

)
.

Lemma 6.2. Let a, b, and c be integers.

(a) If 0 ≤ a, then
a∑
k=0

(
a
k

)(
b

c+k

)
=

(
b+a
c+a

)
.

(b) If a and c are non-negative, then
b∑

k=0

(−1)k
(
a
k

)(
b−k
c

)
=

(
b−a
c−a

)
+(−1)b+c

(
a−c−1
a−b−1

)
.

Proof. The proof of (a) is by induction on a. If a = 0, then both sides of the
proposed identity are equal to

(
b
c

)
. Henceforth, we assume that 0 ≤ a. Decompose

the first binomial coefficient to see that

a+1∑
k=0

(
a+ 1
k

)(
b

c+ k

)
=

a∑
k=0

(
a

k

)(
b

c+ k

)
+

a∑
k=0

(
a

k

)(
b

c+ k + 1

)
.

The induction hypothesis completes the proof.
The proof of (b) is by induction on a. If a is zero, then use parts (d) and (c) of

Observation 6.1 to see that the right side of the proposed identity is{ (
b
c

)
if 0 ≤ b

(−1)c
(
c−b−1
c

)
+ (−1)c+1

(
c−b−1
−b−1

)
= 0 if b < 0,

which is equal to the left side. Henceforth, we assume that 0 ≤ a. Decompose the
first binomial coefficient to see that

b∑
k=0

(−1)k
(
a+1
k

)(
b−k
c

)
=

b∑
k=0

(−1)k
(
a
k

)(
b−k
c

)
+
b−1∑
k=0

(−1)k+1
(
a
k

)(
b−1−k
c

)
.

Once again, the induction hypothesis completes the proof. �
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Lemma 6.3. Let a, b, and c be integers with 0 ≤ a. If, either 0 ≤ b, or else,
b+ c+ 1 6= 0, then

a∑
`=0

(
c+ `

c

)(
`

b

)
=

c+1∑
`=1

(−1)`+1

(
a+ c+ 1
c+ 1− `

)(
a+ `

b+ `

)
.

Proof. If c is negative, then both sides of the proposed identity are 0. Henceforth,
we assume that 0 ≤ c. If b is negative, then the left side of the proposed identity is
zero. It is easy to see that the right side is∑

`∈Z

(−1)`+1

(
a+ c+ 1
c+ 1− `

)(
a+ `

b+ `

)
=

∑
`∈Z

(−1)`+1

(
a+ c+ 1
a+ `

)(
a+ `

b+ `

)
=

∑
k∈Z

(−1)a+k+1

(
a+ c+ 1

k

)(
k

b− a+ k

)
,

which, according to Observation 6.1.e, is equal to

(−1)c
(

0
b+ c+ 1

)
= 0.

Henceforth, we assume that 0 ≤ b.
The proof proceeds by induction on a. When a = 0, then the left side of the

proposed identity is (
0
b

)
=

{
0 if 1 ≤ b
1 if 0 = b,

and the right side of the proposed identity is
0 if 1 ≤ b
c+1∑̀
=1

(−1)`+1
(
c+1
c+1−`

)
= 1 if 0 = b.

Henceforth, we assume that 0 ≤ a. We must prove that

(6.4)
a+1∑
`=0

(
c+ `

c

)(
`

b

)
=

c+1∑
`=1

(−1)`+1

(
a+ c+ 2
c+ 1− `

)(
a+ 1 + `

b+ `

)
.

Observe that the induction hypothesis gives that the left side of (6.4) is equal to
T1 + T2, where

T1 =
(
a+ 1 + c

c

)(
a+ 1
b

)
and T2 =

c+1∑
`=1

(−1)`+1

(
a+ c+ 1
c+ 1− `

)(
a+ `

b+ `

)
.

Decompose the second binomial coefficient to write the right side of (6.4) as T3+T4,
where

T3 =
c+1∑̀
=1

(−1)`+1
(
a+c+2
c+1−`

)(
a+`
b+`

)
and T4 =

c+1∑̀
=1

(−1)`+1
(
a+c+2
c+1−`

)(
a+`
b+`−1

)
.

Decompose the first binomial coefficient to write T4 and perform routine manipu-
lations in order to see that T4 = T1 + (T2 − T3). �
Note. Recall that the numbers R(p, q, r,fff ) are defined in 5.10.
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Lemma 6.5. If p, q, r, and fff are integers, then

R(p, q, r,fff +1) = R(p, q, r,fff )+R(p, q, r− 1, fff)+
fff+1∑
`=1

(
p+ `− 1

p

)(
`− 1
r − 1

)(
fff

q − 1

)
.

Proof. If r ≤ 0, then both sides of the proposed identity are zero. Henceforth, we
assume 1 ≤ r. Separate the middle summation into 1 ≤ k ≤ fff and k = fff + 1 in
order to write R(p, q, r,fff + 1) = T1 + T2, where

T1 =
r∑
i=1

fff∑
k=1

k∑
`=1

(
p+ `− 1

p

)(
`− 1
i− 1

)(
k − 1
q − 1

)(
fff + 1− k
r − i

)
and T2 is the last term in the proposed identity. Decompose the fourth binomial
coefficient to write T1 = R(p, q, r,fff ) +R(p, q, r − 1, fff). �
Proposition 6.6. If q, r, and fff are non-negative integers, then

R(0, q, r,fff ) =
(
fff

q

)(
fff

r

)
−

(
fff

q + r

)
.

Proof. If r = 0, q = 0, or fff = 0, then both sides of the proposed identity are zero.
Henceforth, we assume that 1 ≤ q, r,fff . We induct on fff . Apply Lemma 6.5 to see
that

R(0, q, r,fff + 1) = R(0, q, r,fff ) +R(0, q, r − 1, fff) + T, where

T =
fff+1∑
`=1

(
`− 1
r − 1

)(
fff

q − 1

)
=

(
fff + 1
r

)(
fff

q − 1

)
.

(The last equality is well known. One could also use Lemma 6.3, with c = 0.)
The induction hypothesis, together with some routine manipulations of binomial
coefficients, yields the result. �
Theorem 6.7. If p, q, r, and fff are integers with 1 ≤ p and 0 ≤ q, then

R(p, q, r,fff )+R(p− 1, q, r+1, fff) =
(
fff−1+p
fff−1

)(
fff
q

)(
fff
r

)− p−1∑̀
=0

(−1)`
(
fff+p−`−2
fff−1

)(
fff

q+1+`

)(
fff
r

)
.

Proof. Fix integers p and q, with 1 ≤ p and 0 ≤ q. The proof proceeds by induction
on fff and r. If fff ≤ 0 or r ≤ −1, then both sides of the proposed identity are zero.
We next consider the case fff = 1 with 0 ≤ r. It is easy to see that

R(p, q, r, 1) =
{

1 if r = q = 1,
0 otherwise.

It follows that both sides of the proposed identity are equal to
1 if r = q = 1,
1 if r = 0 and q = 1,
0 otherwise.
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Henceforth, we fix integers fff and r, with 1 ≤ fff and 0 ≤ r. The induction hypothesis
ensures that the proposed identity holds for (p, q, r,fff ) and (p, q, r − 1, fff). We will
show that

R(p, q, r,fff + 1) +R(p− 1, q, r + 1, fff + 1) = T1 + T2,

where

T1 =
(
fff + p

fff

)(
fff + 1
q

)(
fff + 1
r

)
and

T2 = −
p−1∑
`=0

(−1)`
(
fff + p− `− 1

fff

)(
fff + 1

q + 1 + `

)(
fff + 1
r

)
.

Apply Lemma 6.5 to write

R(p, q, r,fff + 1) = R(p, q, r,fff ) +R(p, q, r − 1, fff) + T3, and

R(p− 1, q, r + 1, fff + 1) = R(p− 1, q, r + 1, fff) +R(p− 1, q, r,fff) + T4, where

T3 =
fff+1∑
`=1

(
p+ `− 1

p

)(
`− 1
r − 1

)(
fff

q − 1

)
, and

T4 =
fff+1∑
`=1

(
p+ `− 2
p− 1

)(
`− 1
r

)(
fff

q − 1

)
.

The induction hypothesis yields

R(p, q, r,fff ) +R(p− 1, q, r + 1, fff) = T5 + T6

and
R(p, q, r − 1, fff) +R(p− 1, q, r,fff ) = T7 + T8,

where
T5 =

(
fff−1+p
fff−1

)(
fff
q

)(
fff
r

)
,

T6 = −
p−1∑̀
=0

(−1)`
(
fff+p−`−2
fff−1

)(
fff

q+1+`

)(
fff
r

)
,

T7 =
(
fff−1+p
fff−1

)(
fff
q

)(
fff
r−1

)
, and

T8 = −
p−1∑̀
=0

(−1)`
(
fff+p−`−2
fff−1

)(
fff

q+1+`

)(
fff
r−1

)
.

We will prove that T1 + T2 = T3 + T4 + T5 + T6 + T7 + T8. It is easy to see that

T5 + T7 =
(
fff−1+p
fff−1

)(
fff
q

)(
fff+1
r

)
, and

T6 + T8 = −
p−1∑̀
=0

(−1)`
(
fff+p−`−2
fff−1

)(
fff

q+1+`

)(
fff+1
r

)
.

Decompose the middle binomial coefficient to write T2, and perform some routine
calculations, in order to see that

−T2 + T6 + T8 =
(
fff + p− 1

fff

)(
fff

q

)(
fff + 1
r

)
.



50 ANDREW R. KUSTIN

It is now clear that

−T1 − T2 + T5 + T6 + T7 + T8 = −
(
fff + p

fff

)(
fff

q − 1

)(
fff + 1
r

)
.

Apply Lemma 6.3 to write

T3 =
p−1∑
k=−1

(−1)k+1

(
fff + p+ 1
p− 1− k

)(
fff

q − 1

)(
fff + k + 2
r + 1 + k

)
, and

T4 =
p∑
`=1

(−1)`+1

(
fff + p

p− `
)(

fff

q − 1

)(
fff + `

r + `

)
.

Observe that −T1 − T2 + T3 + T5 + T6 + T7 + T8 is equal to(
fff + p

p− 1

)(
fff

q − 1

)(
fff + 1
r

)
+
p−1∑
k=0

(−1)k+1

(
fff + p+ 1
p− 1− k

)(
fff

q − 1

)(
fff + k + 2
r + 1 + k

)
.

We complete the proof by showing that S1 + S2 + S3 = 0, where

S1 =
(
fff + p

p− 1

)(
fff + 1
r

)
, S2 =

p−1∑
k=0

(−1)k+1

(
fff + p+ 1
p− 1− k

)(
fff + k + 2
r + 1 + k

)
, and

S3 =
p∑
`=1

(−1)`+1

(
fff + p

p− `
)(

fff + `

r + `

)
.

Lemma 6.2.a gives that S2 is

=
p−1∑
k=0

(−1)k+1

(
fff + p+ 1
p− 1− k

) k+1∑
m=0

(
fff + 1
r +m

)(
k + 1
m

)

=
p−1∑
k=−1

(−1)k+1

(
fff + p+ 1
p− 1− k

) k+1∑
m=0

(
fff + 1
r +m

)(
k + 1
m

)
−

(
fff + p+ 1

p

)(
fff + 1
r

)

=
p∑

m=0

[
p−1∑

k=m−1

(−1)k+1

(
fff + p+ 1
p− 1− k

)(
k + 1
m

)](
fff + 1
r +m

)
−

(
fff + p+ 1

p

)(
fff + 1
r

)
.

Apply Lemma 6.2.b to see that the expression inside the brackets is equal to

p−m∑̀
=0

(−1)p+`
(
fff+p+1

`

)(
p−`
m

)
=

p∑̀
=0

(−1)p+`
(
fff+p+1

`

)(
p−`
m

)
= (−1)m

(
fff+p−m

fff

)
.

It follows that

S2 =
p∑

m=0

(−1)m
(
fff + p−m

fff

)(
fff + 1
r +m

)
−

(
fff + p+ 1

p

)(
fff + 1
r

)
.
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Parts (a) and (b) of Lemma 6.2 give

S3 =
p∑
`=1

∑
m∈Z

(−1)`+1

(
fff + p

p− `
)(

`− 1
m

)(
fff + 1

r + 1 +m

)

=
p−1∑
m=0

p∑
`=1

(−1)`+1

(
fff + p

p− `
)(

`− 1
m

)(
fff + 1

r + 1 +m

)

=
p−1∑
m=0

(−1)m
(
fff + p− 1−m

fff

)(
fff + 1

r + 1 +m

)
.

It is now easy to see that S1 + S2 + S3 = 0, and the proof is complete. �

7. The proof of Theorems 4.5 and 4.8.

Let (F, f) be a complex ofR−modules. Suppose that each module Fr decomposes
as Fr = Lr ⊕Mr ⊕ N̂r and each map fr : Fr → Fr−1 decomposes as

(7.1) fr =

 0 0 σr
0 mr 0
0 0 0

 : Lr ⊕Mr ⊕ N̂r → Lr−1 ⊕Mr−1 ⊕ N̂r−1.

If every map σr : N̂r → Lr−1 is an isomorphism, then it is clear that (M,m) is a
complex which is quasi-isomorphic to (F, f). Unfortunately, when one has a real
example in mind for F, the process of splitting off the split exact summands of F
in order to obtain a minimal complex is more complicated. Indeed, even if one has
good candidates for L, M, and N̂, a significant amount of linear algebra is required
before each fr has the form of (7.1). The next result describes F after ⊕N̂r has
been split off, even if each fr only looks like ∗ ∗ isomorphism

∗ ∗ ∗
∗ ∗ ∗

 .
Proposition 7.2. Let (F, f) be a complex of free R−modules. Suppose that each
module Fr decomposes as Fr = L r⊕M r⊕ N̂ r. Let πA

r : Fr → Ar, for A equal to L,
M, and N̂, be the projection maps which are induced by this decomposition. Suppose
that the composition

(7.3) N̂ r+1
incl−−→ Fr+1

fr+1−−−→ Fr
πL

r−→ L r

is an isomorphism for all r. Let θr : L r −→ N̂ r+1 be the inverse of (7.3). De-
fine (N, n) to be the subcomplex of (F, f) with N r = N̂ r + fr+1(N̂ r+1) and nr
equal to the restriction of fr to N r. For each integer r, define ψr : Fr → M r by
ψr = πM

r ◦ (1− fr+1 ◦ θr ◦ πL
r ), ρr : M r → Fr by ρr = inclr −θr−1 ◦ πL

r−1 ◦ fr, and
mr : M r →M r−1 to be the composition

M r
inclr−−−→ Fr

fr−→ Fr−1
ψr−1−−−→M r−1.
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Then the following statements all hold.
(a) The complex (N, n) is split exact.
(b) The modules and maps {mr : M r → M r−1} form a complex, which we

denote (M,m).
(c) The maps {ψr : Fr →M r} form a map of complexes; furthermore,

0→ (N, n) incl−−→ (F, f)
ψ−→ (M,m)→ 0

is a short exact sequence of complexes.
(d) The maps {ρr : M r → Fr} form a map of complexes; furthermore, ψr ◦ ρr

is the identity map on Mr.

Proof. It is not difficult to adapt the proof of [16, Prop. 3.14] to the present situa-
tion. �

We apply Proposition 7.2, by way of Proposition 7.5, to prove Theorem 4.5.

Definition 7.4. A collection of R−module maps {br : Br → Br−1 | r ∈ Z} is called
replaceable if there is a finite, totally ordered, set T and there are submodules B(t)

r

of Br for all r ∈ Z and t ∈ T such that the following conditions hold.

(1) Each module Br is equal to the direct sum
⊕

B(t)
r , where the sum is taken

over all t ∈ T .
(2) Each br is a non-increasing map in the sense that, if x ∈ B(t)

r , then br(x) is
an element of

∑
B(t′)
r−1, where the sum is taken over all t′ ∈ T , with t′ ≤ t.

(3) If b(t)r : B(t)
r → B(t)

r−1 is defined to be the composition

B(t)
r

incl−−→ Br
br−→ Br−1

proj−−→ B(t)
r−1,

then the maps {b(t)r : B(t)
r → B(t)

r−1 | r ∈ Z} form a complex, which we denote
B(t),

(4) For each t ∈ T , there is an integer Nt such that either
(a) B(t)

i = 0 for all i with i < Nt and the augmented complex

. . .
b
(t)
Nt+2−−−−→ B(t)

Nt+1

b
(t)
Nt+1−−−−→ B(t)

Nt

aug(t)

−−−−→ HNt
(B(t))→ 0

is split exact; or else,
(b) B(t)

i = 0 for all i with Nt < i and the augmented complex

0→ HNt
(B(t))

aug(t)

−−−−→ B(t)
Nt

b
(t)
Nt−−→ B(t)

Nt−1

b
(t)
Nt−1−−−−→ . . .

is split exact.
If the maps {br} are replaceable, then we let (B, b[0]) represent the direct sum⊕

t∈T B(t) of the complexes B(t) from (3).

Note. In practice, the maps {br} of Definition 7.4 will not from a complex; the
relevant complex (B, b[0]) is obtained by considering only the parts of br which
preserve the T−grading. Proposition 7.5 shows how to replace the maps {br} with
the homology of the complex (B, b[0]).
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Proposition 7.5. Let (F, f) be a complex of R−modules. Suppose that each module
Fr of F decomposes as Fr = Ar ⊕ Br. Let br : Br → Br−1 be the composition

Br
incl−−→ Fr

fr−→ Fr−1
proj−−→ Br−1.

If the maps {br : Br → Br−1 | r ∈ Z} are replaceable in the sense of Definition
7.4 and B is the complex (B, b[0]) which is created in Definition 7.4, then there
exists a split exact subcomplex N of F such that N is a direct summand of F and
Fr/Nr ∼= Hr(B)⊕ Ar.

Proof. Adopt the notation of Definition 7.4. For each t ∈ T , let {h(t) : B(t)
r → B(t)

r+1}
be a homotopy on the augmented, split exact, complex of hypothesis (4). It follows
that

B(t)
r =


Im

(
h

(t)
r−1 ◦ b(t)r

)
⊕ Im b

(t)
r+1 if Nt 6= r,

Im
(
h

(t)
r−1 ◦ aug(t)

)
⊕ Im b

(t)
r+1 if Nt = r in case (a), and

Im
(
h

(t)
r−1 ◦ b(t)r

)
⊕ Im

(
aug(t)

)
if Nt = r in case (b).

For every r ∈ Z and t ∈ T , define L(t)
r = Im b

(t)
r+1, N̂(t)

r = Im
(
h

(t)
r−1 ◦ b(t)r

)
, and

M̂(t)
r =


Im

(
h

(t)
r−1 ◦ aug(t)

)
if Nt = r in case (a),

Im
(
aug(t)

)
if Nt = r in case (b), and

0 if Nt 6= r.

It is clear that B(t)
r = L(t)

r ⊕ M̂(t)
r ⊕ N̂(t)

r for all r and t. It is also clear that the
restriction of b(t)r+1 to N̂(t)

r+1 gives an isomorphism b
(t)
r+1 : N̂(t)

r+1 → L(t)
r for all r and t.

Define submodules

Lr =
⊕
t∈T

L(t)
r , M̂r =

⊕
t∈T

M̂(t)
r , Mr = M̂r ⊕ Ar, and N̂r =

⊕
t∈T

N̂(t)
r

of Fr . Observe that Fr = Lr ⊕Mr ⊕ N̂r and that the map of (7.3) sends y ∈ N̂(t)
r+1

to b(t)r+1(y)+y′ for some y′ ∈∑
L(t′)
r , with t′ < t. If the map of (7.3) is expressed as

a matrix, then it is a triangular matrix with isomorphisms on the main diagonal;
thus, it is an isomorphism. Apply Proposition 7.2 to see that N = N̂ + f(N̂) is a
split exact subcomplex of F with N a direct summand of F and

Fr/Nr ∼= Mr = M̂r ⊕ Ar ∼= Hr(B)⊕ Ar. �

Proof of Theorem 4.5. Submodules A and B of I(z) are introduced in Definition
7.8. It is not difficult to see that I(z) = A⊕ B. Let b : B→ B be the composition

(7.6) B
incl−−→ I(z)

d−→ I(z)
proj−−→ B.
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Lemma 7.9 shows that the map b : B→ B decomposes as the direct sum

(7.7) B′ ⊕ B′′

[
b′ 0
0 b′′

]
−−−−−−−→ B′ ⊕ B′′.

Thus, in light of Proposition 7.5, it suffices to show that
(a) the maps of b′ : B′ → B′ are replaceable with the homology of (B′, b′[0]) equal

to
⊕

V(p, q, r, z), where the sum is taken over S(z)
V

; and
(b) the maps of b′′ : B′′ → B′′ are replaceable with the homology of (B′′, b′′[0])

equal to
⊕

S(p, q, r, z), where the sum is taken over S(z)
S

.
We first prove (a). The finite, totally ordered set T which gives the grading of
Definition 7.4 for B′ is given in Definition 7.11, together with Proposition 7.14.c.
Condition (1) of Definition 7.4 is established in Proposition 7.12; condition (2) in
Lemma 7.13; condition (3) in Proposition 7.14; and condition (4.a) in Corollary
7.19. The homology of B′ is recorded in Proposition 7.20. Thus (a) is established.
Assertion (b) follows from the duality of Proposition 2.12. In other words, the maps
of b′′ : B′′ → B′′ are isomorphic to[

the maps of b′ : B′ → B′ from I(ggg−fff−z)
]∗

[−(ggg + fff − 1)].

It follows that the maps of b′′ are replaceable. (Condition (4.b) holds in place of
(4.a).) The observation of (4.4) completes the proof by showing that the homology
of (B′′, b′′[0]) is equal to

⊕
S(p, q, r, z), where the sum is taken over S(z)

S
. �

Definition 7.8. Adopt the notation of Definitions 2.3 and 4.2. Define submodules
A and B = B′ ⊕ B′′ of I(z) by

A =
⊕
S

(z)
U

U(p, q, r)⊕
⊕
S

(z)
T

T(p, q, r), B′ = L(z) ⊕
⊕
S

(z)
U

U(p, q, r), and

B′′ =
⊕
S

(z)
T

T(p, q, r)⊕W(z), where

S
(z)

U = {(p, q, r) ∈ T (z)
U
| q ≤ z−1} and S

(z)

T = {(p, q, r) ∈ T (z)
T
| q ≤ ggg−fff−z−1}.

Lemma 7.9. Let B = B′⊕B′′ be the submodule of I(z) which is given in Definition
7.8, and let b : B→ B be the map of (7.6). Then, the compositions

B′ incl−−→ B
b−→ B

proj−−→ B′′ and B′′ incl−−→ B
b−→ B

proj−−→ B′

are both zero.

Proof. The only interesting case involves the map T(p, q, r)→ B′ for (p, q, r) ∈ S(z)

T .
Definition 2.1 shows that the curcial part is

(7.10) αp ⊗ cq ⊗ λ(r) 7→ proj

 an element of
∑

0≤t≤q+r

U(q − t+ r,ggg − fff + p+ r − t, t)

 .

The hypothesis on (p, q, r) guarantees that q ≤ ggg − fff − z − 1 and this ensures that
the middle parameter in the image of (7.10) is at least z + 1; hence, (7.10) is the
zero map. �
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Definition 7.11. Let (T,<) be the partially ordered set whose elements are

T = {(p, q, r) ∈ Z3 | 0 ≤ p, 1 ≤ q, and 1 ≤ r}.
If (p, q, r) and (p′, q′, r′) are elements of T , then (p′, q′, r′) < (p, q, r) provided either{

q′ − r′ − p′ < q − r − p; or else,

q′ − r′ − p′ = q − r − p and p′ < p.

Consider any total order (also denoted by “<”) on T which extends the above
partial order. For (p, q, r) ∈ T , let

D[[p, q, r]] =
⊕

L(a, b,fff+a+b−p−q−r,ggg−z+1+p, z−1+q−a−b)⊕U(fff−r−p−q, z−1−p, p+q),

where the first sum is taken over {(a, b) | q ≤ b and a+ b ≤ q + p}.
Proposition 7.12. There exists a direct sum decomposition B′ =

⊕
D[[p, q, r]],

where the sum is taken over all (p, q, r) ∈ T .

Proof. If L(a, b, c, d, e) is a non-zero summand of B′, then L(a, b, c, d, e) is a sum-
mand D[[z− 1−ggg+ d, a+ b+ e+1− z,fff +ggg− c− d− e]]. If U(a, b, c) is a non-zero
summand of B′, then U(a, b, c) is a summand of D[[z−1− b, b+ c+1−z,fff−a− c]].
�
Lemma 7.13. The map b′ : B′ → B′, which is defined in (7.7), is non-increasing,
in the sense of Definition 7.4.

Proof. If x′ ∈ D[[p′, q′, r′]] and x ∈ D[[p, q, r]], with (p′, q′, r′) < (p, q, r) in T , then
we write x′ < x. The proof of Proposition 7.12 makes it possible for us to calculate
this order quickly. Indeed, if x ∈ L(a, b, c, d, e), then

“q − r − p for x” = a+ b+ c+ 2e+ 2− 2z − fff and “p for x” = d− ggg + z − 1;

and if x is a non-zero element of the summand U(a, b, c) of B′, then

“q − r − p for x” = a+ 2b+ 2c+ 2− 2z − fff and “p for x” = −b+ z − 1.

Define d[0] : D[[p, q, r]]→ D[[p, q, r]] to be the composition

D[[p, q, r]] incl−−→ I(z)
d−→ I(z)

proj−−→ D[[p, q, r]].

If x is the element Aa ⊗ αb ⊗ bc ⊗ cd ⊗ ν(e) of L(a, b, c, d, e), then Definition 2.3
yields d(x) = x′ + d[0](x), where x′ < x, and

d[0](x) =


χ(a+ e ≤ z − 2)

∑
|I|=1

ϕI ·Aa ⊗ fI(αb)⊗ bc ⊗ cd ⊗ ν(e)

+ (−1)bχ(ggg + 1 ≤ d+ e)
∑

|J|=1

ϕJ ·Aa ⊗ αb ⊗ fJ ∧ bc ⊗ cd ⊗ ν(e−1).

Also, if x = ba ⊗ δb ⊗ µ(c) ∈ U(a, b, c), then d(x) = x′ + d[0](x), where x′ < x, and

d[0](x) =
∑

b≤t≤z−1
|I|=c+b−t

(−1)t+a1⊗ ϕI ⊗ fI ∧ ba ⊗ δb(ωG)⊗ ν(t). �
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Proposition 7.14. Let (p, q, r) be an element of T , and N = 2− fff − z + p+ 2r.
Recall the complex B(p, q, r) = B(p, q, r)(F ∗) of Definition 5.6 and the map d[0]

from the proof of Lemma 7.13. Then
(a) the maps and modules (D[[p, q, r]], d[0]) form a complex,
(b) the complexes (D[[p, q, r]], d[0]) and B(p, q, r)[N ] ⊗∧ggg+p−z+1

G are isomor-
phic,

(c) the set {(p′, q′, r′) ∈ T | D[[p′, q′, r′]] 6= 0} is finite, and
(d) the module D[[p, q, r]]i is equal to{

0 if i ≤ fff + z − 3− p+ q − r,
L(p, q,fff − r,ggg − z + 1 + p, z − 1− p) if i = fff + z − 2− p+ q − r.

Proof. Let E denote B(p, q, r)[N ]⊗∧ggg+p−z+1
G. For integers a, b, c, and d, let

Φ: L(a, b, c, d, z − 1 + q − a− b) → B(a, b,fff − c) ⊗ ∧d G and(7.15)

Φ: U(a, b, p+ q) → ∧fff−a F ∗ ⊗ ∧ggg−b G(7.16)

be the isomorphisms which are given by

Φ(Aa ⊗ αb ⊗ bc ⊗ cd ⊗ ν(z−1+q−a−b)) = Aa ⊗ αb ⊗ bc[ωF∗ ]⊗ cd and

Φ(ba ⊗ δb ⊗ µ(p+q)) = (−1)fff+r+p+z+1ba[ωF∗ ]⊗ δb[ωG],

respectively. A straightforward calculation shows that the above maps induce an
isomorphism of graded modules

(7.17) Φ: D[[p, q, r]]→ E.

Indeed, the domain of (7.15) is in D[[p, q, r]] if and only if the range of (7.15) is
in E; furthermore, each module has position fff + z − 2− a+ q − r in its respective
complex. Also, the domain of (7.16) is in D[[p, q, r]] if and only if the range of
(7.16) is in E; furthermore, the position of each module is fff + z − 1 + q − r in
its respective complex. A short calculation now yields that (7.17) is a map of
complexes, thereby completing the proof of (b) and (a). Assertion (c) is clear
because B(p, q, r) ⊗ ∧ggg+p−z+1

G is the zero complex if z ≤ p, or fff + 1 ≤ q, or
fff + 1 ≤ r. Assertion (d) is also clear because B(p, q, r)i = 0, if i < q + r, and
B(p, q, r)q+r = B(p, q, r). �
Definition 7.18. Let (p, q, r) be in T , and let n = fff + z − 2 − p + q − r. Define
aug : D[[p, q, r]]n → V(p, q, r, z) to be the composition

D[[p, q, r]]n = L(p, q,fff − r,ggg − z + 1 + p, z − 1− p)
nat−−→ SpF

∗ ⊗∧q
F ∗ ⊗∧r

F ∗ ⊗∧ggg−z+1+p
G

quot−−−→ V(p, q, r, z).

See Definition 4.7 for the meaning of “quot” and “nat”.
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Corollary 7.19. If (p, q, r) ∈ T , then

Hi

(
D[[p, q, r]]

)
=

{
V(p, q, r, z) if i = fff + z − 2− p+ q − r,
0 if i 6= fff + z − 2− p+ q − r.

In particular, the augmented complex aug : D[[p, q, r]]→ V(p, q, r, z) is split exact.

Proof. Combine Proposition 7.14 and Theorems 5.7 and 5.11. �
Proposition 7.20. The homology of (B′, b′[0]) is isomorphic to

⊕
V(p, q, r, z),

where the sum is taken over the set S(z)
V

of Definition 4.2.

Proof. We know that (B′, b′[0]) is the direct sum of the complexes (D[[p, q, r]], d[0])
as (p, q, r) varies over the elements of T ; furthermore, D[[p, q, r]] is the zero complex
when (p, q, r) is in T but not S(z)

V
. �

Proof of Theorem 4.8. Theorem 4.5 was proved by applying Proposition 7.2;
thus, during the proof of Theorem 4.5, we decomposed I(z) as L⊕M⊕ N̂, where M
is isomorphic to M(z) and the composition

(7.21) N̂i+1
incl−−→ I(z)i+1

d−→ I(z)i
proj−−→ Li

is an isomorphism. Let θ be the inverse of (7.21) and let P be the composition

I(z)i
proj−−→ Li

θi−→ N̂i+1
incl−−→ I(z)i+1.

Notice that the maps σ and τ of Definition 4.7 are compositions

(7.22) M(z) ε−→M
incl−−→ I(z) and I(z)

proj−−→M
ε−1

−−→M(z),

respectively, for a fixed isomorphism ε from M(z) to M. Proposition 7.2 shows that
the differential on M(z) is the composition

M(z) ε−→M
incl−−→ I(z)

d−→ I(z)
1−d◦P−−−−→ I(z)

proj−−→M
ε−1

−−→M(z);

which, in light of (7.22), establishes (a). Assertions (b) and (c) may be read from
Proposition 7.2 in a similar manner.

We now prove (d). Take “≡” to mean congruent mod [I1(u) + I1(v) + I1(X)] I(z).
We prove that the image of d ◦ σ : M(z) → I(z) is congruent to zero. There are four
cases. First, we take x ∈ V(p, q, r, z) for some (p, q, r) in S

(z)
V

. It follows that σ(x)
is in L(p, q,fff − r, s, t), where p + t = z − 1 and s + t = ggg. Definition 2.3 shows
that d ◦ σ(x) ≡ 0. For the second case, we take x ∈ U(p, q, r) for some (p, q, r) in
S

(z)
U

. It is clear that d ◦ σ(x) is congruent to an element of
∑

L(∗, ∗, ∗, ∗, t), with
q ≤ t ≤ z − 1. The hypothesis z ≤ q ensures that d ◦ σ(x) ≡ 0. For the third case,
we take x ∈ T(p, q, r) for some (p, q, r) in S

(z)
T

. We see that d ◦ σ(x) is congruent
to an element of U(∗, ∗, t) with fff − p + t − q − r = 0. The hypothesis on (p, q, r)
yields that t ≤ −1; hence d ◦ σ(x) ≡ 0 in I(z). Finally, we take x ∈ S(p, q, r, z) for
some (p, q, r) in S

(z)
S

. The definition of S in 4.1 and 5.4 shows that σ(x) is killed
by the part of d which does not involve u, v, or X. �
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8. Exactness.

The ultimate proof of exactness occurs in Theorem 8.6. It is an induction on ggg
and is derived from the short exact sequence of complexes of Proposition 3.6. This
part of the argument closely follows the proof of [13, Thm. 7.36]. The base case,
ggg = fff − 1, requires a substantial calculation, which is the content of section 9. If
ggg ≤ fff − 2, then Example 8.16 shows that I(0) is not acyclic.

Theorem 8.1. Adopt Data 1.2. If ggg = fff − 1, −1 ≤ z, and the data (u,X, v) is
generic (in the sense of Convention 1.5.b), then I(z) is acyclic.

Proof. The proof is by induction on rankF . If fff = 1, then I(z) is not very inter-
esting, but it is acyclic; see Example 2.5. If fff = 2 and −1 ≤ z ≤ 1, then Examples
2.7 and 2.8 show that I(z) is acyclic. For 2 ≤ z, I(z) is homologically equivalent to
M(z), which has length three. Thus, according to the acyclicity lemma, it suffices to
show that I(z)P is acyclic for each prime ideal P of grade 2. The ideal I1(X) + I1(v)
has grade 4; thus, either I1(X) 6⊆ P (in which case, the main argument applies), or
I1(v) 6⊆ P , (in which case, Lemma 8.2 applies).

Henceforth, we take 3 ≤ fff ; and, we assume, by induction, that the result holds
for rankF = fff − 1. The complexes I(z) and M(z) are homologically equivalent.
Corollary 4.11 shows that the length of M(z) is at most

ggg + 2fff − 2 = 3(fff − 1) ≤ fff(fff − 1) = grade I1(X).

By the acyclicity lemma [7, Cor. 4.2], it suffices to show that I(z)x is acyclic for each
entry x of X. Fix such an x. There exists Rx−module isomorphisms ψ1 : Fx → Fx

and ψ2 : Gx → Gx such that ψ−1
2 ◦X ◦ψ1 is equal to

[
X′ 0

0 1

]
for some ggg− 1×fff − 1

matrix X ′. Let Ĩ denote I(z)[ψ∗
2(u), ψ−1

2 ◦ X ◦ ψ1, ψ
−1
1 (v)]. Observe that there

exists a subring R1 of Rx such that Rx is a polynomial ring with coefficient ring
equal to R1 and indeterminates given by the the entries of ψ∗

2(u), X ′, and ψ−1
1 (v)

(including the last entry from each of ψ∗
2(u) and ψ−1

1 (v)). Lemma 8.3 shows that
I(z)x is isomorphic to Ĩ. If the entries of ψ∗

2(u) are u′1, . . . , u
′
ggg and the entries of

ψ−1
1 (v) are v′1, . . . , v

′
fff , then let

u′ = [u′1, . . . , u′ggg−1 ] and v′ =

 v′1
...

v′fff−1

 .
Let I′ represent the complex I(z)[u′,X ′, v′]. The induction hypotheses ensures that
I′ is acyclic. Theorem 9.1 shows that Ĩ is homologically equivalent to the tensor
product

I′ ⊗
(

0→ Rx

[−v′fff
u′ggg

]
−−−−−→ Rx ⊕Rx

[u′ggg v′fff ]−−−−−−−→ Rx

)
.

The indeterminates u′ggg, v
′
fff form a regular sequence on H0(I′); hence, Ĩ is acyclic.

�
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Lemma 8.2. Adopt Data 1.2 with fff = 2, ggg = 1, and 2 ≤ z. If I1(X∗(u))+I1(X(v))
is an ideal of grade 2 and I1(v) = R, then I(z) is exact.

Proof. We use the notation of Conventions 1.4 and 1.5.a. No harm is done if we
assume that v = f [2]. Under this assumption, v(ωF∗) = ϕ[1]. First we fix z, with
3 ≤ z. Recall the index set T (z)

L
from Definition 2.3. Observe that (p, 1, r, s, t) is in

T
(z)
L

if and only if (p, r, s, t) is taken from the following list:

(z − 3, 0, 0, 2), (z − 2, 0, 1, 1), (z − 2, 1, 0, 1), (z − 1, 1, 1, 0), (z − 2, 0, 0, 1), and (z − 1, 0, 1, 0).

For each such (p, r, s, t), let

C[p, r, s, t] = L(p− 1, 2, r, s, t)⊕ L(p, 2, r, s, t)⊕ L(p, 1, r, s, t).

Observe that I(z) =
⊕

C[p, r, s, t], where the sum is taken over the above list. Filter
I(z) by taking (p′, q′, r′, s′, t′) < (p, q, r, s, t), whenever

t′ < t; or else, t′ = t and r′ + s′ < r + s.

Observe that d is a non-increasing map. Let d[0] be the component of d which is
homogeneous with respect to the above filtration. We see that d[0] carries each
C[p, r, s, t] to itself and that the map

L(p− 1, 2, r, s, t)⊕ L(p, 2, r, s, t) d[0]−−→ L(p, 1, r, s, t)

is one-to-one and has cokernel ϕ[2]p ⊗ ϕ[2] ⊗∧r
F ⊗∧s

G ⊗ ν(t). Let N̂ represent⊕
L(p, 2, r, s, t), where the sum is taken over all (p, r, s, t) such that (p, 2, r, s, t)

is in T
(z)
L

, and let N be the subcomplex N̂ + d(N̂) of I(z). It is easy to see that
d(N̂) ⊆ im d[0] + N̂; thus, N is equal to N̂ + im d[0]; and therefore, N is split exact.
Let represent mod N. We see that I

(z)
looks like

0 → L(z − 3, 1, 0, 0, 2)
d3−→

L(z − 2, 1, 1, 0, 1)
⊕

L(z − 2, 1, 0, 1, 1)

d2−→
L(z − 2, 1, 0, 0, 1)

⊕
L(z − 1, 1, 1, 1, 0)

d1−→ L(z − 1, 1, 0, 1, 0).

If we take bases: ϕ[2]p ⊗ ϕ[2] ⊗ 1⊗ 1⊗ ν(t) for L(p, 1, 0, s, t), and

ϕ[2]p ⊗ ϕ[2] ⊗ f [1] ⊗ 1⊗ ν(t), ϕ[2]p ⊗ ϕ[2] ⊗ f [2] ⊗ 1⊗ ν(t)

for L(p, 1, 1, s, t), then

d3 =

 0
−1
x2

 , d2 =

−u1x1 −u1x2 −u1

−x2 0 0
0 −x2 −1

 , and d1 = [x2 −u1x1 −u1x2 ] .

It is clear that I
(z)

is acyclic.
The only modification which is required when z = 2 is that I

(z)
now has U(0, 1, 1)

in place of L(z − 3, 1, 0, 0, 2). We take 1⊗ ωG∗ ⊗ µ(1) to be the basis for U(0, 1, 1).
The matrix for d3 remains unchanged. �
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Lemma 8.3. Adopt Data 1.2. If ψ : F → F is an isomorphism, then I(z)[u,X, v]
is isomorphic to I(z)[u,X ◦ ψ,ψ−1(v)]. If ψ : G → G is an isomorphism, then
I(z)[u,X, v] is isomorphic to I(z)[ψ∗(u), ψ−1 ◦X, v].
Proof. In the first case, define Ψ: I(z)[u,X, v]→ I(z)[u,X ◦ ψ,ψ−1(v)] by

Ψ(Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t)) = (Spψ∗)(Ap) ⊗ (
∧q ψ∗)(αq) ⊗ (

∧r ψ−1)(br) ⊗ cs ⊗ ν(t),

Ψ(bp ⊗ δq ⊗ µ(r)) = (
∧p ψ−1)bp ⊗ δq ⊗ µ(r),

Ψ(αp ⊗ cq ⊗ λ(r)) = (
∧p ψ∗)αp ⊗ cq ⊗ λ(r), and

Ψ(Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t) = (Dpψ−1)(Bp) ⊗ (
∧q ψ−1)(bq) ⊗ (

∧r ψ∗)(αr) ⊗ δs ⊗ ξ(t).

In the second case, define Ψ: I(z)[u,X, v]→ I(z)[ψ∗(u), ψ−1 ◦X, v] by

Ψ(Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t)) = Ap ⊗ αq ⊗ br ⊗ (
∧s ψ−1)(cs) ⊗ ν(t),

Ψ(bp ⊗ δq ⊗ µ(r)) = bp ⊗ (
∧q ψ∗)(δq) ⊗ µ(r),

Ψ(αp ⊗ cq ⊗ λ(r)) = αp ⊗ (
∧q ψ−1)(cq) ⊗ λ(r), and

Ψ(Bp ⊗ bq ⊗ αr ⊗ δs ⊗ ξ(t)) = Bp ⊗ bq ⊗ αr ⊗ (
∧s ψ∗)(δs) ⊗ ξ(t).

Each map Ψ is an isomorphism of complexes. �
We use the following well-known result many times.

Observation 8.4. Let I and J = (r1, . . . , rn) be ideals in the commutative noether-
ian ring R, and f be the element

∑n
j=1 rjxj of the polynomial ring R[x1, . . . , xn].

If m ≤ grade I and m+ 1 ≤ grade I + J, then m+ 1 ≤ grade I + (f).

Proof. We may mod out by a regular sequence of length m in I; and therefore,
it suffices to treat the case where m = 0. Suppose that 1 ≤ grade I + J , but
0 = grade I + (f). Then there is a non-zero polynomial g in R[x1, . . . , xn] such
that gI = 0 and gf = 0. Use the argument of [18, (6.13), p. 17] to find a non-zero
element of R which annihilates I + J , and thereby reach a contradiction. �

We now collect the grade estimates which are used in the proof of Theorem 8.6.
Most of these estimates may be found elsewhere in the literature.

Lemma 8.5. Adopt 1.2 with data which is generic in the sense of Convention 1.5.b.
Assume that 0 ≤ fff − 1 ≤ ggg. Let K be the R−ideal I1(uX) + Ifff (X) + I1(Xv), and
X ′ be the submatrix of X consisting of columns 2 to fff . The following statements
hold:

(a) fff + ggg − 1 ≤ gradeK;
(b) fff + ggg ≤ gradeK + I1(v);
(c) fff + ggg ≤ gradeK + (v1) + Ifff−1(X ′); and
(d) if 1 ≤ t ≤ fff − 1, then 2ggg + 1− t ≤ grade I1(uX) + It(X).

Proof. One can prove (a) by mimicking the proof of [5, Prop. 4.2.a]. (An alternate
proof is given in [4, Theorem 1.2], provided fff ≤ ggg.) Assertion (b) is clear because
I1(uX) + Ifff (X) has grade ggg. We now prove (c). Let v′ be v with row 1 deleted.
Assertion (a) guarantees that ggg + fff − 2 ≤ grade I1(uX ′) + Ifff−1(X ′) + I1(X ′v′).
Also, ggg + fff − 1 ≤ 2ggg ≤ grade I1(u) + Ifff−1(X ′) + I1(X ′v′); hence, Observation 8.4
yields that ggg+fff−1 ≤ grade I1(uX)+Ifff−1(X ′)+I1(X ′v′). (The entries of the first
column of X play the role of the new indetermiates.) The proof of (c) is complete
because v1 is yet another new indeterminate. The argument of [13, Lemma 7.33.b]
establishes (d). �
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Theorem 8.6. Adopt Data 1.2 with fff − 1 ≤ ggg and −1 ≤ z. If the data (u,X, v)
is generic (in the sense of Convention 1.5.b), then I(z) is acyclic and H0(I(z)) is
isomorphic to an ideal of H0(I(0)).

Proof. Take ũ, X̃, and u as in Proposition 3.6. Let I(z), K, b3, p2, N , and N be
the complexes, ideals, and modules which are created in Definitions 2.3 and 3.1 and
Observation 3.3 using the data (u,X, v). Use the data (ũ, X̃, v) to create Ĩ(z), K̃,
and b̃3; and use (u,X, v) to create I

(z)
and K. The proof proceeds by induction on

ggg. Theorem 8.1 takes care of the acyclicity of I(z) when fff − 1 = ggg. We prove that
H0(I(z)) is isomorphic to an ideal of R/K at the end of the proof. In the mean
time, we assume that fff ≤ ggg. Let w =

∑fff
i=1 xggg ivi. Observe that the composition

G∗ X∗
−−→ F ∗ −→ b3

of Observation 3.3 carries γ[ggg] to w.
The induction hypothesis guarantees that Ĩ(z) is acyclic for all z with −1 ≤ z.

Therefore, the long exact sequence of Proposition 3.6 yields Hj(I
(z)

) = 0 for all z
and j with 2 ≤ j and 0 ≤ z. The following observations are necessary before we
consider H1(I

(z)
).

(8.7) The R−ideal K̃ is perfect of grade fff + ggg − 2.
(8.8) The R/K̃−ideal b̃3 has positive grade.
(8.9) The element w is regular on R/K̃.

The induction hypothesis gives that Ĩ(0) is acyclic; hence pdR/K̃ ≤ fff + ggg − 2. On
the other hand, Lemma 8.5.a gives fff+ggg−2 ≤ grade K̃. When we combine these two
inequalities we obtain pdR/K̃ ≤ fff + ggg − 2 ≤ grade K̃; and thereby establish (8.7).
Assertion (8.8) follows from (8.7) because of part (b) of Lemma 8.5. Observation
8.4 ensures (8.9).

We saw in Observation 3.3 that there is an R/K̃−module surjection

(8.10) H0(̃I(z)) = Sz(Ñ) � b̃z3

for all z with 0 ≤ z. Since b̃3 has positive grade, and H0(̃I(z)) is isomorphic to an
ideal of R/K̃ (by induction), we conclude that (8.10) is an isomorphism. When
the isomorphism of (8.10) is applied to the exact sequence of Proposition 3.6, we
obtain the exact sequence

0 = H1(̃I(z))→ H1(I
(z)

)→ b̃z−1
3

w−−→ b̃z3;

thus, H1(I
(z)

) = 0 for all z with 1 ≤ z.
The ideal K also contains w; consequently, the same argument as above yields

that the surjection H0(̃I(−1)) � K/K̃ of Proposition 3.6 is also an isomorphism. It
follows that H1(I

(0)
) = 0; and therefore, I

(z)
is acyclic for all 0 ≤ z. The complex

I
(ggg−fff+1)

has length ggg+fff−1 (see Corollary 4.11), and it resolves a prefectR−module
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of projective dimension ggg + fff − 1; thus, I
(−1) ∼=

(
I
(ggg−fff+1)

)∗
[−(ggg + fff − 1)] is also

acyclic.
View R as a graded ring where each element of R0 has degree zero and every

entry of X, u, and v has degree one. The short exact sequence

0→ R
uggg−→ R→ R/(uggg)→ 0

induces a short exact sequence of graded complexes

0→ I(z)
uggg−→ I(z) → I

(z) → 0.

The corresponding long exact sequence of homology yields that multiplication by
uggg is an automorphism of Hj(I(z)) for all i and j with 1 ≤ j and −1 ≤ z. Since the
homology of I(z) is finitely generated and graded, and uggg has positive degree, we
conclude that I(z) is acyclic for −1 ≤ z.

It remains to show that H0(I(z)) is isomorphic to an ideal of R/K whenever
fff − 1 ≤ ggg. Fix 1 ≤ z. It is easy to see that the R/K−module H0(I(z)) has rank
one. Indeed, if P is an associated prime of R/K, then (8.8) gives I1(v) * P ;
hence, Example 8.14 shows that H0(I(z))P = (R/K)P . Let j be an integer with
ggg + fff ≤ j ≤ 2fff + ggg − 2, and let Fj be the radical of the R−ideal generated by

{x ∈ R | pdRx
H0(I(z))x < j}.

A quick look at Example 8.15 shows that if ∆ is a t× t minor of X, then

pdH0(I(z))∆ ≤ 2fff + ggg − 2− t.
It follows that I1(v) + I1(uX) + I2fff+ggg−1−j(X) ⊆ Fj . Apply Lemma 8.5.d to see
that

(8.11) j + 1 ≤ j + 1 + (ggg + 1− fff) ≤ gradeFj .

It follows that H0(I(z)) is a torsion-free R/K−module. We conclude that the sur-
jection

(8.12) H0(I(z)) � bz3

is an isomorphism. Finally, we consider the case z = −1. We have seen that
H0(I(ggg−fff+1)) is a perfect R−module of projective dimension ggg + fff − 1, and that

(8.13) H0(I(−1)) = Extggg+fff−1
R (H0(I(ggg−fff+1)), R).

It follows that H0(I(−1)) is a torsion-free R/K−module. If P ∈ Ass(R/K), then
Example 8.14 shows that H0(I(ggg−fff+1))P is obtained from RP by modding out a
regular sequence of length ggg + fff − 1; thus, (8.13) yields that H0(I(−1)) has rank
one. Recall, from Observation 3.3, that there is an R/K−module surjection

H0(I(−1)) � p2.

The R/K−ideal on the right side has positive grade. It follows that this surjection
is an isomorphism. �
Remarks. (a) If 2 ≤ fff ≤ ggg, then the ideal a2 of Theorem 0.3 has positive grade;
hence, the argument surrounding (8.12) also yields H0(I(z)) ∼= az2.
(b) The inequality of (8.11) is the best possible. Indeed, Example 2.8 shows that if
(ggg,fff) = (1, 2), then gradeF3 = 4.
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Example 8.14. Assume fff − 1 ≤ ggg. If R is local and Ifff−1(X) = R or I1(v) = R,
then H0(I(z)) = R/K for 0 ≤ z. Indeed, in the first case, one may choose the bases
for F and G so that the matrix of X is

Ifff−1 0
xffffff

0
...
xgggfff

 .
It readily follows thatK = (u1, . . . , ufff−1, xffffff , . . . , xgggfff , v1, . . . , vfff−1) andN = R/K.
In the second case, one may choose the bases for F and G so that the matrix of
v is [ 1 0 ... 0 ]t. It readily follows that K = (x11, . . . , xggg1, (uX)2, . . . (uX)fff ), and
N = R/K.

Example 8.15. Suppose that T1 and T2 are indeterminates over R. Let

u = [u T1 ] , X =
[
X 0

0 1

]
, v =

[ v

T2

]
, and N = N(u,X,v).

It is clear that the R[T ]−ideal K(u,X,v) is equal to K + (T1, T2). Furthermore, if
the R−module N is viewed as an R[T1, T2]−module by way of the ring homomor-
phism

R[T1, T2]→ R[T1, T2]/(T1, T2) = R,

then N andN are isomorphic as R[T1, T2]−modules. Consequently, if the R-module
Sz(N) has finite projective dimension, then pdR[T1,T2] Sz(N) = pdR Sz(N) + 2.

Example 8.16. Adopt Data 1.2 with generic data. If ggg ≤ fff−2, then H1(I(0)) 6= 0.
Indeed, z = [(

∧ggg
X∗)(ωG∗)](bggg+1) ⊗ 1 ⊗ µ(0) ∈ U(1, 0, 0) is a cycle in I(0). On the

other hand, the only summands of I(0) which might map to this cycle have the form
T(p, q, r), with (p, q, r) in the set T (0)

T
from Definition 2.3; in particular, fff − ggg ≤ r.

Furthermore, d of T(p, q, r) is contained in T(0)⊕⊕
t U(q+r− t,ggg−fff +p− t+r, t).

Thus, if T(p, q, r) maps to U(1, 0, 0), then q + r = 1. It follows that z represents a
non-zero element of homology whenever ggg ≤ fff − 2.

9. The case ggg = fff − 1.

Theorem 9.1 is the main calculation in the proof of Theorem 8.1.

Theorem 9.1. Let F and G be free modules of rank fff and ggg, respectively, over the
commutative noetherian ring R. Let u ∈ G∗, v ∈ F, X : F → G be an R−module
homomorphism, and (III(z),d) be the complex which is constructed using the data
(u,X,v). Suppose that the above data decomposes as F = F ⊕Rf , F∗ = F ∗ ⊕Rφφφ,
G = G⊕Rg, G∗ = G∗ ⊕Rγγγ,

X =
[
X 0
0 1

]
, u = [u uggg ] , and v =

[
v
vfff

]
,

where F and G are free R−modules of rank fff −1 and ggg−1, respectively, φφφ(F ) = 0,
φφφ(f) = 1, f(F ∗) = 0, γγγ(G) = 0, γγγ(g) = 1, and g(G∗) = 0. Let (I(z), d) be the
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complex which is constructed using the data (u,X, v), and let (Y, y), be the total
complex which is associated to the double complex

0→ I(z)

[−vfff
uggg

]
−−−−−→ I(z) ⊕ I(z)

[uggg vfff ]−−−−−−−→ I(z) → 0.

If −1 ≤ z and fff − 1 = ggg, then the complexes (III(z),d) and (Y, y) are homologically
equivalent.

Remark. The result remains true if the hypothesis fff−1 = ggg is replaced by fff−1 ≤ ggg;
however the proof becomes more complicated.

Proof. The hypothesis fff −1 = ggg affords two immediate simplifications. First of all,
every W−type summand of I(z) and III(z) is zero. Indeed, if (p, q, r, s, t) is in the set
T

(z)
W

of Definition 2.3, then 2fff + z + 1 ≤ s+ fff ; hence, ggg < s. In a similar manner,
the set T (z)

T
becomes {(p, q, r) | p+q+r ≤ fff−1 and 1+z ≤ r}. The complex I(z)

is formed using components L(p, q, r, s, t), U(p, q, r), and T(p, q, r), and constant

σz(p, q, r, t) = (−1)r+z+q+qfffθqθp
(
fff−2−p−q−r+t

r−1−z
)
.

The complex III(z) is formed using components LLL(p, q, r, s, t), UUU(p, q, r), and TTT(p, q, r),
and constant

σσσz(p, q, r, t) = (−1)r+z+qfffθqθp
(
fff−1−p−q−r+t

r−1−z
)
.

For integers a, b, c, and d with 0 ≤ a, and 0 ≤ b, c, d ≤ 1, let

LLL(p, q, r, s, t; a, b, c, d) = [SpF ∗ ·φφφa] ⊗ [∧q F ∗ ∧φφφb
] ⊗ [

∧r F ∧ fc] ⊗ [∧s G ∧ gd
] ⊗ ν(t),

UUU(p, q, r; b, c) =
[∧p F ∧ fb

] ⊗ [
∧q G∗ ∧ γγγc] ⊗ µ(r), and

TTT(p, q, r; b, c) =
[∧p F ∗ ∧φφφb

] ⊗ [
∧q G ∧ gc] ⊗ λ(r).

Let UUU(b, c) be the direct sum of all submodules of III(z) of the form UUU(p, q, r; b, c).
The symbols LLL(a, b, c, d) and TTT(b, c) are given meaning in the analogous manner.
Define submodules A, C, E, and J of III(z) by

A =



⊕
{(p,q,r,s,t)|p+t≤z−1, z≤p+q+t, 2fff−3=r+s+t} LLL(p, q, r, s, t; 0, 0, 0, 1)

⊕⊕
{(p,q,r,s,t)|p+t≤z−1, z−1≤p+q+t, 2fff−3=r+s+t} LLL(p, q, r, s, t; 0, 1, 0, 1)

⊕⊕
{(p,q,r)|q≤z−1, z≤q+r, fff−1=p+r} UUU(p, q, r; 0, 0)

⊕⊕
{(p,q,r)|q≤z−1, z−1≤q+r, fff−1=p+r} UUU(p, q, r; 0, 1).

C =



⊕
SL(not) LLL(p, q, r, s, t; a, b, c, d)

⊕⊕
{(p,q,r,s,t)|r+s+t≤2fff−4, fff−2≤s+t, p+q+t=z−1} LLL(p, q, r, s, t; 0, 1, 0, 1)

⊕⊕
{(p,q,r,s,t)|r+s+t≤2fff−4, fff−2≤s+t, p+q+t=z−1} LLL(p, q, r, s, t; 0, 1, 1, 1)

⊕⊕
{(p,q,r)|0≤r, p+r≤fff−2, q+r=z−1}[UUU(p, q, r; 0, 1) ⊕UUU(p, q, r; 1, 1)], where

SL(not) =

(p, q, r, s, t; a, b, c, d)

∣∣∣∣∣∣
p+ t+ a ≤ z − 1, fff − 1 ≤ s+ t+ d,

z ≤ p+ q + t+ a+ b,
r + s+ t+ c+ d ≤ 2fff − 2, and (a, d) 6= (0, 1)

 ,
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E =
⊕

{(p,q)|p+q=fff+z−1}
UUU(p, q, 0; 0, 0) ⊕

⊕
{(p,q)|p+q=fff−2−z}

TTT(p, q, z + 1; 0, 0), and

J =



⊕
SL

LLL(p, q, r, s, t; 0, 0, 0, 1)⊕⊕
SL

LLL(p, q, r, s, t; 0, 0, 1, 1)⊕⊕
SL

LLL(p, q, r, s, t; 0, 1, 0, 1)

⊕⊕
SL

LLL(p, q, r, s, t; 0, 1, 1, 1)⊕ ⊕
SU(0)

UUU(p, q, r; 0, 0) ⊕ ⊕
SU(1)

UUU(p, q, r; 0, 1)

⊕ ⊕
SU(1)

UUU(p, q, r; 1, 0) ⊕ ⊕
SU(2)

UUU(p, q, r; 1, 1) ⊕ ⊕
ST(0)

TTT(p, q, r; 0, 0)

⊕ ⊕
ST(1)

TTT(p, q, r; 0, 1) ⊕ ⊕
ST(1)

TTT(p, q, r; 1, 0) ⊕ ⊕
ST(2)

TTT(p, q, r; 1, 1),

where

SL =

{
(p, q, r, s, t)

∣∣∣∣ p+ t ≤ z − 1, fff − 2 ≤ s+ t,
z ≤ p+ q + t, and r + s+ t ≤ 2fff − 4

}
,

SU(0) =



{
(p, q, 0)

∣∣ p+ q ≤ fff − 2 + z and z ≤ q
}

∪
{

(p, q, r)

∣∣∣∣ 1 ≤ r, p+ q + r ≤ fff − 1 + z,
p+ r ≤ fff − 2, and z ≤ q + r

}
∪ {

(p, q, r)
∣∣ 1 ≤ r, p+ r = fff − 1, and z = q

}
,

SU(1) =

{
(p, q, r)

∣∣∣∣ 0 ≤ r, p+ q + r ≤ fff − 2 + z,
p+ r ≤ fff − 2, and z ≤ q + r

}
,

SU(2) =

{
(p, q, r)

∣∣∣∣ 0 ≤ r, p+ q + r ≤ fff − 3 + z,
p+ r ≤ fff − 2, and z ≤ q + r

}
,

ST(0) = {(p, q, z + 1) | p+ q ≤ fff − 3 − z} ∪ {(p, q, r) | p+ q + r ≤ fff − 1, z + 2 ≤ r, } ,
ST(1) = {(p, q, r) | p+ q + r ≤ fff − 2, z + 1 ≤ r, } , and

ST(2) = {(p, q, r) | p+ q + r ≤ fff − 3, z + 1 ≤ r} .

A straightforward, but long, calculation shows that, as a module, III(z) is equal to
the direct sum A⊕C⊕E⊕ J. A short calculation yields that C is a subcomplex of
III(z). The complex (C,d) is split exact, by Proposition 9.8; and therefore,

(III(z),d)
projA⊕E⊕J

−−−−−−→ (A⊕ E⊕ J,projA⊕E⊕J ◦d)

is a quasi-isomorphism of complexes. Define

M1 :
⊕

p+r=fff−1

UUU(p, z, r; 0, 0) ⊆ E⊕ J→ A, by

M1(bp ⊗ δz ⊗ µ(fff−1−p)) = − ∑
fff−p≤t

|I|=fff−1−t

fI ⊗
[
(
∧p−fff+1+t

X)(ϕI [bp])
]
(δz)⊗ µ(t).

(Define M1 on all of III(z) by taking M1 to be zero on all other summands LLL(∗; ∗),
UUU(∗; ∗), and TTT(∗; ∗).) Lemma 9.4 shows that (A,projA ◦d) is a complex and that

(A⊕ E⊕ J,projA⊕E⊕J ◦d)
projA +M1−−−−−−→ (A,projA ◦d)
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is a map of complexes. The complex (A,projA ◦d) is split exact, by Proposition
9.8; and therefore, Lemma 9.3 yields that

(E⊕ J,projE⊕J ◦d ◦ (1−M1))
1−M1−−−−→ (A⊕ E⊕ J,projA⊕E⊕J ◦d)

is a quasi-isomorphism of complexes. Define

M2 :
⊕

p+q=fff+z−1

UUU(p, q, 0; 0, 0) ⊆ E→ J

by M2

(
bp ⊗ δq ⊗ µ(0)

)
is equal to

θfff−2−qθfff−1−p(−1)1+z+qfff (v ∧ bp)(ωF∗)⊗ δq(ωG)⊗ λ(z+1)

+ χ(1 ≤ p)θfff−2−qθfff−1−p(−1)z+fff+q+qfff bp(ωF∗)⊗ (u ∧ δq)(ωG)⊗ λ(z+1)

+ χ(p ≤ fff − 2)
∑
0≤t

|I|=p−1−t

(−1)q+tfI ∧ f ⊗
[
(
∧1+t

X)[ϕI(bp)]
]
(δq) ∧ γγγ ⊗ µ(t)

− χ(p ≤ fff − 2)
∑
0<t

|I|=p−t

fI ⊗
[
(
∧t

X)(ϕI(bp))
]
(δq)⊗ µ(t).

(Extend the domain of M2 to be all of III(z).) Let dE : E → E represent the map
projE ◦d ◦ (1−M1) ◦ (1−M2). Apply Lemma 9.13 to see that (E,dE) is a complex
and that

(E,dE) 1−M2−−−−→ (E⊕ J,projE⊕J ◦d ◦ (1−M1))

is a map of complexes. It is easy to see that the complex (E,dE) is split exact.
Indeed, if x = αp ⊗ cq ⊗ λ(z+1) ∈ TTT(p, q, z + 1; 0, 0) ⊆ E, then

dE(x) = (−1)qσσσz(p, q, z+1, 0)αp(ωF )⊗cq(ωG∗)⊗µ(0) ∈ UUU(fff−1−p,fff−2−q, 0; 0, 0).

Thus,
dE :

⊕
p+q=fff−2−z

TTT(p, q, z + 1; 0, 0)→
⊕

p+q=fff+z−1

UUU(p, q, 0; 0, 0)

is an isomorphism and (E,dE) is a split exact complex. Let dJ : J→ J be the map
(projJ +M2) ◦ d ◦ (1−M1). Lemma 9.3 yields that

(9.2) (E⊕ J,projE⊕J ◦d ◦ (1−M1))
projJ +M2−−−−−−→ (J,dJ)

is a quasi-isomorphism of complexes. In Lemma 9.16 we exhibit a map of complexes

Ψ̂ : (Y, y)→ (E⊕ J,projE⊕J ◦d ◦ (1−M1)).

Let Ψ: (Y, y)→ (J,dJ) be the composition

Y
Ψ̂−→ E⊕ J

projJ +M2−−−−−−→ J.

We prove in Lemma 9.17 that Ψ is an isomorphism of complexes. �
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Lemma 9.3. Let (F, f) be a complex such that, as a module, F is equal to the
direct sum A⊕ E.
(a) If (A, a) is a complex and M : E → A is a module homomorphism such that
projA +M : (F, f) −→ (A, a) is a map of complexes, then

(E,projE ◦f ◦ (1−M)) 1−M−−−→ (F, f)

is a map of complexes.
(b) If (E, e) is a complex and M : E → A is a module homomorphism such that
1−M : (E, e) −→ (F, f) is a map of complexes, then

(F, f)
projA +M−−−−−−→ (A, (projA +M) ◦ f)

is a map of complexes.

Proof. (a) Observe that ker
(

projA +M : F→ A
)

= im
(
1−M : E→ F

)
. If x ∈ E,

then f ◦ (1−M)(x) is in the kernel of projA +M ; and therefore, f ◦ (1−M)(x) is
equal to (1−M)(y) for some y ∈ E. It follows that projE ◦f ◦ (1−M)(x) = y; thus,
(1−M) ◦ projE ◦f ◦ (1−M)(x) = f ◦ (1−M)(x), as desired.
(b) It is clear that (projA +M) ◦ f(x) = (projA +M) ◦ f ◦ (projA +M)(x), if x ∈ A.
We must establish the above equation for x ∈ E. In other words, we must show that
(projA +M) ◦ f ◦ (1−M) kills E. However, the hypothesis ensures that f ◦ (1−M)
is equal to (1−M) ◦ e, and it is clear that (projA +M) ◦ (1−M) kills E. �

Lemma 9.4. Adopt the notation of Theorem 9.1. Then (A,projA ◦d) is a complex
and

(A⊕ E⊕ J,projA⊕E⊕J ◦d)
projA +M1−−−−−−→ (A,projA ◦d)

is a map of complexes.

Proof. It suffices to show that the diagram

(9.5)

A⊕ E⊕ J
projA⊕E⊕J ◦d−−−−−−−−→ A⊕ E⊕ J

projA +M1

y projA +M1

y
A

projA ◦d−−−−−→ A

commutes. If x ∈ A, then both paths around (9.5) send x to projA ◦d(x). If
x = bp ⊗ δq ⊗ µ(r) ∈ UUU(p, q, r; 0, 0) ⊆ E, then both paths around (9.5) send x to

χ(q = z)
∑

{(t,s)|t≤z−1, q≤s+t}
|K|=r+q−s−t

|J|=s

(−1)ps+t+p+s1⊗ (
∧s X∗)(γJ )∧ϕK ⊗fK ∧bp ⊗gJ ∧δq(ωG)∧g⊗ν(t).

(The counter-clockwise path involves the argument used to show “T3 − T6 = 0” in
the calculation related to (9.6).) If x = αp ⊗ cq ⊗ λ(r) ∈ TTT(p, q, r; 0, 0) ⊆ E, then
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the counter-clockwise path around (9.5) sends x to 0 and the clockwise path sends
x to
χ(p = 0)

∑
1≤t

|I|=q−t+r

(−1)qσσσz(p, q, r, t)fI ⊗
[
(
∧fff−p+t−q−r−1X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗ ) ⊗ µ(t)

+ χ(p = 0)M1

(
(−1)qσσσz(p, q, r, 0)αp(ωF ) ⊗ cq(ωG∗) ⊗ µ(0)

)
,

which is also equal to zero.
The counter-clockwise path around (9.5) kills all of J, except

(9.6) UUU(p, q, r; 0, 0),with 1 ≤ r, p+ r = fff − 1, and z = q.

The clockwise path kills all of J, except (9.6), and, possibly,

(9.7) TTT(p, q, r; 0, 0),with p+ q + r = fff − 1 and z + 2 ≤ r.

Fix x = bp ⊗ δq ⊗ µ(r) as described in (9.6). The counter-clockwise path around
(9.5) sends x to T1 + T2 + T3, where

T1 =
∑

fff−p≤t
|I|=fff−1−t

(−1)fff−tfI ⊗ [X(v)]
([

(
∧p−fff+1+t X)(ϕI [bp])

]
(δq)

)
⊗ µ(t),

T2 = − ∑
fff−p≤t

|I|=fff−1−t

v ∧ fI ⊗
[
(
∧p−fff+1+t X)(ϕI [bp])

]
(δq) ⊗ µ(t−1), and

T3 =
∑

fff−p≤t
|I|=fff−1−t

∑
{(t′,s)|t′≤z−1, z+fff−1−t−p≤s+t′}

|K|=z+fff−1−p−s−t′
|J|=s

(−1)(fff−t)s+t′+fff−t1 ⊗ (
∧s X∗)(γJ ) ∧ ϕK

⊗fK ∧ fI ⊗ gJ ∧
([

(
∧p−fff+1+t X)(ϕI [bp])

]
(δq)

)
(ωG) ∧ g ⊗ ν(t′).

The clockwise path sends x to T4 + T5 + T6, where

T4 = (−1)pbp ⊗ [X(v)](δq) ⊗ µ(r),

T5 =
∑

fff−p−1≤t
|I|=fff−1−t

(−1)1fI ⊗
[
(
∧p+2−fff+t)X)(ϕI [v ∧ bp])

]
(δq) ⊗ µ(t), and

T6 =
∑

{(t,s)|t≤z−1, q≤s+t}
|K|=r+q−s−t

|J|=s

(−1)ps+t+p+s1 ⊗ (
∧s X∗)(γJ ) ∧ ϕK

⊗fK ∧ bp ⊗ gJ ∧ δq(ωG) ∧ g ⊗ ν(t).

We see that

T1 − T4 =
∑

fff−p−1≤t
|I|=fff−1−t

(−1)fff−tfI ⊗
[
(
∧p−fff+2+t

X)(v ∧ ϕI [bp])
]
(δq)⊗ µ(t).

Apply Lemma 1.9.e to obtain

T2 =
∑

fff−p−1≤t
|I|=fff−t−1

(−1)fff−t−1fI ⊗
[
(
∧p−fff+2+t

X)([v(ϕI)][bp])
]
(δq)⊗ µ(t).
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Proposition 1.1.a now yields that T1 − T4 + T2 − T5 = 0. Apply Lemma 1.9.e and
Proposition 1.1 to T3 − T6, which is equal to

∑
fff−p−1≤t
|I|=fff−1−t

∑
{(t′,s)|t′≤z−1, z+fff−1−t−p≤s+t′}

|K|=z+fff−1−p−s−t′
|J|=s

(−1)(fff−t)s+t′+fff−t1 ⊗ (
∧s X∗)(γJ ) ∧ ϕK

⊗fK ∧ fI ⊗ gJ ∧
([

(
∧p−fff+1+t X)(ϕI [bp])

]
(δq)

)
(ωG) ∧ g ⊗ ν(t′),

in order to obtain
∑

fff−p−1≤t
|I|=fff−1−t

∑
{(t′,s)|t′≤z−1, z+fff−1−t−p≤s+t′}

|K|=z+2fff−2−p−s−t′−t
|J|=s+p−fff+1+t

(−1)(fff−t)s+t′+fff−t

⊗(ϕI [bp])
(
(
∧s+p−fff+1+t X∗)(γJ )

)
∧ fI(ϕK) ⊗ fK ⊗ gJ ∧ δq(ωG) ∧ g ⊗ ν(t′).

Let L = s+ p− fff + 1 + t. Lemma 1.9.d now yields that T3 − T6 is equal to∑
{(t′,L)|t′≤z−1, z≤L+t′}

|K|=z+fff−1−L−t′
|J|=L

(−1)L−p+t′+11 ⊗ bp
(
(
∧L X∗)(γJ ) ∧ ϕK

)
⊗ fK ⊗ gJ ∧ δq(ωG) ∧ g ⊗ ν(t′),

and this sum is zero because rankF < fff ≤ L+ |K|.
Fix x = αp ⊗ cq ⊗ λ(r), as described in (9.7). The clockwise path around (9.5)

sends x to

δp 0



∑
|I|=q+z+1

(−1)qσσσz(p, q, r, r − z − 1)

M1

(
fI ⊗

[
(
∧r−z−1X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(r−z−1)

)
+

∑
r−z≤t

∑
|I|=q−t+r

(−1)qσσσz(p, q, r, t)fI ⊗ [
(
∧t X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(t)

= δp 0



(−1)q+1σσσz(p, q, r, r − z − 1)
∑

|I|=q+z+1

∑
r−z≤t

|J|=fff−1−t

fJ

⊗
[
(
∧t X)

(
ϕJ [fI ] ∧ (ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗ ) ⊗ µ(t)

+
∑

r−z≤t

∑
|I|=q−t+r

(−1)qσσσz(p, q, r, t)fI ⊗ [
(
∧t X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(t).

Apply Lemma 1.9.f in order to conclude that this sum is zero. �
Proposition 9.8. The complexes (A,projA ◦d) and (C,d) are split exact.

Proof. Let D[[p, q, r; 0]] be the submodule of A which is given in Definition 7.11
with

(9.9) rankF replaced by fff − 1, rankG replaced by fff − 2, and

L(a, b, c, d, e) and U(a, b, c) replaced by LLL(a, b, c, d, e; 0, 0, 0, 1) and UUU(a, b, c; 0, 0),
respectively. In a similar manner, let D[[p, q, r; 1]] be the submodule of A which
is given in Definition 7.11 when hypothesis (9.9) is in effect, and the modules
LLL(a, b, c, d, e; 0, 1, 0, 1) and UUU(a, b, c; 0, 1) are used. It is not difficult to see that A
decomposes as the direct sum

A =
⊕

{0≤p, 1≤q}
D[[p, q, 0; 0]]⊕

⊕
{0≤p, 0≤q}

D[[p, q, 0; 1]].
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Filter A as follows. Take
⊕

D[[p, q, 0; 0]] <
⊕

D[[p, q, 0; 1]], and

(9.10) D[[p′, q′, r′; `]] < D[[p, q, r; `]] ⇐⇒ (p′, q′, r′) < (p, q, r) in the order of Definition 7.11,

for ` = 0, 1. Let d[0] be the component of projA ◦d which is homogeneous with
respect to the above filtration. It is not difficult to see that if x is a homogeneous
element of A, then projA ◦d(x) = x′ + d[0](x), for some x′ ∈ A with x′ < x. Let
(D[[p, q, r]], d[0]) be the complex of Proposition 7.14.a with the hypothesis of (9.9)
in effect. It is not difficult to establish isomorphisms from (D[[p, q, r; 0]], d[0]) and
(D[[p, q, r; 1]], d[0]) to (D[[p, q, r]], d[0]). Apply Proposition 7.14.b and Theorem 5.7
to see that (D[[p, q, r]], d[0]) is split exact. It follows that the complex (A,projA ◦d)
is split exact.

Let D[[p, q, r; 1′]] and D[[p, q, r; 2]] be the submodules of C which are given in
Definition 7.11 when hypothesis (9.9) is in effect. Modules of the form

LLL(a, b, c, d, e; 0, 1, 0, 1) and UUU(a, b, c; 0, 1) are used in D[[p, q, r; 1′]], and
LLL(a, b, c, d, e; 0, 1, 1, 1) and UUU(a, b, c; 1, 1) are used in D[[p, q, r; 2]].

Let Q represent
⊕

LLL(p, q, r, s, t; a, b, c, d), where the sum is taken over the set
SL(not). Observe that that (Q,d) is a subcomplex of (C,d). It is easy to see
that

C = Q⊕
⊕

{0≤p, 1≤r}
D[[p, 0, r; 1′]]⊕

⊕
{0≤p, 1≤r}

D[[p, 0, r; 2]].

Filter C by taking Q <
⊕

D[[p, 0, r; 1′]] <
⊕

D[[p, 0, r; 2]], and (9.10) for ` = 1′, 2.
Let d[0] be the component of d which is homogeneous with respect to the above
filtration. It is not difficult to see that d is a non-increasing function on C and that
the complexes (D[[p, q, r; 1′]], d[0]) and (D[[p, q, r; 2]], d[0]) are isomorphic to the split
exact complex (D[[p, q, r]], d[0]), which is defined in the first part of the proof. To
complete the proof, it suffices to show that (Q,d) is split exact.

Filter Q by taking LLL(p′, q′, r′, s′, t′; a′, b′, c′, d′) < LLL(p, q, r, s, t; a, b, c, d), whenever
q′ < q, or
q′ = q and r′ + s′ + 2(t′ + c′ + d′) < r + s+ 2(t+ c+ d), or
q′ = q, r′ + s′ + 2(t′ + c′ + d′) = r + s+ 2(t+ c+ d), and a′ + b′ − c′ − d′ < a+ b− c− d.

Let d[0] be the component of d which preserves this filtration. It is not difficult to
see that the restriction of d to Q is a non-increasing function and that if

x = φφφaAp ⊗ αq ∧φφφb ⊗ br ∧ f c ⊗ cs ∧ gd ⊗ ν(t) ∈ LLL(p, q, r, s, t; a, b, c, d) ⊆ Q,

then d[0](x) is equal to


+ (−1)qχ(b = 1)χ(p+ a+ t ≤ z − 2)φφφa+1Ap ⊗ αq ⊗ br ∧ fc ⊗ cs ∧ gd ⊗ ν(t)

+ χ(c = 0)(−1)q+r+bχ(fff ≤ s+ d+ t)φφφa+1Ap ⊗ αq ∧φφφb ⊗ br ∧ f ⊗ cs ∧ gd ⊗ ν(t−1)

+ χ(d = 0)(−1)q+b+r+c+1+sφφφa+1Ap ⊗ αq ∧φφφb ⊗ br ∧ fc ⊗ cs ∧ g ⊗ ν(t−1).

At this point, it suffices to show that the complex (Q, d[0]) is split exact.
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Define F[p, q, r, s, t, a] to be the sum of all LLL(p, q, r, s, t′; a′, b, c, d) ⊆ Q such that

t = t′ − 2 + c+ d and a = a′ + b+ 2− c− d.

Observe that Q =
⊕

F[p, q, r, s, t, a], where the sum is taken over all (p, q, r, s, t, a)
with

(9.11) p+ t+ a ≤ z, fff − 3 ≤ s+ t, z ≤ p+ q + t+ a, r + s+ t ≤ 2fff − 4, and 1 ≤ a.

It is now obvious that the complex (Q, d[0]) is the direct sum of the subcomplexes
(F[p, q, r, s, t, a], d[0]). In the ensuing discussion, fix prameters p, q, r, s, t, a, b, c, and
d. Take <t; a, b, c, d> to be the module LLL(p, q, r, s, t; a, b, c, d), and F to be the
complex (F[p, q, r, s, t, a], d[0]). If

(9.12) p+ t+ a ≤ z − 1, fff − 2 ≤ s+ t,

and 3 ≤ a, then F is

0 → <t+ 2; a− 3, 1, 0, 0>
δ3−→

<t+2;a−2,0,0,0>
⊕

<t+1;a−2,1,0,1>
⊕

<t+1;a−2,1,1,0>

δ2−→
<t+1;a−1,0,0,1>

⊕
<t+1;a−1,0,1,0>

⊕
<t;a−1,1,1,1>

δ1−→ <t; a, 0, 1, 1>→ 0;

where

δ3 =

 ∗∗
∗

 , δ2 =

 ∗ ∗ 0
∗ 0 ∗
0 ∗ ∗

 , and δ1 = [ ∗ ∗ ∗ ] ,

and each map which is labeled ∗ is an isomorphism. It is clear that the complex
F is split exact. There are a handful of degenerate versions of this complex, and
each of these is also split exact. First, we continue to assume that (9.12) holds. If
2 = a, then F is

0 →

<t+ 2; a− 2, 0, 0, 0>

⊕

<t+ 1; a− 2, 1, 1, 0>

δ2−→

<t+ 1; a− 1, 0, 0, 1>
⊕

<t+ 1; a− 1, 0, 1, 0>

⊕
<t; a− 1, 1, 1, 1>

δ1−→ <t; a, 0, 1, 1>→ 0;

if 1 = a, then F is

0 → <t+ 1; a− 1, 0, 1, 0>
δ1−→ <t; a, 0, 1, 1>→ 0.

Next, we take p+ t+ a ≤ z − 1 and fff − 3 = s+ t. If 3 ≤ a, then F is

0 → <t+ 2; a− 3, 1, 0, 0>
δ3−→

<t+ 2; a− 2, 0, 0, 0>
⊕

<t+ 1; a− 2, 1, 0, 1>

δ2−→ <t+ 1; a− 1, 0, 0, 1>→ 0;

if 2 = a, then F is

<t+ 2; a− 2, 0, 0, 0>
δ2−→ <t+ 1; a− 1, 0, 0, 1>;
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and if 1 = a, then F is the zero complex. Next, we take p+t+a = z and fff−2 ≤ s+t.
If 3 ≤ a, then F is

0 → <t+ 2; a− 3, 1, 0, 0>
δ3−→

<t+ 1; a− 2, 1, 0, 1>

⊕
<t+ 1; a− 2, 1, 1, 0>

δ2−→ <t; a− 1, 1, 1, 1>→ 0;

if 2 = a, then F is

0 → <t+ 1; a− 2, 1, 1, 0>
δ2−→ <t; a− 1, 1, 1, 1>→ 0;

if 1 = a, then F is the zero complex. Finally, we take p+ t+a = z and fff−3 = s+ t.
If 3 ≤ a, then F is

0 → <t+ 2; a− 3, 1, 0, 0>
δ3−→ <t+ 1; a− 2, 1, 0, 1>→ 0;

and if a ≤ 2, then F is the zero complex. We conclude that (F[p, q, r, s, t, a], d[0]) is
a split exact complex, whenever (9.11) is satisfied. �
Lemma 9.13. In the notation of Theorem 9.1, (E,dE) is a complex and

(E,dE) 1−M2−−−−→ (E⊕ J,projE⊕J ◦d ◦ (1−M1))

is a map of complexes.

Proof. It suffices to show that the diagram

E
dE−−−−→ E

1−M2

y 1−M2

y
E⊕ J

projE⊕J ◦d◦(1−M1)−−−−−−−−−−−−→ E⊕ J

commutes. In other words, we must show that τ = (projJ +M2)◦d◦ (1−M1−M2)
kills E. If x = αp ⊗ cq ⊗ λ(r) ∈ TTT(p, q, r; 0, 0) ⊆ E, then τ(x) is equal to

(−1)p−1v(αp) ⊗ cq ⊗ λ(r)

+ (−1)p+qχ(1 ≤ q + r)αp ⊗ u(cq) ⊗ λ(r)

+ χ(1 ≤ p)
∑
0≤t

|I|=q−t+r−1

(−1)p−q−r+tσσσz(p, q, r, t)fI ∧ f

⊗
[
(
∧t+1X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ∧ γγγ ⊗ µ(t)

+ χ(1 ≤ p)
∑
1≤t

|I|=q−t+r

(−1)qσσσz(p, q, r, t)fI ⊗ [
(
∧t X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(t)

+ (−1)qσσσz(p, q, r, 0)M2

(
αp[ωF ] ⊗ cq(ωG∗) ⊗ µ(0)

)
,

and this is easily seen to be zero. If x = bp ⊗ δq ⊗ µ(r) ∈ UUU(p, q, r; 0, 0) ⊆ E, then
τ(x) is equal to

(projJ +M2) ◦ d



θfff−2−qθfff−1−p(−1)z+qfff (v ∧ bp)(ωF∗) ⊗ δq(ωG) ⊗ λ(z+1)

− χ(1 ≤ p)θfff−2−qθfff−1−p(−1)z+fff+q+qfff bp(ωF∗) ⊗ (u ∧ δq)(ωG) ⊗ λ(z+1)

+ χ(p ≤ fff − 2)
∑
0≤t

|I|=p−1−t

(−1)q+t+1fI ∧ f ⊗
[
(
∧1+t X)[ϕI (bp)]

]
(δq) ∧ γγγ ⊗ µ(t)

+
∑
0≤t

|I|=p−t

fI ⊗ [
(
∧t X)(ϕI (bp))

]
(δq) ⊗ µ(t).
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After τ(x) is expanded, and the easy cancellations are made, one is left with a sum
of 13 terms. The technique which was used on T3 − T6 in the proof of Lemma 9.4
shows that the term in LLL(0, 0, 0, 1) is zero. Six terms are in UUU(0, 0): three of these
involve u, the other three involve v. Six terms also are in UUU(1, 1): once again, three
involve u, and the other three involve v. Each of these four triples adds to zero by
way of Proposition 1.1.a. �
Remark 9.14. The complex Y is defined in the statement of Theorem 9.1. The
summand of Y in position i is equal to Yi = I(z)i−2 ⊕ I(z)i−1 ⊕ I(z)i−1 ⊕ I(z)i . We think of
the elements of Y as column vectors. In particular, the element bp ⊗ δq ⊗ µ(r) of
U[3] ⊆ Y is 

0
0

bp ⊗ δq ⊗ µ(r)

0

 .
The differential yi : Yi → Yi−1 is given by

yi =


d 0 0 0

(−1)i+1vfff d 0 0
(−1)iufff−1 0 d 0

0 (−1)i+1ufff−1 (−1)i+1vfff d

 .
Definition 9.15. Define Ψ̂ : Y→ E⊕ J by

Ψ̂
(
Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t) ∈ L[4]

)
= Ap ⊗ αq ⊗ br ⊗ cs ∧ g ⊗ ν(t),

Ψ̂
(
Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t) ∈ L[3]

)
= (−1)r+s+fff−1Ap ⊗ αq ∧φφφ⊗ br ⊗ cs ∧ g ⊗ ν(t),

Ψ̂
(
Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t) ∈ L[2]

)
= (−1)s+fff−1Ap ⊗ αq ⊗ br ∧ f ⊗ cs ∧ g ⊗ ν(t),

Ψ̂
(
Ap ⊗ αq ⊗ br ⊗ cs ⊗ ν(t) ∈ L[1]

)
= (−1)r+1Ap ⊗ αq ∧φφφ⊗ br ∧ f ⊗ cs ∧ g ⊗ ν(t),

Ψ̂
(
bp ⊗ δq ⊗ µ(r) ∈ U[4]

)
=

{
χ(1 ≤ r)χ(z + 1 ≤ q + r)(−1)qbp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r−1)

+ bp ⊗ δq ⊗ µ(r),

Ψ̂
(
bp ⊗ δq ⊗ µ(r) ∈ U[3]

)
= bp ⊗ δq ∧ γγγ ⊗ µ(r),

Ψ̂
(
bp ⊗ δq ⊗ µ(r) ∈ U[2]

)
= (−1)qbp ∧ f ⊗ δq ⊗ µ(r),

Ψ̂
(
bp ⊗ δq ⊗ µ(r) ∈ U[1]

)
is equal to



χ(p+ q + r ≤ fff − 3 + z)(−1)qbp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r)

− χ(p+ q + r = fff − 2 + z)χ(p+ r ≤ fff − 3)
∑

r+1≤t
|I|=p+1+r−t

fI ⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t)

− χ(p+ q + r = fff − 2 + z)χ(p+ r = fff − 2)bp ⊗ δq ⊗ µ(r+1)

+ χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)r+t+1+qfI ∧ f ⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t)

+ χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q(−1)qfff+p(v ∧ bp)(ωF∗) ⊗ δq(ωG) ⊗ λ(z+1)

+ χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q(−1)qfff+z+1bp(ωF∗) ⊗ (u ∧ δq)(ωG) ⊗ λ(z+1),
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Ψ̂
(
αp ⊗ cq ⊗ λ(r) ∈ T[4]

)
=

 αp ⊗ cq ⊗ λ(r)

+ (−1)p+1χ(z + 2 ≤ r)αp ∧φφφ⊗ cq ∧ g ⊗ λ(r−1),

Ψ̂
(
αp ⊗ cq ⊗ λ(r) ∈ T[3]

)
= (−1)p+qαp ∧φφφ⊗ cq ⊗ λ(r),

Ψ̂
(
αp ⊗ cq ⊗ λ(r) ∈ T[2]

)
= (−1)1+qαp ⊗ cq ∧ g ⊗ λ(r), and

Ψ̂
(
αp ⊗ cq ⊗ λ(r) ∈ T[1]

)
=


αp ⊗ cq ⊗ λ(r+1)

− χ(p+ q + 2r ≤ fff + z − 2)
∑

|J|=r−z

ϕJ ∧ αp

⊗cq ∧ (
∧r−z X)(fJ ) ⊗ λ(z+1).

Lemma 9.16. If the notation of Theorem 9.1 and Definition 9.15 are adopted,
then

Ψ̂ : (Y, y)→ (E⊕ J,projE⊕J ◦d ◦ (1−M1))

is a map of complexes.

Proof. Most of the calculation that Ψ̂ ◦ y(x) = projE⊕J ◦d ◦ (1 −M1) ◦ Ψ̂(x), for
x ∈ Y proceeds without much difficulty. The two interesting cases are x ∈ U[1] and
x ∈ T[1]. We first treat x = bp ⊗ δq ⊗ µ(r) ∈ U(p, q, r) ⊆ U[1], with

0 ≤ r, p+ q + r ≤ fff − 2 + z, p+ r ≤ fff − 2, and z ≤ q + r.

One can calculate that Ψ̂ ◦ y(x) =
∑12
i=1 Si, where

S1 = (−1)q[X∗(u)](bp) ∧ f ⊗ δq ∧ γγγ ⊗ µ(r),

S2 = χ(1 ≤ r)χ(p+ q + r ≤ fff − 3 + z)(−1)p+qbp ∧ f ⊗ u ∧ δq ∧ γγγ ⊗ µ(r−1),

S3 = χ(1 ≤ r)χ(p+ q + r = fff − 2 + z)
∑
r≤t

|I|=p+r−1−t

(−1)r+t+q+pfI ∧ f

⊗
[
(
∧t−r+1X) (ϕI(bp))

]
(u ∧ δq) ∧ γγγ ⊗ µ(t),

S4 = χ(z + 1 ≤ q + r)(−1)p+q+1bp ∧ f ⊗ [X(v)](δq) ∧ γγγ ⊗ µ(r),

S5 = χ(1 ≤ r)χ(z + 1 ≤ q + r)χ(p+ q + r ≤ fff − 3 + z)(−1)qv ∧ bp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r−1),

S6 = χ(1 ≤ r)χ(z + 1 ≤ q + r)χ(p+ q + r = fff − 2 + z)
∑
r≤t

|I|=p+r−t

(−1)r+t+qfI ∧ f

⊗
[
(
∧t−r+1X) (ϕI(v ∧ bp))

]
(δq) ∧ γγγ ⊗ µ(t),

S7 = −χ(1 ≤ r)χ(z + 1 ≤ q)χ(p+ q + r = fff − 2 + z)
∑
r≤t

|I|=p+1+r−t

fI

⊗
[
(
∧t−r X) (ϕI(v ∧ bp))

]
(δq) ⊗ µ(t),

S8 = −χ(1 ≤ r)χ(q = z)χ(p+ r = fff − 2)v ∧ bp ⊗ δq ⊗ µ(r),

S9 = χ(1 ≤ r)χ(p+ q + r = fff − 2 + z)(−1)p
∑
r≤t

|I|=p+r−t

fI ⊗
[
(
∧t−r X) (ϕI(bp))

]
(u ∧ δq) ⊗ µ(t),
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S10 =
∑

{(t,s)|t≤z−1, q≤s+t}
|J|=s

|I|=r+q−s−t

(−1)1+r+q+ps ⊗ (
∧s X∗)(γJ ) ∧ ϕI ∧φφφ⊗ fI ∧ bp ∧ f ⊗ gJ ∧ δq(ωG) ∧ g ⊗ ν(t),

S11 = (−1)p+1vfff bp ∧ f ⊗ δq ⊗ µ(r), and

S12 = (−1)p+qufff−1bp ⊗ δq ∧ γγγ ⊗ µ(r).

On the other hand, (1−M1) ◦ Ψ̂(x) is equal to



χ(p+ q + r ≤ fff − 3 + z)(−1)qbp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r)

− χ(p+ q + r = fff − 2 + z)χ(p+ r ≤ fff − 2)
∑

r+1≤t
|I|=p+1+r−t

fI ⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t)

+ χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)r+t+1+qfI ∧ f ⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t)

+ χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q(−1)qfff+p(v ∧ bp)(ωF∗ ) ⊗ δq(ωG) ⊗ λ(z+1)

+ χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q(−1)z+qfff+1bp(ωF∗ ) ⊗ (u ∧ δq)(ωG) ⊗ λ(z+1).

So, projE⊕J ◦d ◦ (1−M1) ◦ Ψ̂(x) =
28∑
i=1

Ti, with

T1 = χ(p+ q + r ≤ fff − 3 + z)(−1)q[X∗(u)](bp) ∧ f ⊗ δq ∧ γγγ ⊗ µ(r),

T2 = χ(z + 1 ≤ q + r)χ(p+ q + r ≤ fff − 3 + z)(−1)q+p+1bp ∧ f ⊗ [X(v)](δq) ∧ γγγ ⊗ µ(r),

T3 = χ(z + 1 ≤ q + r)χ(p+ q + r ≤ fff − 3 + z)χ(1 ≤ r)(−1)qv ∧ bp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r−1),

T4 = χ(p+ q + r ≤ fff − 3 + z)χ(1 ≤ r)(−1)p+qbp ∧ f ⊗ u ∧ δq ∧ γγγ ⊗ µ(r−1),

T5 = χ(p+ q + r ≤ fff − 3 + z)(−1)q+pufff−1bp ⊗ δq ∧ γγγ ⊗ µ(r),

T6 = χ(p+ q + r ≤ fff − 3 + z)(−1)p+1vfff bp ∧ f ⊗ δq ⊗ µ(r),

T7 = χ(p+ q + r ≤ fff − 3 + z)
∑

{(t,s)|t≤z−1, q≤s+t}
|K|=r+q−s−t

|J|=s

(−1)ps+r+1+q

⊗ (
∧s X∗)(γJ ) ∧ ϕK ∧φφφ⊗ fK ∧ bp ∧ f ⊗ gJ ∧ δq(ωG) ∧ g ⊗ ν(t),

T8 = −χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

[X∗(u)](fI) ⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t),

T9 = χ(p+ q + r = fff − 2 + z)χ(p+ r ≤ fff − 3)
∑

r+1≤t
|I|=p+1+r−t

(−1)p+r−tfI

⊗
[
(
∧t−r X) (v ∧ ϕI(bp))

]
(δq) ⊗ µ(t),

T10 = −χ(p+ q + r = fff − 2 + z)χ(p+ r ≤ fff − 3)
∑

r+1≤t
|I|=p+1+r−t

v ∧ fI

⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t−1),

T11 = −χ(q = z)χ(p+ r = fff − 2)v ∧ bp ⊗ δq ⊗ µ(r),
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T12 = χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

(−1)p+r−t+1fI

⊗ u ∧
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t−1),

T13 = χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

∑
{(t′,s)|t′≤z−1, q+1+r−t≤s+t′}

|K|=q+r−s−t′
|J|=s

(−1)ps+s+rs+ts+q+r+1

⊗ (
∧s X∗)(γJ ) ∧ ϕK ∧φφφ⊗ fK ∧ fI ∧ f ⊗ gJ ∧

([
(
∧t−1−r X) (ϕI(bp))

]
(δq)

)
(ωG) ∧ g ⊗ ν(t′),

T14 = χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

(−1)p+r+t

vffffI ∧ f ⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t−1),

T15 = χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

(−1)p+qufff−1fI

⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t−1),

T16 = χ(z + 1 ≤ q)χ(p+ q + r = fff − 2 + z)
∑

r+1≤t
|I|=p+1+r−t

∑
{(t′,s)|t′≤z−1, q+1+r−t≤s+t′}

|K|=q+1+r−s−t′
|J|=s

(−1)sp+rs+ts+t′+p+r+t

⊗ (
∧s X∗)(γJ ) ∧ ϕK ⊗ fK ∧ fI ⊗ gJ ∧

([
(
∧t−1−r X) (ϕI(bp))

]
(δq)

)
(ωG) ∧ g ⊗ ν(t′),

T17 = χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)r+t+1+q[X∗(u)](fI) ∧ f

⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t),

T18 = χ(z + 1 ≤ q + r)χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)q+pfI ∧ f

⊗ [X(v)](
[
(
∧t−r X) (ϕI(bp))

]
(δq)) ∧ γγγ ⊗ µ(t),

T19 = χ(z + 1 ≤ q + r)χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)r+t+1+qv ∧ fI ∧ f

⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t−1),

T20 = χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)1+q+pfI ∧ f

⊗ u ∧
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t−1),

T21 = χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)1+q+pufff−1fI ⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t),

T22 = χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)t+p+rvffffI ∧ f ⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ⊗ µ(t),

T23 = χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

∑
{(t′,s)|t′≤z−1, q+r−t≤s+t′}

|K|=q+r−s−t′
|J|=s

(−1)sp+rs+ts+r+q

⊗ (
∧s X∗)(γJ ) ∧ ϕK ∧φφφ⊗ fK ∧ fI ∧ f ⊗ gJ ∧

([
(
∧t−r X) (ϕI(bp))

]
(δq)

)
(ωG) ∧ g ⊗ ν(t′),



TWO VECTORS AND A RECTANGULAR MATRIX 77

T24 = χ(r = 0)χ(p+ q = fff + z − 2)χ(z + 1 ≤ q)θfff−1−pθfff−3−q

∑
0≤t

∑
|I|=p−t

(−1)q+z+1+t+qfff

σσσz(fff − 2 − p,fff − 2 − q, z + 1, t)fI ∧ f ⊗
[
(
∧t+1X) (ϕI(v ∧ bp))

]
(δq) ∧ γγγ ⊗ µ(t),

T25 = χ(r = 0)χ(p+ q = fff + z − 2)χ(p ≤ fff − 3)θfff−1−pθfff−3−q(−1)qfff+p+fff+q
∑
0≤t

∑
|I|=p−t+1

σσσz(fff − 2 − p,fff − 2 − q, z + 1, t)fI ⊗ [
(
∧t X) (ϕI(v ∧ bp))

]
(δq) ⊗ µ(t),

T26 = χ(r = 0)χ(q = z)χ(p = fff − 2)θfff−1−pθfff−3−q(−1)qfff+p+fff+q

σσσz(fff − 2 − p,fff − 2 − q, z + 1, 0)v ∧ bp ⊗ δq ⊗ µ(0),

T27 = χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q

∑
0≤t

∑
|I|=p−t−1

(−1)z+t+fff+qfff

σσσz(fff − 1 − p,fff − 3 − q, z + 1, t)fI ∧ f ⊗
[
(
∧1+t X)[ϕI(bp)]

]
(u ∧ δq) ∧ γγγ ⊗ µ(t), and

T28 = χ(r = 0)χ(p+ q = fff + z − 2)θfff−1−pθfff−3−q(−1)qfff+p
∑
0≤t

∑
|I|=p−t

σσσz(fff − 1 − p,fff − 3 − q, z + 1, t)fI ⊗ [
(
∧t X)[ϕI(bp)]

]
(u ∧ δq) ⊗ µ(t).

Observe that S2 = T4, S5 = T3, S8 = T11 + T26, S10 = T7 + T13 + T23, S11 is equal
to T6 + T14 + T22, and S12 = T5 + T15 + T21. Use Proposition 1.1.a to see that
S7 = T9 + T10 + T25, S9 = T8 + T12 + T28, S1 + S3 = T1 + T17 + T20 + T27, and
S4 + S6 = T2 + T18 + T19 + T24. The argument which shows that T3 − T6 = 0 in
the proof of Lemma 9.4 yields that T16 = 0.

Finally, we take x = αp ⊗ cq ⊗ λ(r) ∈ T(p, q, r) ⊆ Y[1], with

p+ q + r ≤ fff − 2 and z + 1 ≤ r.
We have Ψ̂ ◦ y(x) =

∑16
i=1 Si, with

S1 = (−1)p+1v(αp) ⊗ cq ⊗ λ(r+1),

S2 = χ(1 ≤ q + r)(−1)p+qαp ⊗ u(cq) ⊗ λ(r+1),

S3 = χ(z + 2 ≤ r)χ(1 ≤ q + r)αp ∧ [X∗(u)] ⊗ cq ⊗ λ(r),

S4 = χ(z + 2 ≤ r)(−1)pαp ⊗ cq ∧ [X(v)] ⊗ λ(r),

S5 = (−1)pχ(p+ q + 2r ≤ fff + z − 1)
∑

|J|=r−z

ϕJ ∧ v(αp) ⊗ cq ∧ (
∧r−z X)(fJ ) ⊗ λ(z+1),

S6 = χ(1 ≤ q + r)χ(p+ q + 2r ≤ fff + z − 1)(−1)p+q+1
∑

|J|=r−z

ϕJ ∧ αp

⊗ u(cq) ∧ (
∧r−z X)(fJ ) ⊗ λ(z+1),

S7 = −χ(z + 2 ≤ r)χ(p+ q + 2r ≤ fff + z − 1)
∑

|J|=r−z−1

ϕJ ∧ αp ∧ [X∗(u)]

⊗ cq ∧ (
∧r−1−z X)(fJ ) ⊗ λ(z+1),

S8 = χ(z + 2 ≤ r)χ(p+ q + 2r ≤ fff + z − 1)(−1)p+1
∑

|J|=r−1−z

ϕJ ∧ αp

⊗ cq ∧ [X(v)] ∧ (
∧r−1−z X)(fJ ) ⊗ λ(z+1),

S9 =
∑
0≤t

|I|=q+r−t

σz(p, q, r, t)χ(p+ q + 2r − t ≤ fff − 2 + z)(−1)p+r−t−1fI ∧ f

⊗
[
(
∧fff−1−p+t−q−r X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗ ) ∧ γγγ ⊗ µ(t),
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S10 = −σz(p, q, r, q + 2r − fff − z + 1 + p)χ(fff + z − 1 ≤ p+ q + 2r)χ(q + r ≤ fff − 3)∑
p+q+2r−fff−z+2≤t

|J|=q+r+1−t
|I|=fff+z−1−p−r

fJ ⊗
[
(
∧t+fff−2−p−q−r X)

(
ϕJ (fI) ∧ (ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗) ⊗ µ(t),

S11 = − ∑
|I|=q−p+1+z

σz(p, q, r, r + p− 1 − z)χ(q + r = fff − 2)fI

⊗
[
(
∧fff−2−z−q X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗ ) ⊗ µ(r+p−z),

S12 = σz(p, q, r, p+ q + 2r − fff − z + 1)χ(fff + z − 1 ≤ p+ q + 2r)
∑

p+q+2r−fff−z+2≤t
|J|=q+r−t

|I|=fff+z−1−p−r

(−1)t+p+r

fJ ∧ f ⊗
[
(
∧t−p−q−r+fff−1X)

(
ϕJ (fI) ∧ (ϕI ∧ αp)[ωF ]

)
∧ cq

]
(ωG∗ ) ∧ γγγ ⊗ µ(t),

S13 =
∑

|I|=q+r

σz(p, q, r, 0)χ(p+ q + 2r = fff + z − 1)θfff−1−q−rθfff−2−p−r(−1)pfff+rfff+fff

(−1)q+r(v ∧ fI)(ωF∗ ) ⊗ (
∧fff−1−p−q−r X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq ⊗ λ(z+1),

S14 =
∑

|I|=q+r

σz(p, q, r, 0)χ(p+ q + 2r = fff + z − 1)θfff−1−q−rθfff−2−p−r(−1)pfff+rfff+p+q

fI(ωF∗ ) ⊗ u
[
(
∧fff−1−p−q−r X)

(
(ϕI ∧ αp)[ωF ]

)
∧ cq

]
⊗ λ(z+1),

S15 = (−1)pvfffαp ⊗ cq ∧ g ⊗ λ(r), and

S16 = ufff−1αp ∧φφφ⊗ cq ⊗ λ(r).

On the other hand, projE⊕J ◦d ◦ (1−M1) ◦ Ψ̂(x) is equal to
∑13

i=1 Ti, with

T1 = (−1)p−1v(αp) ⊗ cq ⊗ λ(r+1),

T2 = (−1)p+qαp ⊗ u(cq) ⊗ λ(r+1),

T3 = αp ∧ [X∗(u)] ⊗ cq ⊗ λ(r),

T4 = (−1)pαp ⊗ cq ∧ [X(v)] ⊗ λ(r),

T5 =
∑
0≤t

∑
|I|=q−t+r

(−1)p+q+r+1+tσσσz(p, q, r + 1, t)fI ∧ f

⊗
([

(
∧fff−p+t−q−r−1X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗)

)
∧ γγγ ⊗ µ(t),

T6 = ufff−1αp ∧φφφ⊗ cq ⊗ λ(r),

T7 = (−1)pvfffαp ⊗ cq ∧ g ⊗ λ(r),

T8 = χ(q + r ≤ fff − 3)
∑
0≤t

∑
|I|=q−t+r+1

(−1)qσσσz(p, q, r + 1, t)fI

⊗
[
(
∧fff−p+t−q−r−2X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(t),

T9 = χ(q + r = fff − 2)
∑

|I|=q+z+1

(−1)qσσσz(p, q, r + 1, r − z)fI

⊗
[
(
∧fff−p−z−q−2X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(r−z),

T10 = χ(p+ q + 2r ≤ fff + z − 2)
∑

|J|=r−z

(−1)p+r+zv(ϕJ ∧ αp) ⊗ cq ∧ (
∧r−z X)(fJ ) ⊗ λ(z+1),
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T11 = χ(p+ q + 2r ≤ fff + z − 2)
∑

|J|=r−z

(−1)p+q+1ϕJ ∧ αp ⊗ u(cq ∧ (
∧r−z X)(fJ )) ⊗ λ(z+1),

T12 = χ(p+ q + 2r ≤ fff + z − 2)
∑

|J|=r−z
0≤t

|I|=q+r−t

(−1)p+z+q+tσσσz(p+ r − z, q + r − z, z + 1, t)fI ∧ f⊗

[
(
∧fff+z−1−p−q−2r+t X) ((ϕI ∧ ϕJ ∧ αp)[ωF ]) ∧ cq ∧ (

∧r−z X)(fJ )
]
(ωG∗ ) ∧ γγγ ⊗ µ(t),

and

T13 = χ(p+ q + 2r ≤ fff + z − 2)
∑

|J|=r−z

∑
0≤t

|I|=q+r−t+1

(−1)q+r+z+1σσσz(p+ r − z, q + r − z, z + 1, t)

fI ⊗
[
(
∧fff+z−2−p−q−2r+t X) ((ϕI ∧ ϕJ ∧ αp)[ωF ]) ∧ cq ∧ (

∧r−z X)(fJ )
]
(ωG∗) ⊗ µ(t).

Observe that S1 = T1, S2 = T2, S11 = T9 S15 = T7, and S16 = T6. Use parts (e)
and (g) of Lemma 1.9 to see that S4 +S5 +S8− T4 − T10 and −S13 are both equal
to

(−1)p+r+zχ(p+ q+2r = fff + z−1)
∑

|J|=r−z
v(ϕJ ∧αp)⊗ cq ∧ (

∧r−z
X)(fJ)⊗λ(z+1);

and that S3 + S6 + S7 − T3 − T11 and −S14 are both equal to

(−1)p+q+1χ(p+q+2r = fff+z−1)
∑

|J|=r−z
ϕJ ∧αp⊗u

(
cq ∧ (

∧r−z
X)(fJ)

)
⊗λ(z+1).

Apply part (c) of Lemma 1.9 to T12 and T13, and part (f) to S12 and S10, in order
to see that T12−S9−S12 is equal to −T5, and that S10−T8 and T13 are both equal
to


χ(q + r ≤ fff − 3)χ(p+ q + 2r ≤ fff + z − 2)

∑
0≤t

|I|=q−t+r+1

(−1)r+q+z+qfff θqθp
(fff−2−p−q−r+t

r−z

)
fI⊗

[
(
∧fff−p+t−q−r−2X) ((ϕI ∧ αp)[ωF ]) ∧ cq

]
(ωG∗) ⊗ µ(t). �

Lemma 9.17. The map Ψ from Theorem 9.1 is an isomorphism of complexes.

Proof. In light of Lemma 9.16 and (9.2) it suffices to show that Ψ: Y → J is a
module isomorphism. The assertion is clear on the L level. We calculate that

Ψ
(
bp ⊗ δq ⊗ µ(r) ∈ U[4]

)
=

 χ(1 ≤ r)χ(z + 1 ≤ q + r)(−1)qbp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r−1)

∈ UUU(p, q, r − 1; 1, 1)

+ bp ⊗ δq ⊗ µ(r) ∈ UUU(p, q, r; 0, 0),

Ψ
(
bp ⊗ δq ⊗ µ(r) ∈ U[3]

)
= bp ⊗ δq ∧ γγγ ⊗ µ(r) ∈ UUU(p, q, r; 0, 1),

Ψ
(
bp ⊗ δq ⊗ µ(r) ∈ U[2]

)
= (−1)qbp ∧ f ⊗ δq ⊗ µ(r) ∈ UUU(p, q, r; 1, 0),
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and Ψ
(
bp ⊗ δq ⊗ µ(r) ∈ U[1]

)
is equal to

χ(p+ q + r ≤ fff − 3 + z)(−1)qbp ∧ f ⊗ δq ∧ γγγ ⊗ µ(r) ∈ UUU(p, q, r; 1, 1)

− χ(p+ q + r = fff − 2 + z)χ(p+ r ≤ fff − 3)
∑

r+1≤t
|I|=p+1+r−t

fI ⊗
[
(
∧t−1−r X) (ϕI(bp))

]
(δq) ⊗ µ(t)

∈ UUU(p+ 1 + r − t, q + 1 + r − t, t; 0, 0)

− χ(p+ q + r = fff − 2 + z)χ(p+ r = fff − 2)bp ⊗ δq ⊗ µ(r+1) ∈ UUU(p, q, r + 1; 0, 0)

+ χ(p+ q + r = fff − 2 + z)
∑

1+r≤t
|I|=p+r−t

(−1)r+t+1+qfI ∧ f ⊗
[
(
∧t−r X) (ϕI(bp))

]
(δq) ∧ γγγ ⊗ µ(t)

∈ UUU(p+ r − t, q + r − t, t; 1, 1).

Observe that the set SU(0) is equal to the disjoint union A ∪B ∪ C for

A = {(p, q, r) | 0 ≤ r, p+ q + r ≤ f − 2 + z, p+ r ≤ f − 2, and z ≤ q + r},
B = {(p, q, r) | 1 ≤ r, p+ q + r = f − 1 + z, and p+ r ≤ f − 2}, and

C = {(p, q, r) | 1 ≤ r, p+ r = f − 1, and z = q}.
It follows that the map Ψ carries

⊕
U[k]→ UUU as follows:

U[3] U[2] U[1] U[1] U[4] U[1]
p+q+r≤fff−3+z p+q+r=fff−2+z p+q+r=fff−2+z

p+r=fff−2 p+r≤fff−3

UUU(0, 1) ∼=
UUU(1, 0) ∼=
UUU(1, 1) ∼= ∗ ∗ ∗
UUU(0, 0) ∩ C ∼=
UUU(0, 0) ∩A ∼= ∗
UUU(0, 0) ∩B ∼=,

and this is an isomorphism. We calculate that

Ψ
(
αp ⊗ cq ⊗ λ(r) ∈ T[4]

)
=


αp ⊗ cq ⊗ λ(r) ∈ TTT(p, q, r; 0, 0)

+ (−1)p+1χ(z + 2 ≤ r)αp ∧φφφ⊗ cq ∧ g ⊗ λ(r−1)

∈ TTT(p, q, r − 1; 1, 1),

Ψ
(
αp ⊗ cq ⊗ λ(r) ∈ T[3]

)
= (−1)p+qαp ∧φφφ⊗ cq ⊗ λ(r) ∈ TTT(p, q, r; 1, 0),

Ψ
(
αp ⊗ cq ⊗ λ(r) ∈ T[2]

)
= (−1)1+qαp ⊗ cq ∧ g ⊗ λ(r) ∈ TTT(p, q, r; 0, 1),

Ψ
(
αp ⊗ cq ⊗ λ(r) ∈ T[1]

)
=


αp ⊗ cq ⊗ λ(r+1) ∈ TTT(p, q, r + 1; 0, 0)

− χ(p+ q + 2r ≤ fff + z − 3)
∑

|J|=r−z

ϕJ ∧ αp ⊗ cq ∧ (
∧r−z X)(fJ )

⊗λ(z+1) ∈ TTT(p+ r − z, q + r − z, z + 1; 0, 0).

The map Ψ carries
⊕

T[k]→ TTT as follows:

T[3] T[2] T[4] T[1] T[4]
z + 1 = r z + 2 ≤ r

TTT(1, 0) ∼=
TTT(0, 1) ∼=
TTT(0, 0), z + 1 = r ∼= ∗
TTT(0, 0), z = 2 ≤ r ∼= ∗
TTT(1, 1) ∼=,

and this also is an isomorphism. �
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