Introduction.

Let uixf, Xgxyf, and vfy1 be matrices of indeterminates over a commutative
noetherian ring Ry, and let H(f) be the ideal I1 (uX) + I (Xv) + I (vu — Adj X) of
the polynomial ring R = Ro[{wi,vi,zi; | 1 <1i,5 < f}]. Vasconcelos observed that
on numerous occasions, some specialization of H(f) is the defining ideal for the
symbolic square algebra A[Pt, P(?¢?] of the prime ideal P in the commutative ring
A. He conjectured [19] that H(f) is a perfect prime Gorenstein ideal of grade 2f. In
[16], we found the minimal homogeneous resolution of R/H (f) by free R—modules;
thereby establishing Vasconcelos’ conjecture. This resolution is obtained by merging
four Koszul complexes:

(*) { !

where F(1) and F(4) are both Koszul complexes on the entries of [u v], F(2) is the
Koszul complex on the entries of [uX wv], and F(3) is the Koszul complex on the
entries of [u Xw]. The arrows in (*) represent maps given by the various minors
of X.

In the present paper, we consider the next natural question, which is, “What
happens when the matrix X is not square?” In this case, the corresponding ideal,
K, is equal to [; (uX) + I (Xv) + I§(X), where X is an g x f matrix, with f < g,
v is an f x 1 matrix, and v is a 1 X g matrix. In other words, K is the ideal which
defines the variety of complexes

0—R— Rf - RI >R,

where the middle map has rank less than f. It quickly becomes clear that the best
way to resolve R/K is to produce a family of complexes which resolves “half” of
the divisor class group of R/K.

Two distinct starting points give rise to a family of complexes with similar, and
very pretty, properties. The first starting point is the theory of residual intersec-
tions. Let I be a grade two perfect ideal, or a grade three Gorenstein ideal, or a
grade g complete intersection, and let

R LRI 2R R/II—0

be exact. Assume that the ring R is the polynomial ring k[P, X|, where k is a field,
X is a g X f generic matrix, and P is as generic as possible. Given this data with
grade I < f, let K be the f—residual intersection I1(aX): I, p be the map

p=[P X]:E=R"®R' —G=RI,

and m and s be the integers m = f+1—gradel and s = f. Then, there is a family
of complexes {C(*)} which satisfies the following properties.

(a) The complex C(¥) resolves R/K.
(b) The divisor class group of R/K is the infinite cyclic group Z[coker p].
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2 ANDREW R. KUSTIN

(c) If =1 < z, then C®) resolves a representative of the class z[coker p] from
Cl! R/K.

(d) The canonical class in the C¢/ R/K is equal to m[coker p].

(e) C®) = (Cm=2))" [—g].

(f) If M is a reflexive R/K—module of rank one and [M] = z[cokerp| in
Cl¢ R/K for some integer z, then M is a Cohen-Macaulay module if and
only if —1 < z§m+1.~

(g) Ifp=[P X], where X is the submatrix of X which consists of columns 1
to f—1, then, for each integer z, there is a short exact sequence of complexes

0—CH(p) =¥ — = V(p) 1] — 0.

Indeed, if I is a grade two perfect ideal, then n = g — 1, P is the g x g — 1 matrix
of indeterminates whose g — 1 X g — 1 minors generate I, p is the g x (f +g — 1)
matrix of indeterminates [P X|, K is generated by the g x g minors of p (see [11,
Thm. 4.1] or [12, pg. 4]), and C®) is the Eagon-Northcott type complex

> D1GONTITE - DyGFONTIE — SoGON E — S1GRONTE — ..,

with S.G ® /\0 E in position 0; see, for example, [6, Sect. 2C]. If I is a grade three
Gorenstein ideal, then n = g, P: G* = R"™ — RY9 = (G is the g x g alternating
matrix of indeterminates whose g — 1 order pfaffians generate I, E = G*® F, K is

generated by the pfaffians of all principal submatrices of (—Ij(t )0(> which contain

P, and C® is the complex

= (8GO NTTTE) — (SiGe NTE) — Q.

— S GONE— S GoN'E— ..,
with S.G ® /\O E in position 0, where

O o A® 1 SeGRA®E
5GON'E = méaniam:

and 7 is the element of G® E which corresponds to E* = G@ F* 224 G under the
natural identification of Hom(E*,G) and G® E. See [17]. If I is a grade g complete
intersection, then n = (g), ais a 1 X ¢ matrix of indeterminates, P: /\2 R9 — RY is
the Koszul complex map, K is equal to I;(aX) + I,(X), the complex C (0) is given
in [5], and the entire family {C*)} is given in [13].

There is a second starting point which produces an analogous family of com-
plexes. In this case, there is no ideal I, there is no presentation map P of I, and
there is no interpretation in terms of residual intersection. The best examples of
this second starting point come from the theory of varieties of complexes. Start
with the data

0-R%LF X G %R,
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where I’ and G are free R—modules with rank F' = f < g = rank G, v, X, and u
are matrices of indeterminates, and R = k[v, X, u] for some field k. Let K be the
R—ideal

B { I¢(X) + I (uX) in case 1,

- L(X0) + 14(X) + L (uX)  in case 2,

and p be the R—module homomorphism

{[1®X*(u) X*: (F*® F)® G* — F* in case 1,
P10 19X (@) X*]: N2F @ (F*@F)®G* — F* in case 2.

The integer s plays the role of the projective dimension of R/K as an R—module;
hence,
{ g in case 1, and
s =

g+ f—1 in case 2.

The integer m is defined by property (d); hence,

{g—f—l in case 1, and
g—f in case 2.

Then, in each case (1) and (2), there is a family of complexes {C(*)} which satisfy
properties (a)—(g), provided (g) is modified to read

(0.1) 0—CH{p) — C% @r R/(ug) — CEY(p)[-1] — 0.

Case (1) is treated in [13]; the present paper is devoted to finding the family of
complexes {C(*)} in case (2). In fact, given the data of case (2), we produce two
families of complexes. The complexes {]I(Z)} of section 2 are not minimal, but the
maps are well understood. The complexes {M(*)} of section 4 are minimal, but the
maps are very complicated, and less well understood.

We begin by recording what is known about R/K in case (2). Theorem 0.2 has
been established by De Concini and Strickland [10] using Hodge algebra techniques.

Theorem 0.2. Let Ry be a commutative noetherian ring, 2 < f < g be integers,

Vix1, Xgxf and uixg be matrices of indeterminates, R be the polynomial ring
Rolv, X, u|, and K be the R—ideal I (uX) + If(X) + I, (Xv).

(a) The ring R/K 1is reduced (respectively, Cohen-Macaulay, a domain, a normal
domain) if and only if Ry satisfies the same property.

(b) The ideal K is generically perfect of grade f + g — 1.
(¢) The ring R/K satisfies Serre’s condition (S;) if and only if Ry satisfies (S;).

The proof and notation of Theorem 0.3 may be found in Bruns [4]. The form

of the divisor class group of R/K, but not its generators, may also be found in
Yoshino [20].
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Theorem 0.3. Retain the hypotheses of Theorem 0.2, with Ry a normal domain.
Let

br — I, (v)+ K _ (v1)+Is_1(columns 2 to f of X)+K _ If_i(rows 1to f—1 of X)+K
3 = K y P2 = K ; O2 = K )
I 1(X)+K (ug)+Is_1(rows 1 to f—1 of X)+K
K

vy =-"—p"——, and p;=

represent various ideals of R/ K.

(a) Iff <g, then bs, as, and po all are height one prime ideals of R/K. Further-
more, C¢ R/K = Cl Ry & Z, where the summand Z is generated by the class [bs]
and the equations

[b3] = [az] = —[p2]
hold in C/R/K.

(b) If f = g, then bs, pa, vo, and py all are height one prime ideals of R/K.
Furthermore, C¢ R/ K = Cl Ry @ Z & Z where one summand Z is generated by the
class [bs], the other summand Z is generated by [t2], and the equations

[b3] = —[p2] and [vo] = —[p1] — [p2]

hold in C{R/K.

(¢) If wr, is the canonical module of Ry, then the class of the canonical module
of R/K in C/R/K is [wr,R/K]+ (g — f)[bs3].

(d) If P is a prime ideal of R, then (R/K)p is a regular local ring if and only if
(Ro)ronp is a regular local ring and Ig_1(X) + I (u)l(v) € P.

Section 1 is devoted to collecting the relevant facts; especially from the theory of
multilinear algebra. In 2, we define I®), prove that it is a complex, give examples,
and establish the duality between I(*) and 10—F~2)_ In 3, we identify the zeroth
homology of the complex I*); we establish homomorphisms from HO(H(Z)) to ideals
of Ho(I®)) = R/K (these homomorphisms are shown to be isomorphisms in section
8); and we record the short exact sequence of complexes (0.1) for the I*). In 4, we
split off a split exact summand of I(*) in order to produce the complex M(?) | which
is minimal whenever the data is local or homogeneous of positive degree. This
section concludes with a list of examples. The modules M(p, ¢, ), which comprise
the complex M(®) | are defined and shown to be free in 5. Section 6 is a calculation
about binomial coefficients which is used to find the rank of M(p,q,r). In 7, we
prove the results which are stated in section 4; thereby completing the proof that
M) is homologically equivalent to I*). In sections 8 and 9 we prove that the
complex I(®) is acyclic. The proof is by induction on g and uses the short exact
sequence (0.1). The inductive step is in 8 and the base case, g = f — 1, is in 9.

1. Preliminary results.

In this paper “ring” means commutative noetherian ring with one. The grade
of a proper ideal I in a ring R is the length of the longest regular sequence on
R in I. An R—module M is called perfect if the grade of the annihilator of M is
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equal to the projective dimension of M. The ideal I of R is called perfect if R/I is
a perfect R—module. An excellent reference on perfect modules is [6, Sect. 16C].
For any R—module F, we write F* = Hompg(F,R). If f: F — G is a map of
R—modules, then we define I,.(f) to be the image of the map A" F® (A" G)* — R,
which is induced by the map A" f: A" F — A" G. (In particular, if F' and G are
free modules, then I,.(f) is the ideal in R which is generated by the r x r minors
of any matrix representation of f.) Let F' be a free R—module of finite rank. We
make much use of the exterior algebra A\* F', the symmetric algebra S,F, and the
divided power algebra D4F. In particular, A®* F and A® F* are modules over one
another, and S¢F and D4 F'* are modules over one another. Indeed, if «; € /\Z .
bj € /\] F, A e SZ(F*), and Bj S Dj(F), then

ai(b;) € NT'F, bj(a;) e N7 F*, Ai(B;) € D;_i(F), and B;(A;) € Si_;(F*).

(We view /\l F, S;F, and D;F to be meaningful for every integer i; in particular,
these modules are zero whenever i is negative.) The exterior, symmetric, and
divided power algebras A all come equipped with co-multiplication A: A — A® A.
The following facts are well known; see [7, section 1], [8, Appendix], and [16, section
1].

Proposition 1.1. Let F be a free module of rank f over a commutative noetherian
ring R and let b, € \"F, b, € A" F, and ag € \ F*.

(a) Ifr =1, then (b:(agq)) (b,) = br A (aq(b},)) 4+ (=1)' oy (b, A D).

(b) Ifg=f, then (b.(ag)) (by,) = (=1)YU=P) (b (ay)) (b).

(c) If p=f, then [b.(ag)](b),) = br A ag(D)).

(d) If X: F — G is a homomorphism of free R—modules and dsy, € /\S+T G*,
then (A" X*) (A" X)(br)) (o)) = br [ (A7 X7) (600

Note. The exponent which is given in (b) is correct. An incorrect value has ap-
peared elsewhere in the literature.
The following data is in effect throughout most of the paper.

Data 1.2. Let F' and G be free modules of rank f and g, respectively, over the
commutative noetherian ring R. Let u € G*, v € F, and X: F — G be an
R—module homomorphism.

Note 1.3. We will always take A4, € S,F*, B, € D,F, oy € N"F*, b, € \"F,
cs € N°G, and §, € A?G*. In particular, a lower case subscript will give the
position of a homogeneous element, whenever possible.

Convention 1.4. Orient F' and G by fixing basis elements wr € /\f F,wp- € /\f F*,
wg € N?G, and wg- € N? G* with wp(wp+) = 1 and wg(wg-) = 1. All of our
maps are coordinate free; however, sometimes the easiest way to describe a map is
to tell what it does to a basis. Consequently, we fix bases flIl, ..., fIfl for F and
g, ..., gl9) for G. Let M, ... ol and ~M, ... ~9] be the corresponding dual
bases for F'* and G*, respectively.
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Convention 1.5. (a) Sometimes we think as the data of 1.2 as matrices:

11 N il','lf V1
u=[u ... u], X=1|"1: |, and v=
Tg1 --- Lgf vf
(b) If {u; }U{x i} U{ve} is alist of indeterminates over a commutative noetherian

ring Ry, and R is the polynomial ring Ro[{u;} U{z;x} U{v,}], then we say that the
data of 1.2 is generic.

Convention 1.6. The bases and orientation elements of Convention 1.4 are related
by the following equations:

wp=fUA L AE e = AL Al
we =g A AgH and wee =~ AL AAML
If I represents the ordered i—tuple of integers a1 < as < --- < a;, (we write |I| = i),

then let
fr Zf[al] /\.../\f[ai] and g :¢[ai] /\.../\gp[al]‘

Z@I@f}

[|=i

Notice that the element

of A" F* ® \"F is canonical in the sense that it does not depend on the choice
of dual bases fIU ... flfl and ol ... olf]. (Indeed, this element corresponds
to the identity map under the canonical identification of Hom(A" F, A" F) with
N F* @ \'F.) The above sum is taken over all ordered i—tuples of {1,...,f}.
(The ambient set in which [ lies, in this case {1,..., f}, will always be clear from
context.)

Convention 1.7. If by € A\? F, then we use (b, ® 1) x __ to represent the homomor-
phism A F* @ M — M, which sends o, ® m to b,(ay) - m, for any R—module
M.

Example 1.8. Adopt Data 1.2. The easiest way to prove the identity

Y owr®X(fr)= ) X'(ww)@gx €F @G,
T|=1 |K|=1

is observe that both sides become X (by), upon application of (b; ® 1) * __, for an
arbitrary element by of F. (Notice that I C {1,...,f} and K C {1,...,g}, and, as
promised, this is clear from the context.)

Lemma 1.9. Adopt Data 1.2. If k is a fized integer, o, € N" F*, by € A\ F, and
b, € \"F, then

(a) Alay) =22 > ¢r @ fi(ay),

i |I|=i
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(b) X ¢x @ fr(ap) = (=DM 57 fr(op) @ ¢x,

|K|=k |K|=p—k

() > ¢r A frlap) = (Z)O‘p;
|K|=k

(d) aplbg Abr) =3, |HZ_‘<—1>q<p—i>sof<bq> A L1 (e)](br),

(€) X Yk ®@fk ANbgAby= > belek)® fr Aby,
|K|=k |K |=k+q

0 3 Balorllfic nb) = (12,7)0g A br, and

&) X ex®fr= Y (1) fr(wp)® ok (wr).
|K|=k |K|=f—k

Proof. To prove (a), fix ¢ and project onto /\Z F*o NP ~' F*. Both sides become
bi(cy,), upon application of (b; ® 1)« __. Apply (b ® 1) * __ to both sides of (b).
The left side becomes Y br(¢k) - fr(ap) = br(cyp). The right side becomes

|K =k

(DN (b A fr)(ap) e = Y Frlbr(op)] - o = bi(y).

|K|=p—k |K|=p—k

Part (c) follows from (a), together with the well-known fact that the composition
/\pF* A)/\kF* ®/\p—kF* i> /\pF*

is equal to multiplication by (z) Part (d) is an immediate consequence the mea-
suring identity, [8, Proposition A.2], together with (a). Apply (bxy ® 1) * __ to both
sides of (e). The left side becomes

> bilpk) - fr Abg Aby = b Abg Ab,.
|K |=k

The right side becomes

Y b (bq(cpK)) e Abr= Y (bk A bq) (0K) - fic Abr = by, Abg Aby.
|K|=k+q |K|=k+q

Part (e) shows that the left side of (f) is equal to >  @x(fx A by Aby). One
|K|=k—q

may finish the proof of (f) by establishing the assertion when b, A b, is a basis

vector from AT F. Apply (b, ® 1) % __ to each side of (g); then use part (b) of

Proposition 1.1. [

Remark 1.10. With the exception of section 6, binomial coefficients play only a
minor role in this paper. Nonetheless, it should be mentioned, at the beginning, that
(T) is defined for all integers m and ¢. This binomial coefficient is zero whenever
i<0or0<m<i. Seel[l4,15] for more details.

Each complex I(*) of section 2 is obtained by splicing together two smaller com-
plexes. The next result is the multilinear algebra which is used in the proof of
Theorem 2.11 at this splice. It is not apparent, at first glance, but identities (a)
and (b) are actually dual to one another. The proof we have given of (b) emphasizes
this realtionship. On the other hand, one can give a proof of (b) which mimics the
proof of (a).
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Lemma 1.11. Adopt Data 1.2. Let o, € NP F*, by € N'F, o, € N F*, and M
and w be integers.

() Iff+1+w<p+r, then 3 (—=1)7(M") fr(ap) Aler(bg)](ar) = 0.

1EL
|I|=i

(b) Ifw+p+1<gq, then > (—1)1'(P+1) (Mw_i) fr [ap A lpr(bg)](aw)| = 0.

i€L
[1]=i

Proof. We first prove (a). For each pair of integers (M, w), let
Maw: NFFON FON F*—N\® F*
be the homomorphism which is given by

ht,w(ap @ by @ ) = Z (—1)" (M l) friap) Alpr(bg)] (o).
e

It is clear that hpr,, is the zero homomorphism whenever w < 0. Lemma 1.9.d
shows that
hM70(O‘p ® by ® o) = (_1)quq(0‘p A ap);

thus, the conclusion holds whenever w = 0. The proof proceeds by induction on w.
Observe that
by [harw(ap @ by ® a)]

(1.12)
= (=1)Phpsw(0p @ b1 Abg @ ) + har—1,w-1(b1(p) ® by @ o)

for all b; € A' F. Indeed, the left side of (1.12) is equal to A + B, where

A= (=17 (b [frlap)] Aler(bg)l(ay)  and

1E€EL
[1]=i

B = 3 (1" (M) fr(ag) b (fpr(bpl(an)
=

Use Proposition 1.1.a to write
b1 (ler(ba)l(@r)) = o1 A er(ba))(ar) = ([b1(e)](b0)) (ar) + (=1 (1 (b1 Aby)) (ar)-

Apply Lemma 1.9.e to see that B = By + By for

By = Z (=)=t (M0 friby ()] A [or(bg)] () and

By =Y (="M fr(ap) Aler(by Abg)l(ar) = (—=1)Pharw(ap ® b1 Abg @ ar).
iz
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A short calculation yields that A + By = har—1,w—1(b1(0p) ® by @ o). Now that
(1.12) is established, we continue with the induction. If f + 1+ w < p+r and the
induction hypothesis is known to hold at w — 1, then (1.12) shows that

by [hM,w(ap X bq 0%y ar)] = (_1)phM,w(ap ® by A bq X 047’);
hence,
hat,w(op @ bg ® o) = (—1)Pb, [th(ozp ®1 ®ar)} = (- l)pq( ) bg(ap AN o) = 0.

Now we prove (b). Assume that w+ p+ 1 < g. We prove

L13) YU (£ [ Aler(bo)l(an)]) (wr) = 0.

1€ZL
| I|=4

Let A(oy,) = 3 of o’ Ul with o) € A® F* and a, . € AP7° F*. Fix I, with
s, [4]

|| = 1. Proposition 1.1.c, together with the measuring identity, gives

(1 |ow A ler(bo)l(an)] ) i) = f1 Aoy (01(bg) A (wr) )
= Z D@ £ A a1 (by)] A a2 [y (wr)]

= 3~y dmatiatig [l (5)] A [f1(0l5) A an)](w).

s, [4]

It follows that the left side of (1.13) is

312 37 (1)1 (M o [l (b)) A (@ A )] (W),

€7
s, [4] P

which is zero by part (a). O

The phrase “Koszul complex” has two meanings in this paper. If X: ' — R is
a map of free R—modules, then the Koszul complex associated to X is

(1.14) AN FE S ANTTR S

where

= Z X(f1> 'SOI(bQ)a

|I|=1
for all b, € A\? F. Of course, if b, = bl A ... A bl with bl] € F, then

q
0 (bg) =D (1) FIX ) M A ABETIT AR A A Bl

=1
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see Lemma 1.9.a, if necessary. If X: FF — (G is a map of free R—modules, then the
Koszul complex associated to X is

(1.15) L8 G OR NF L S Gor NTIF S

where

9 (s ®bg) = Z s X(fr) ® ¢r(by),
|I|=1
for all s € S¢G and all b, € A7 F. If the G of (1.15) is equal to R, then the two
complexes are much different. We will always make our meaning clear.

Remark 1.16. Tt is well known that if the map X, of (1.15), is an isomorphism,
then the graded strand

.iSpG®RAquSp+1G®R/\q_1Fg...,

of the Koszul complex associated to X, is split exact for all integers p and g,
provided p + q # 0.

A quasi-isomorphism of complexes is a homomorphism of complexes which in-
duces an isomorphism on homology. Two complexes A and B are homologically
equivalent if there is a sequence quasi-isomorphisms between them:

A=AO0 L AW _A®@ ... Al _, A(M) — B,

We close this section by recording two conventions which simplify the description
of the differential in the complexes of section 2.
n(n+1)

2

Notation 1.17. For each integer n, let 6, = (—1)

Observation 1.18. Ifp, q and r are integers then
(a) Opfps1 = (=1)P*,
(b) 6,0,y = (—1)P", and
(€) 0,040,410,y = (—1)PFOT,

Proof. 1t suffices to prove (b) and this is trivial.

Convention 1.19. For each statement “S”, let
1, if Sis true, and

) —
X() {o,ﬁSBmw

In particular, x(i = j) has the same value as the Kronecker delta d;;.

2. The complex I(?),

Given the data of 1.2, we create a family of complexes {I*) | z € Z}. The free
R—modules which are the building blocks for the I(*) are introduced in Definition
2.1. The official modules, maps, and grading of the I(*) are given in Definition 2.3.
The proof that I*) is a complex occurs in Theorem 2.11. The duality between
I(*) and 19—f~%) is established in Proposition 2.12. An informal description of
the complexes I*) is given in Remark 2.2. The calculations which verify all of
the assertions in this remark are equivalent to the proof of Theorem 2.11 and
Proposition 2.12. Some example of I®) for small f and g are given in Examples
2.5 — 2.10.



TWO VECTORS AND A RECTANGULAR MATRIX 11
Definition 2.1. Adopt Data 1.2. Let

L(p, g7, 5,t) =S, F*@ N F*@ N"Feo \°Go Rv®),
Ulp,q,7) = NP F e N'G* @ Ru(™,
T(p,q,7) = N\'F* @ NG ® R\, and

) =

W(p,q,7,5,t) =D,FRN Fo N F*& N\ G @ REW,

where each of the modules Rv®, Ry, RA") and R¢® is a free R—module of
rank one.

Remark 2.2. Retain Data 1.2. Let S be the symmetric algebra SEF*. Define a
DG—algebra LL over S and a DG—algebra U over R as follows. Let

Ns (S®r (F*®F Q)

be the Koszul complex, in the sense of (1.14), which is associated to the S—module
map

SQrR(FFOF®G)— S : b11 = v(ar) + a1 + [X 7 (u)](b1) + ulcr),

for ay € F*, by € F, and ¢; € G. (Notice that v(aq), [X*(u)](b1), and u(cy) are all
in SoF"*; however, «; is in S;F*.) The DG—algebra

— [A\Y (S ®g (F* & F&G))] <v>

is obtained from this Koszul complex by adjoining a divided power variable v which
kills the cycle

1 1
See|f| - x| 1
[1]=1 1 [1]=1 gr

Let AL(F @ G*) be the Koszul complex, in the sense of (1.14), associated to the
R—module map

FoG* — R: {gi] — [ X (w)](b1) + [X (v)](61)

for by € F and 6; € G*. The DG—algebra
= (A(F &) <p>

is obtained from this Koszul complex by adjoining a divided power variable . which
kills the cycle [_Uu} In the language of Definition 2.1, we have

L= @L(p,q,r,s,t) and U= @U(p,q,r)
0<t 0<r
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as R—modules.
Fix a non-negative integer z. Observe that

L'= @ Lpgrst)+ @ Lpgerst)+ @ Lpgrst)

s+t<g—1 z<p+t p+q+t<z—1

is a subcomplex of I and

U= P Upagr

qg+r<z—1

is a subcomplex of U. Let L represent the complex L/’ and U represent the
complex U/U’. The left most summand of U is U(0, z,0). For each element ¢, of
A\® G*, observe that

z—1
Y(,)= > 1®(/\z_tX*)(’yj)®1®gJ/\5Z(wg)®V(t)EZL(O,z—t,O,g—t,t)

t<z—1 t=0

|J|=2—t

is a cycle in L. Define 7: U — L by

T(bp @8 @) = Y (SDPHEES I (AT X ) (1) Apr @ f1 Abp ® g Ag(we) @)
{(t,s)|t<z—1, q<s+t}
|J|=s
[T|=r+q—s—t

Observe that 7 is a map of complexes which extends the map

z—1
Y:U(0,2,0) > Y L(0,z—t,0,g —t,t).
t=0

Let C®) be the subcomplex

@ U(p,q,7) @ @ L(p,q,r, s,t)

{(p,q,m)Ip+q+r<f—1+z and p+r<f—1} {(p,q,r,8,t)|r+s+t<f+g—1}

of the mapping cone of 7. The left most summand of C*) is L(z — 1,1,0,g,0).
We give this module position 0 in C*) The complex I*) is obtained by splicing
(C(gff*z))* [—(g+ f—1)] and C*),

The conventions of 1.17, 1.19, and 1.3 are used in the next definition.

Definition 2.3. Adopt Data 1.2. Fix an integer z. Define the free R—module I(*)
by
1) = W& ¢ TR ¢ U ]L(Z), where

W = @ Wi, T - T
s T

U = @U(p, q,r), and L&) = @L(p7Q7T78’t)7
7§ 7"
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for

(2) 2f+z+1<qg+r+s+t, ptg+r+t<f,
To = t
W {(p,q,r,s,)‘ r+s+t<2f+z and 1<p+qg+t ’

Téz)Z{(p,q,T)lvaqﬁLrSf—l, f-g9g+z<r 0<qg+r and p+r<2f—-g+z—1}
Téz):{(p,q,rﬂogr, p+g+r<f—-14z p+r<f—-1, and z<qg+r}, and
T ={(pq,rs,t) [p+t<z—1, g<s+t, z<p+q+t, and r+s+t<f+g—1}.

The module I®) is graded by the following rules:

(a) the position of L(p,q,r,s,t)isq+r+s+2t—1—g,

(b) the position of U(p,q,r) is p + q + 2r,

(c) the position of T(p,q,7) isp+q+2r+g— f+1, and

(d) the position of W(p, q,r,s,t) is 2p+q+1r+ s+ 2t — f.
Define an R—module homomorphism d: I(*) — I(*) as follows. If

r=A4,00, b, ®cs ® v e L(p,q,r,s,t) C L&),
then

xX(z+1<p+qg+t)A, @v(ag) @by ® cs @ v
FXP+t<2-2) ¥ 91 Ap® frlag) @by @ cs @ v®)
[I|=1

+(=1)%4p ® ag ® [X* (u)](br) ® cs @ vV
+x(@+1<s+1)(=1)1T"A, ® ag ® by @ u(cs) ® vb)

+(-1)Ix(@+1<s+ )Y 97 Ap®ag® frAbr @ ce @D
|J]=1

+ (DIt 3 X*(yk) - Ap @ ag @ br @ g Aes @ VI,
|K|=1

Ifz=0b,®0,® ™ € U(p,q,7) C UG, then

[X* (w)](bp) ® 8¢ @ ")

+x(z+1 < g+7)(=1)Pby @ [X(v)](8¢) © u™)
+x(1<P)x(z+1<g+r)vAby, @35 @ pulr—b
+x(1 <) (=1)P by @ uA dg @ p(r=1)

+ > ()PP @ (A° X*)(7s) Apr ® fr Abp ® g5 Adg(we) @ v(®).
(eole<e a<ote)

[I|=r+q—s—t

fr=0,®c® A7) e T(p,q,7) C T®), then

(—1)P~tu(ap) @ cq @ AT

+x(1 < g+ 7r)(=1)PTap © u(cg) @ AT
+x(f—g+z+1<m)x(L<qg+r)ap AX*(w)] ®cg@AT—D
+x(f—g+2z+1<7)(=1)Pap @ cq A X (v)] @A

+ T emannfie (NP9 X) (o1 A ap)wrl) A cq] (wee) @ ul®,
|I|=q+r—t
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where o (p,q,7,t) = (—1)"t*Tf9,0, (f_,:f:j[’]:zﬂ). If

v =B, @b, ®a, ®5, 0" € W(p,q,r,s,t) C W),
then d(x) is equal to
Bp @by Av® ar ®35s @ EED)

+ 3 @1(Bp)®@bg A f1 ®ar ®5s @ ED
[I|=1

+X2<p+a+t)(—1)1Bp @by ® ar A[X*(u)] @ 6, @ D
+Xx2<p+q+t)(-1)1"By by @ ar @ 85 Au® XD

+ (=)t S o (Bp) ® by ® fr(ar) ® 6 @ D
|I|=1

+ (—1)atrts ‘ lZ e1(Bp) ®bg ® ar @ [X(f1)](85) @ £HHD
I|l=1

+80By T (DFterraeratalo (b)) (ar) @ 6:(we) A (AT X)(fr) @ Alrtettma-ize,

e<qg+s+t—f—z2—1
|I'|=¢

Notes. (a) When we want to emphasize the data which was used to construct
(I*), d), we write 1*)[u, X, v].

(b)  The definition of d uses many module and algebra operations. For example,
the module action of A®*F on A® F* is used in v(ay), the multiplication of the
symmetric algebra SeF* is used in ¢ - A,, the exterior multiplication of A\®* G is
used in gx A cs, and the module action of S¢F™* on DG F is used in ¢ (Bp).

Remark 2.4. Retain Data 1.2. Suppose that R is a graded ring and that each map
of
0— R(-3) % R(-2)f 5 R(-1)9 %R

is homogeneous of degree zero. A quick check verifies that, if 0 < z, then I*) is a
homogeneous complex with degree zero maps, provided

(a) the shift of L(p,q,r,s,t)isp+q+2r+s+3t—g—z,

(b) the shift of U(p, q,r) is 2p 4+ 2q + 3r — z,

(c) the shift of T(p,q,7)isp+q+3r+29—f — z, and

(d) the shift of W(p,q,r,s,t)is2p+2¢+r+2s+3t—f—3—z.
For example, by (b) we mean that

U(p, q,7) = R[—(2p + 2q + 3r — 2)] D).

(If z = —1, then the appropriate grading on I(?) is obtained by subtracting 1 from

each shift in (a)—(d). This convention allows R[0] to be summand of ]I(()Z), whenever
—1 < z. See Corollary 4.11.b or Example 4.12.)

Example 2.5. If g = 0 and f = 1, then I®) is acyclic for —1 < z; indeed, I(*) is
equal to
0 — T(0,0,0) = R, if -1 =z,
0 — 1U(0,0,0) = R, if 0 = 2,
0—L(z-1,1,0,0,0) =R, ifl1<z,

where each module R is in position zero.
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Example 2.6. If g = f = 1, then the complexes I(*) of Definition 2.3 are

—1=2z: 0—W(0,1,0,1,0) % T(0,1,-1) — 0,
0=z: 0— T(0,0,0) -2 1U(0,0,0) — 0,
l=z: 0—U(0,1,0) % 1L(0,1,0,1,0) — 0, and
2<z: 0—-L(z—21,0,0,1) 5 L(z —1,1,0,1,0) — 0.

Furthermore, each complex is 0 — R X R0

Example 2.7. If g =1 and f = 2, then I(¥) is

0— ) - ) — 1(0,0,0),
T(0,0,1) U(1,0,0)

where, in the notation of Convention 1.5.a,

—U1 0
d2 = 1 —X2 and d1 = [.Il’l)l + Tovy ULTq ’U,lxg] .
U2 T

If the ideal generated by the entries of d; has grade 2, then 1) and I(-1) (which is
the shifted dual of I(9) are both acyclic.

Example 2.8. If g =1 and f = 2, then I(V) is

L(0,2,1,1,0)
S
0—-U0,1,1) % U001 -2
D
U(1,1,0)
with
— s [ U121
V2
I 0
d3 = | xiv1 + 2202 |, d2 =
U1 _(;)1
V2 0
di — V2 —U1r1 —UIT2
L 0 0

1L(0,2,0,1,0)
@ d
L(0,1,1,1,0) <% 1(0,1,0,1,0),
>
U(0,1,0)
U1 0 0 0 7
0 1 —T 0
(%) 0 0 —X1
0 0 - o |>8nd
—U1 1 0 —XT2
0 —U1 U1 (AR
0 0 —I1
—UuU1ry —Urxr2 —I2

The above complex is homologically equivalent to

0— R R %2 RS % R with
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T U1 ULIT2 0 0
T 2 0 (%) 0 —T1
1
53 = v ; 52 = —U1 0 —X2 0 s and
v —v2 U1 I —T2
2
U1V 0 0 UL
S V2 — U1 0 0 —X1
1 prm—
—U1 0 —UuU1xry —Urxry2 —I2

This complex is easily seen to be acyclic when the data is generic in the sense of
Convention 1.5.b.

Example 2.9. If g = f = 2, then the complex I(?) is
T(1,0,0) U(1,0,0)

& &
0 — T(0,0,1) -5 T(0,1,0) -2 U(0,1,0) 2% 1(0,0,0) — 0.
& e
U(0,0,1)  T(0,0,0)

If the bases A1) for T(0,0,1); ol o2 for T(1,0,0); gl!l, g/ for T(0,1,0); p* for
U(0,0,1); fIU, fBI for U(1,0,0); 4N, 42 for U(0,1,0); —A© for T(0,0,0); and p©
for U(0,0,0), are chosen, then, in the notation of Convention 1.5.a,

0 0 T22 —T12 U1

0 0 —xI21 T11 (%)
do = | —T22 T2 0 0 —u |,

T2  —T11 0 0 —U2

—U1 —V2 (5% U9 0

and the entries of dy and d3 are the maximal order pfaffians of ds.

Example 2.10. If g =4 and f = 2, then the complex I(?) is

L(0,2,0,4,1) L(0,2,1,4,0)
D 57
L(0,2,1,3,1) L(0,1,1,3,1) 1L(0,2,0,4,0)
U(0,2,1) ® ® @
as @ da U(0,3,0) ds 1.(0,2,0,3,1) ds 1L(0,1,0,3,1) 0
0—T(0,0,1)— T(0,1,0) — (S) — 5] — @ —1L(1,1,0,4,0).
& U(0,1,1) L(0,1,0,4,1) L(1,2,0,4,0)
T(1,0,0) @ @ &
U(1,2,0) L(1,2,1,4,0) L(1,1,1,4,0)
D @
T(0,0,0) U(0,2,0)

Theorem 2.11. The modules and maps of Definition 2.3 form a complex.

Proof. A straightforward calculation shows that if z is an element of I(*) of position
i, then d(z) is an element of I(?) of position i — 1. We record the interesting parts of
the calculation that d o d(z) = 0. If = is in L.(*), then the calculation is completely
routine. Next, we let z = b, ® §, ® (") € U(p,q,r) € U*). Decompose d o d(x)
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as A+ B + C + D, where every term of A is in U®), every term of B+ C + D
is in L(*), every term of B involves u, every term of C involves v, and the terms
of D involve neither u nor v. There is no difficulty seeing that A = 0. We have
B = Bl —|— B2 —|— Bg —|— B4, Where

By = S (—)PSHEPEL @ (NS XY (v5) A wr @ f1 A[XF(w)](bp) ® g1 A g(wa) ® V(0.
{(t,S)Itéljl—_l, g<s+t}

[I|=r+q—s—t

By=x(1<r) Y (1P @ (A X*)(v0) Apr @ f1 Abp @ gy A (uAdg)(wa) @v®),
ol abiete)

|I|=r4+qg—s—t

Bs = S (—1PstpEstra @ (A X*) (1) Aer ® [X*(w)](fr Abp) ® gg Adg(wa) @ v,
{(t,s)ltﬁlil—_l, q<s+t}

| I|=r4+q—s—t
and

By = > (—1)PsHE R (N° X*)(70) Apr ® f1 Abp @ u(gy A dg(wa)) @ v®.
{(t.9)|t<2—1, q+1<s+t}

|[I|=r+q—s—t
The module action of A* F* on A* F yields that B; + Bs is equal to

ey <(_1)pS+P+s+r+q®(/\5 X)) A pr @ [X*(W)](f1) Abp @ g1 A Sg(wa) @ v,
t,s)|t<z—1, g<s+t
J

which, according to Lemma 1.9.e, is the same as

Y (Pt (ATTLX) (v Au) A s @ fr Abp ® g Adg(wa) @ v,
{(t,9)[t<z—1, q<s+t}
|J|=s
| I|l=r4+qg—s—t—1

The factor x(1 < r) may be removed from By, without affecting its value, because
if » <0, then || < 0 and the rest of By is already zero. We see, from Lemmas 1.9.e
and 1.1, that By 4+ By is equal to

(—1)PsTE @ (A° X*)(vs) A1 ® f1 Abp @ u(gy) Adg(we) @ v(®
{(t,s)ltﬁz‘f‘ly q+1<s+t}
J|=s
|[I|=r+q—s—t
= Y (=Pt (AT X (v Au) Apr ® 1 Abp @ gs A dg(wa) @ v(®).
{(t,S)Itélz—l, g<s+t}
J|=s

| Il=r4+qg—s—1—t
It is now clear that B = 0. The calculation that C' = 0 is similar to the calculation
for B; hence, we omit it. We see that D = D1 + Dy + D3, where

Dy = S (1P PR @ Fie (AN° X*)(v) Apr) @ fr Abp ® g Adg(wg) @ v,

{(t,9)|t<z—2, g<s+t}

|[I|=r+g—s—t

|K|=1

Dy = S (—)PEPEs AT G @ (AT X*) (1) A1 @ fr A f1 Abp @ g5 Adg(wa) @ v,
{(t,s)[t<z—2, g<s+t}
| J|=s
[I|l=r4+g—s—t—1

|K|=1
and
D3 = Y (=DPEX (7)) @ (A° X*)(vs) Apr ® f1 Abp © g A gy Adg(wa) @ v(®).

{(t,9)|t<2—2, g—1<st+t}
J|=s
[I|l=r4+g—s—t—1
[K|=1
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Apply Lemmas 1.9.e and 1.1.d to see that Dy + D5 is equal to

(~)PsF P or @ i (AT X)) Aer @ f1 Aby @ g A dy(we) @ v®
{(t,9)[t<2—2, g<s+t}
|J|=s e
[I|=r+q—s—t
|K|=1

D P e (A X (IXUN00) Aer i A by @9 A bu(we) @ 1.
t,8)|[t<z—2, ¢g—1<s+t
\J\:sfl
[I|=r4+g—s—t—1
|K|=1

On the other hand, Lemma 1.9.e yields that Ds is equal to

e §_1)p8+t+sX*(7K)®(/\SX*)(9K(’YJ))/\<PI®f1/\bp®9J/\5q(wG)®V(t)~
t,8)|t<z—2, ¢g—1<s+t
|J|:sfl
[ Il=r4+q—s—t—1
|K|=1

Example 1.8 shows that D = 0.
Let 2 = a, ® ¢, @A) € T(p, q,7) C T*). Decompose dod(x) as A+ B+ C + D,
where every term of A is in T®), every term of B 4+ C is in U*), every term of B

involves v, every term of C' involves u, and every term of D is in L(*). There is no
difficulty seeing that A = 0. We have B = B + By + B3 + By, where

0<t
[T|=q+r—t

®/J,(t) R

{(1)?1 S (o= L)1 @ (NP7 X) (o1 Av(ap))wr]) Acq| (war)
B1 =

X(f_g+z+1§7n)(_1)p Z Uz(p)Q+17T_17t)fI
0<t
Bs = [T|=q+r—t

® [(/\f_”_q_’"+t X) ((w A ap)[wp]) Acg A [X(v)]} (wa) @ p®),

x(f+z—g+1<p+r) ¥ os(p,q,rt) (=) f;
0<t
B3 = |I|=q+r—t

X)) ([(M P77 X) ((er Aap)lwr]) Aeq| (o)) @u®,  and

Xf+z—g+1<p+r) ¥ ou(pgrt+1oAf
o<t
By = [ I|=q+r—t—1

® [(/\f‘i’l*P*Q*’I“Ft X) ((4;71 A ap)[wF]) A Cq} (wae) @ p®.

Notice that the factor x(f —g + 2z + 1 < p + r) may be adjoined to By without

changing its value, because f — g + z < r (since (p,q,r) € Téz)) and 1 < p (or else
By, which contains the factor v(cy,), is already zero). Also notice that

Uz(p - ]-7 q,7, t) = (_1)pUZ(p= q, ’l“,t + 1)
It follows that By 4+ By is equal to

X(f —gtz+ 1 S P+ 7ﬁ) Z (_1)q+ritilaz(p7quat + l)fl
0<t
[T|=q+r—t

® (/\f+1—p—q—7’+t X) (1} A (pr A ap)[wp]) A Cq} (wa=) @ p®.
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In By, the condition f —g+ z+ 1 < r holds automatically (if this hypothesis is not
met, then the binomial coefficient is zero, see Remark 1.10); consequently, in term
B27

X(f-g+z+1<r)=1=x(f-g+z+1<r+p)

Observe that
(_l)q_‘—T_t_lUZ(pv quvt + 1) + (_l)f"rt—?“gz(p’ q+ 17T - lvt) + (_1)q+r_tgz (p7 q,T, t) = 07

and therefore, B = 0. The calculation of C' is similar; we have omitted it. We have
D is equal to

Z o (p’ q,r, t) Z (_1)(q+r—t)s+7'+q+r—t+s
0<t {(m,8)|T<z2-1, g—f+p+r—t<s+7}
|I|=q+r—t [J]|=s

|K|=g—f+ptr—s—7
QN* X)) (V) Nk ® i A f1
g7 A ([(M 77074 X) (o1 A a)lor]) Aeq| (we)) (we) © (7,

Apply Lemma 1.9.e and Proposition 1.1.d to see that D is equal to

> 0z(p,q,7m ) ) (—1)7tatr—ttg—f+p—Tra—1)s
0<¢ {(r;8)|7<z2—1, g—f+p+r—t<s+7}
Hl=at+r—t |T|=s+f—p+t—q—r

|K|=g—f+p—s—T+q—t+2r

®fr(pr) A (SDI [Oép[wF]D [(/\f_p+t_q_T+s X*)(10)| ® fx ® gs Aeg @ v,

Replace s by { — f —t+p+ g+ 1r and t by ¢+ r — ¢ in order to obtain that D is
equal to

Z (_1)r+z+qf9p9q<f—1—13—i) $ (—=1)7Tit(g—f+p—r+itr)(E—f+itp)
isatr A {mlrsaT g=asti)

|K|=g—£¢—T1+7r

@f1(ex) A (o1 [onlwr]]) [(A°X*) (1) ® fixc @ 95 A cq @17,

Notice that ¢ < g + r is not a real restriction, because we every non-zero term
already has
i=|I<|K|=g—0—717+7r<q+r;

thus, D is equal to

(_1)r+z+qf9p9q N (—1)7Hg=Ftp—T+r)(t—f+p) g
{(Tyﬁ)lfﬁzl;l;g7q§€+f}
|K|=g—f— 7+
S (e (TR (o) A er oplor]] ) [N X9 0] @ fxc
|I|=1

®gg N cq @ v,
In the language of the proof of Lemma 1.11, we have that D is equal to

(—1)rt=tafg 0, > (=1)7He—f+p—T+r)(t—f+p) g

{(r,0)|7<z—-1, g—q<t+7}
J|=¢
|K|=g—£4—T1+T

hf—1-prig—f—= (SDK ® aplwr] ® (A X*)(W)) ® fKk ® gy Acqg@v(T),
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The hypothesis “f + 1 +w < p+ »r” from Lemma 1.11 is satisfied because
fH1+(r+g—f—2 <|K|+|J]],

since 7 < z — 1. We conclude that D = 0.

Let 1 =B, ®b; ® ap ® 65 ® £ c W(p,q,r,s,t) C W, Decompose d o d(z) as
A+ B+ C + D + E, where every term of A is in W®) | every term of B + C + D
is in T(*), every term of B involves v, every term of C' involves u, the terms of D

involve neither u nor v, and every term of E is in U®*). There is no difficulty seeing
that A = 0. We have B = By + By + B3, where

Sp0Bo Y (Snfterranreteafo; (v A byl (ar)
Bl — 5SQ+S“§|t:—El—f—z

®6s(we) A (NS X)(f1) @ Aatstt—g—1—c)

|I|=¢

®ds(wa) AN (N X)(f1) ® A(g+s+t—g—e—1)

6p0Bo > (—D)Frotitartsgtr=iiy A pr(bg)](ar)
By — e<qts+t—f—z—1
2 |1]=¢
(X)(SS(WG)/\(/\E,X)(fl)(g)A(q-f—s-i-if—y—l—zs)7 and
0Bo X (~nFretttertest | (u(e)) (b)] (ar)
B3 = e<q+s+t—f—z—1

Apply Proposition 1.1.a to see that B = 0. We have C' = Cy + Cs + C3 + Cy, where

Ci = e<qts+t—f—2—2

|I|=e

{ 6p0Box(2 < g +1t) ™ (—1)f tott—1+artetatsgtr
(1 ()X * (W)] A ar) ® 6s(wa) A (A X)(fr) @ Alatstt—g=2-2)

0p0Box(2 < g +1t) 3 (—1)f+t—1+artetrtsg
Cy = e<qtstt—f—z—1
2= |T|=¢
[e1(by)](ar) ® (8s Au)(wa) A (A X)(fr) @ Aatstt—g—1—e)

e<qts+t—f—z2—1
|I|=¢

[o1(b)](ar) ® u(ds(wa) A (A° X)(f1)) @ Al@TsH1=97179) and

{ 5p0Box(2 < q+1) ) (—1)f+o+t+ar+sg+r

{ 5pOBOX(2 <q+ t) Z (_1)f+t+qr+sg+r—s+s
Cy =

e<qtstt—f—z-2
|I|=¢

[X*(w)] A [or(bg)](ar) ® 8s(wa) A (A X)(fr) @ Alatstt—g—e=2),

Cy =

Apply Lemma 1.9.e to see that Cy + (5 is equal to

dpoBox(2 < g +1t) > (—1)f +g+t+artsg+rtl

e<qgtstt—f—z-2
|I|=¢

[[X*(u)] (w(bq)” (ar) ® 8s(we) A (N X)(fr) @ Aatst+t—g—2—¢)



TWO VECTORS AND A RECTANGULAR MATRIX 21

Proposition 1.1.a yields that C' = 0. We have D is equal to

dp1 2 p (—1)ftotirartrietitegp;(By Abg)(ar) ® 8s(wa) A (AT X)(£)
e<q+s+t—f—z
@L;\‘(Eis—s—t—g—@
+dp1 > (—1)FtotitartsatrB, A (bg)](ar) ® 8s(wa) A (A° X)(f7)

e<q+s+t—f—=z
|J|=e

@N(at+st+t—g—e)

o X (~pfrtrarsetria [(By (o)) (be)] (ar) ® Sslwa) A (AT X) ()

e<qts+t—f—=z
| J|=¢

QA(atsti—g—c)

which is zero by Proposition 1.1.a. We have E is equal to

8»0Bo b (_1)f+g+t+qr+s+q+sy 3
e<q+4s+t—f—2z—1 o<~
[T]=e |J|=q+t—1—7

o(r—q+e9—s+eqg+s+t—g—1—e,7)fs®
[(AFT77757 X) ((p Alipr (b)) (@) wr]) A ds(we) A (A° X)(F1)] (wer) @ )

dp0Bo > (—1)ftartsgte(t+ra)ts—1+z+(g—s)f O

e<q+tst+t—f—z—1 o<r
[T|=e |J|=q+t—1—7

— T—t—1r—
- 9’"_‘109_3(q—i—fit—e—f—j—l)fj@

(N30 (11 [es Aler@ol(n]) lor )| 62 @ .

No harm is done if we remove the condition ¢ < ¢+ s+t — f — z — 1; because, if
this condition fails, then the binomial coefficient is zero. The fact that (p, q,r, s,t)

is in Tévz ) ensures that parameters in every non-zero term of F satisfies
ett+r<qt+t+r=ptqt+r+t<f;

consequently, the top line of the binomial coefficient is non-negative and we may
apply (‘g) = (afb). It follows that F is equal to

SpoBo(—1)ftartsgts—ltzt(g—s)f > Or—qOg—sfr®
o<
17| =qFt—1—7

(N7 X)) (DD e ) ([ eanteranen] ) wp | | (8s)

eECL
[I]=e

@uT).
The fact that (p,q,r,s,t) is in T%(Wz) ensures that w + |J| + 1 < g, for
w=2f+17—-2t—r—q—s+1+z.

Apply Lemma 1.11.b in order to conclude that £ =0. [
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Proposition 2.12. The complezes I*) and (]I(g_f_z))* [—(g+f—1)], of Definition
2.3, are isomorphic for all integers z.

Proof. Consider the map ¢: I(?) — (H(g_f_z))* [—(g + f — 1)], which is given by

<z, >, ifzel® gaU®,
O rg<z, _>, ifzeTE oWk,

v = {

where the perfect pairings

W(p,q,r, s,t) @ L(p', ¢, 1", s, t) S R, and

<_,_>
L', ¢, ', s t') @ W(p,q,r,s,t)

R,

are defined by:

<@,y> = <y, @> = 808y g1 0p 1 8g ot x(patrsttrt'=f+g) - Bp(Ap) -belag) - ar(by) - 8s(cy),
for

T = Bp®bq®ar®5s®§(t) € W(p,q,7,5,1) and y= Ay@ay®b.Qcy ) ¢ L(p’,q',r", s, t),
and the perfect pairings

<_,_>

T(p,q,7) @ U(p',q',7") R, and

U, q,r") @ T(p,q,r) —=5 R,

are defined by
<z, Yy> = <Y, x> =ppgq * X (p-i- g+r—+r =f— 1> ~ap(byr) - cq(dyr), for

r=a,@c, @\ €T(p,q,r) and y=by @5y @ p e vy, q ).
A short calculation shows that

(p7quvsat) S TI[(AZ) — (p7Q7T757f +g —pP—q—Tr—5— t) € Tx%tl]_f_Z)a and
(pv%r) € TI[SZ) — (p7q7f —1 —P—q— T’) € T?%‘g_f_Z)‘
Moreover, it is easy to see that 1 carries the module in I®) of position i to the
dual of the module in I0~Ff=2) of position g + f — 1 —i. For example, U(p, q,r) has
position p + ¢ + 2r in I®), and T(p,q,f — 1 — p — q — r) has position
ptq+2(f-1-p-—q-r)+g—f+1l=g+f-1-(p+q+2r)

in 10=f=2) " At this point we have established that v is an isomorphism of graded
modules. It remains to show that if z is an element of L), U®) T(*) or W) in
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position i, and y is an element of L@—f=2) Ul—-f=2) TO—f-2) or WE—f-2) in
position g + f — 7, then

—Ofig<x,dy>, ifx € T®) and y € TO-F~2)

(2.13) <z,dy> = { )
<z,dy>, otherwise.

There are four cases to consider:

(1) zcL® andy € We—f-2), (2) z€U® andye Wo—F-2),

(3) 2€U® and y € TO-F-2), (4) zeT® and y e TO-F-2),

Cases (1) and (3) are easy; we omit them.

Case (2). Take z =0, ® 6, ® /N") e U(p,q,7) C U® and
y =By @by @ ap @5y @) W', ¢, s, t') CWo—F=2),
We compute that <z, dy> is equal to

6p’OBO Z 5p7“’+5—q’5qg—s’+sX(p+q+T+q/+3l+t/_g_EIf)
e<q'+s'+t'—g+z—1
|T|=e

(D) rottra ek g, (o) (by))(ar0)) - 8 (00 (we) A (AT X) (D))

SproBox(=p+q—q +1" + =g)x(p+q¢ +r+t' =flx(p—r' <"+t —g+2-1)
(_1)f+g+t'+q'r'+pfr'+5'g

S b (lergln) - b (wa)l ([(APF = X)) (60)) -

|I|=p+q’'—r’
In <z,dy>, we have x(p—1' < s+t —g+z2—-1)=x(p+qg+r<f+z—-1)=1.

The last equality holds because (p,q,r) € T&JZ). Apply Proposition 1.1 to see that
<z,dy> is equal to

S b (ler gl - [(APF7 =7 X)(f1) A bg(we)] (8).

dproBox(=p+q—q¢ +r'+5 =g)x(p+q +r+t = f)(~1)rpta+d’ s’
[I|=p+q'—r’

On the other hand, we compute that <dz,y> is equal to

( 1) t 50})/67‘+q7t q/6p+7‘+q757t 7"/697(14’8 S/X(p q 2 t t/ j )
t,s)|t<z—1, <s+t
{( )| T1=s q }

[I|=r+q—s—t

LBy ) - [(A° X)) Ar | (bgr) - [ £1 b () - [ 9 M dg(we)] (620)

oproBox(—p+a—d¢ +r'+s =g)x(p+r+d +t' =f)x(r+q—-¢ <z-1)
x(r' < p+r)(=1)pd +r+d +p+s'—g
S AT XG0 Ler )] - b [ fr(an)] - |90 A ba(w)] (800)-

[Jl=q+s'—g
[I|l=g—q+q’—s'

In <dz,y>, we have x(r' <p+r)=x(¢{ +r+t' < f)=1, and

Xr+q—¢d <z-1)=x(f+g—2+1<qd+r+s+t)=1
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In each case, the last equality holds because (p/,q¢,r’,s',t') € Tég_f -2, Apply
Lemma 1.9.b to see that <dx,y> is equal to
Sy 0Box(—p+q—q +7' +5 =g)x(p+r+q +t = f)(=1)r+ad+rtag-a=s"+p)—a
L2 o] b [lerbe)len)] - as Adywe)] (o).
=q+s’'—g

[I|=g+s"—g

In <dx,y>, we have ¢ + s —g = p+ ¢ — r’. The definition of the dual of a
homomorphism gives that

(A2 X )| 1) = (A2 X))

thus, <dx,y> is equal to

Spr0Box(—p+a—q +1' +5 =g)x(p+r+ +t = f)(—1)rtrHdr—a
S by [lpr(bg)en)] - [N X)) A Sa(we)] (600),

|I|=p+q’'—r
which is equal to <z, dy>, and (2.13) holds for case (2).
Case (4). Take x = o, ® ¢, @ A" € T(p,q,7) € T(*) and
Y=y Qcy ® A e T, ¢ ') C T2,
We see that <x,dy> is equal to
0;tffg—f—z(P’,q’,r’,t)x(p= d+r" —tx(g=g—Ff+p +r —t)x(p+qg+r+t=Ff—-1)

[I|=q/+v/—t
ap(f1) - eq ([N 77777 X) (o1 A ag)lwr]) A cg] (war))
- |1|Z:p og-5—-0 a7+ —p)x(p < ¢ +r")x(ea=9g—-F+p +p—1q)
- { xa+r+d +1 = =Dap(f1) - eq ([N 777 X) ((pr Aap)lwr]) Acg | (war)) -
Notice that x(p < ¢ +7')=x(p+q+r < f—1)=1;s0, <x,dy> is equal to
og_f—-0,4¢ "¢ +7" —p)x(-=p—p +q+q¢ =g—f)
{ X(a+r+d +1' = f = Veg ([N 7777 X) ((ap Aay)lwr]) Aeg | (wa+)) -

On the other hand, <dz,y> is equal to
Z Uz(P,q,T,t)x(q—i-r —t :p’)X(g_f_|_p_|_7, _t= q/)

o<t
| I|=q+r—t

xpt+g+2r—t+r' =2f—g—1)
fr(ap) - ([NT7717977X) (1 nap)lwrl) Acq] (war)) (eq)

IZ o:(p,q,rq+r—p)x@—f=-pr—-p0 +q+d)x® <q+r)
|I|=p’

= x(g+q¢ +r+r'=f-1)
Frlag) - ([N 7777 X) (1 A ap)wrl) Aca] (we)) (cqr).
In <dz,y>, x(p' <qg+7r)=x(p' +¢ +1r < f—1)=1; thus, <dz,y> is equal to
(—1pe'talf—p =p)+d @S = =Pl (p,q,r,q+ 7 — p)x(@— F=—p—p +a+ 1)
xa+d +r+1 = =g ([(N7777 %) ((ap A ap)lwrl) Acy] (wa))

The proof of (2.13) for case (4) is complete because

’ /7 /7

(—1)pp/+q(f_p/_p)+q/(q+f_p/_p)az(nqmqﬁbp') = —bf1gog s -0 d+r'—p). U
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3. Properties of the complexes 1(*),

The zeroth homology of the complex I¢2) is identified in Corollary 3.5. In Obser-
vation 3.3, we establish homomorphisms from Hy(I*)) to ideals of H(I(*)). (These
maps are shown to be isomorphisms in section 8.) Proposition 3.6 contains the
short exact sequence of complexes for I¢*) which was promised in (0.1); this exact
sequence is critical to the proof, in Theorem 8.6, that I(*) is acyclic.

Definition 3.1. Adopt Data 1.2. Let K be the R—ideal
K =1I§(X) + Li(X" () + L(X(v)),
N be the R—module which is defined by the exact sequence:

[(X* v 1®X*(u)]

GoN F o (F*oF) F* - N —0,
and O be the R—module defined by the exact sequence:
R/K
(FropNTeoNTeaFaNen| @ —mo,
/\f_1 G*
where
_ o1
ey ©65_0) = (N Xl )] (67-0) | M6 a) = { 0 ] -
v(ag) - 04 uNOf—2
Wby @6) = | 0 }
PN LI 0)]6s) |

Remark 3.2. It is not difficult to see that N and 91 are modules over R/K. The
only interesting part of this argument is the proof that the element

(A" X)(br)](65) A 6r

of /\f 1 G* is in the image of h for 1 < r < f. This proof proceeds by induction
onr. If 2 <r, then

n(br® (N X)(0,-0)] (65) A9
=[(A" X)(b1 ANbr—1)](6f) A dp—1 + an element of im h.

Observation 3.3. If the notation of Theorem 0.3, Convention 1.4, and Definition
3.1 are adopted, then there are R/K—module surjections N — bz, N — as, and
N —» po2.

Proof. 1t is clear that the map F* — R, which is given by a; — v(a1), induces a
surjection of N onto bs. Let d7_; be the element 1 A ... A yIF =1 of NG 1t
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is not difficult to see that the map m: F* — R, which is given by m(«y) is equal
to [(/\f_1 X*)(éf_l)] [a1 (wr)], induces a surjection of N onto ay. For example, if

ay € \° F*, then Proposition 1.1 shows that m(v(az)) is equal to

(A X)) [(ea)wr)| = [(AT7 X7)05-0)] oA as(wr))]
(=1 fas(wr)] (v (A X))
(=1 [z (wr)] [(AT* X7) (X (@)](05-1))| € K.

If by, is the element fRIA A FUEL of /\f_1 F'| then it is not difficult to see that
the map
ms: R/K & N 7' G* — R/K,

which is given by
mo [5:_1] =v(bf_1wp-]) -7 — [(/\f_1 X)(bf—l)} (65-1),

induces a surjection of 9 onto po. For example, if oy € F* and 65 € /\]L1 G*,
then mg o h(ay ® df_1) is equal to

v(bg-alwr-]) - (AT X) (@afwr])| (551) = v(an) - (AT X)(bg-0)] (0-)
= [0 ((vlbrmstor) nal) o] )] -0

(N0 (v A Bgr(wr) el lwr] )| (37-1)

= [X@) AN X) (bpoa(wr) A fwr]) | (07-1) € K. D

Let ng) denote the submodule of I(*) in position 3.

Lemma 3.4.

(a) Every non-zero summand of 1*) of the form L(p,q,r,s,t) has position at

least 0.
(b) If L(p,q,r,s,t) is a non-zero summand of ]Iéz), then (p,q,r,s,t) is equal to
(z—1,1,0,9,0).

(c) If L(p,q,r,s,t) is a non-zero summand of ]IY), then (p,q,r,s,t) is equal to
(z—2,1,0,g —1,1), ( — 1,2,0,9,0), (2 — 1,1,1,g,0), or (z — 2,2,0,g,0).

(d) Every non-zero summand of I*) of the form U(p,q,r) has position at least
2.

(e) If U(p,q,r) is a non-zero summand of I[gz), then (p,q,r) is equal to (0, z,0).

(f) IfU(p,q,r) is a non-zero summand ofﬂijzl, then (p,q,r) is equal to (1, z,0),
0,2+ 1,0), or (0,2 —1,1).

(g) Ewvery non-zero summand of 1*) of the form T(p,q,r) has position at least
z+ 1.
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(2)

(h) If T(p,q,7) is a non-zero summand of 1.7, then (p,q,r) is equal to

(()757 __.f - %, JF —g+ Z)'

(i) Every non-zero summand of 1*) of the form W(p, q,r,s,t) has position at

least z + 2.
H(z)

() If W(p,q,r,s,t) is a non-zero summand of I./,, then p = 0, ¢ = f,

r<f-1,r+s=2f+z andt=1-f.
(k) If —1 < z and j is negative, then ]I;Z) =0.

Proof. If L(p, q,r, s,t) is a non-zero summand of 1(*), then

0<(s+t—g)+(z—1—-p—t)+(p+gq+t—2)+r+t=q+r+s+2t—1—g
= the position of L(p,q,,s,t) in (=),

If U(p,q,r) is a non-zero summand of I(*), then
z2<(q+r—z)+p+r+z=p+q+2r= the position of U(p,q,r) in =),

If T(p,q,r) is a non-zero summand of I(*), then

z+1<p+(q+r)+(r—f+g9g—2)+2+1=p+q+2r+g—f+1= the position of T(p,q,r) in 1(2).

If W(p,q,r,s,t) is a non-zero summand of I*), then

242<(prgrt—1)+(grr+stt—2f—z—1)+(f—q) +p+z+2
=2p+q+r+s+2t— f= the position of W(p,q,r,s,t) in ). O
Corollary 3.5. Adopt the notation of Definition 3.1 with 1 < f. Then,

mn, if =1 =z,
Ho(I®)={ R/K, if0=z and
S.(N), ifl<z.

Proof. Lemma 3.4 and Definition 2.3 yield that
[X(2< HUO.1,0) & x(2 < HUL0,0) & T(0.9 — £, f —9)] - V(0,0,0) — Ho(1®) — 0

is exact, where

di(1©6 @ p0) =1 [X()](01) @ ul,
di (b1 @ 1® p) = [X*(w)](br) @ 1@ p”, and
(10 g g ©AT9) = (~1)5970,_; & (N X)(wr) A cyygl(we-) © n),
The calculation of Hy(I™) is due to the exact sequence

[L(o, 2,0,9,0) @ x(2 < f)L(0,1,1,g,0) ® U(0, 1, 0)} 4 1(0,1,0,9,0) — Ho(IV) — 0,
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where

h(1®a®10werv®)=10v(a) ®10ws @ v,
dl(l X aq ®b1 X wa ®V(O)) =—1®a1® [X*(U)](bl) ® wa ®V(O); and
di(1®6 @) =-10X"(6)®10ws .

Fix z with 2 < z. We have the exact sequence
I 25 L(z — 1,1,0,9,0) — Ho(I®)) -0,
where ng) is equal to

L(2—-2,1,0,9g—1,1)®L(2—1,2,0,9,0)®x(2 < f)L(2—1,1,1,9,0)®L(2-2,2,0,g,0),

di(A,_2 00 ®1Q 66 (we) @) =X*61) A, 2@ a1 ®1® we @ v,
(A1 Q01 0we D) =4, 1 v(a) ®1®@wg @O,
di(Aes1 ® b @we @v!0) = -4, 1 ®a; @ [X*(W)](b) @we @ Y, and
d(A:2®0®1Rwe@v!?) =) ¢r-A. 5 ® fila) @ 19w @ 0.

[7]=1

Notice that dy: L(z — 2,2,0,¢9,0) — L(z — 1,1,0,9,0) is the Koszul complex map
which is induced by the identity map on F*. Since

S, oF*@ N F* 28, Fra N Fr 2 S FF — 0
is an exact sequence (see Remark 1.16); it follows that
S, F* ®G*
S
S, 1 F* @ N°F* — S.F* — Hy(I®)) -0

D
S.F*®F

is exact, where the map is given by
Azfl 0%y 51 — Azfl : X*(51)7

Az—l & Qg — Az—l : ’U(Oég), and
A, @by — A, - [ X (w)](b1)-

Finally, we compute Ho(I"V). If f = 1, then it is not difficult to see that
Ho(I-D) and 9t are both equal to R/K. Henceforth, we take 2 < f. Identify ]Ié_l)
with R & /\fﬁ1 G* by way of

no: U(0,0,0) ®T(0,g —f+1,f —g—1) = Re N 7' G,
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where

n0(1®1®u(0)) — |:g‘)i| and n0(1®cg_f+1®)\(f_g—1)): |: 0 ] .

Cg—f+1 (wa+)
Identify ng) with the R—module M, which is equal to

xB<HGrexB<HFaFEoNTaeN2ara N Gre @ N FrapNTTITTeY),
r<f-1

by using the isomorphism n;: M — Hg , which is given by

ni(61) =1® 6 @ u'® € x(3 < £U(0,1,0),

ni(b) =b1 @ 1@ p® € x(3 < £)U(1,0,0),
ni(oa @ 0p 1) = a1 @6 1(we) @ A9V e T(l,g— f+1,f—g—1),
m1(0f—2) =1®65_2(wg) @A 97D e T(0,g - f+2,f —g— 1),

)
( f) = 1®5f(WG)®)\(f_g) € T(()?g_faf_g)a
(Oér®62f 1— 7‘)_1®WF®OKT®52f*17T®€(1_f) GW(O,f,T,Qf—].—T,]._f)-

Let ' = ngod; ony. We have an exact sequence

R
ML e S HICY) o,
/\f—l G*

where

i = [ KON = [ G0

h' (o ® 6p_1) = (—1)FHotHI90g 5oy - [(/\f_l X)[QI(WF)]} (5f—1)],
v(ar) - 051

h'(0f_2) = _(_1)9“% A (5f—2:|’
( 1)g+1+fg9 e ( )[(/\f )( F)} (5f)] and
(1)~ [X ()] (05)

W (05) =

, 0
h (o ® 0gf_1-r) = + [(/\f_r X) (ar(wp))] [52f—1—r]1'

Recall the map h from Definition 3.1. We make two observations. First, observe
that

h: FoN G* - ReNT'Gr and 1/: @ N FropAY TG - RepN TG
r<f-1
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have the same image because

B (b Abg_1_)(wpe) ® Gag_1_,) = £h <b1 ® [(/\”—7"—1 X)(bf_T_l)} (52f_1_T)) .

For our second observation, use Lemma 1.9.c to see that

: (~1)71905 g1 f05 (A X)(wr)) ] |
h K) ® gx (0 ;
P (¥ = 0o = [ X (0))(57)

hence, it follows that
{[(/\f X)ng)](éf)} _ (—1)g+f999_f (h’(éf) F (=)t Z W (X" (i) ®9K(5f))> .
|K|=1

At this point it is not difficult to see that Ho(I"D) = 9. O
~ g-1 - _ g-1
Proposition 3.6. Adopt the data of 1.2 and 1.4. Let G = @ ¢/, G* = @ 1,
i=1 i=1

X: F— G be the composition F X G=Ga Rgl9! proj, é, u be the restriction of
u to G, and u be the element

u=[u 0]:G=G®&Rg¥ - R

of G*. Form the complexes (]I(Z) d) and the modules K N and N using the data
X:F— G, ueG andv e F. Form the complezes (I,d) and the modules K and
N using the data X. F— G,ueG*, and v € F. Then, for every integer z, there
is a short exact sequence of complexes

0-1® 1% 1D [—1] — 0.
Furthermore, these short exact sequences induce the following long exact sequences
of homology:

(0))

o= H (IO - B IO - H(T) = N — K/K — 0,

when 0 = z, and

~ X* (,Y[Q])
5

S H (I S B (I - BT - S, S.N — S.N —0

when 1 < z, where SyN is taken to mean R/}?

Proof. The modules E(p,q,r,s,t),...,W(p,q,r,s,t) of Definition 2.1 are formed

using G in place of G. The modules L(p, q,7,5,t),...,W(p,q,r,5,t) are exactly the
same as L(p,q,r,s,t),...,W(p,q,r,s,t). Define

&: L(p,q,r,5 — 1,t) — L(p,q,m,5,1), ®:U(p,q,r) — U(p,q,7),

o: T(p,g—1,r+1) —>T(p,q,7“), and &: W(nq,r,s,t) — W(p,q,r,s,t)
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by
DAy Ry b @ce 1 @YD) =4, @, @b, @cs_1 A gl @v®,
®(b, @ 6, @ M) = b, @ 6, @ ),
Dy @ cq1 @A) = (=1, @ g9 A, @ A7) and
O(By ® by @y @6, 0EW) = (=1) 9B, @b, ® 0 @ 6 @ ¢,

Define

V: L(p,q,75,t) = L(p,g,r, 8t — 1), ©:T(p,q,r) - Ulp,qg—1,7),

U: T(p,q,7) — ﬁ'(p,q,r), and U: W(p,q,r,5,t) — W(p,q,r,s —1,1)

by

Ap Qg @br @cs @t if cg € \°G,

V(Ap ® g @ by ® ¢ @ (1)) = €
p ®ag®br ®cs 0, if cs =co—1Aglol i1 € NG,

0, if 6, € N9 G*,
U(by @64 @ pM) = ( .

—1)9bp ® 5q—1 @ u(M), if g =8q-1 Ay, 541 € A G*,

U(ap ®cqg @A) = ~
P 0, if cg =cq—1 A g9, cg1 € NG, and

0, if 65 € \°G*,

U(Bp @by @ ar @6 @ W) = _
(Bp © bg Bp @by @ ar @51 @EWD if 65 =~ A1, 51 NG

{ ap @cg @AM ifcg e NG,

It is clear that
0 —>£(p,q,7“78— 17t) gE(p,q,T,S,t) gf"(paQarasvt_ 1) —0

is a short exact sequence of R—modules for all integers p, q, r, s, and t. It is also
clear that

(p,q,r,s—l,t)efﬂiz) — (p7Q7TS t)ET() — (pvan',S’t—l)GTHEZ71).

Ifi = q+r+s+2t—1—g, then L(p,q,7,s,t) has position i in ﬂ(z); f[:(p, q,r,s—1,t) has
position i in 1(*); and JL(p, q,7,s,t — 1) has position i — 1 in I*=1. (Of course, this

means that L(p, ¢, 7, s, t—1) has position 7 in [G=)[—1].) The analogous statements
about

0 — Ulp,q,7) = T(p,q,r) ~ Ulp,qg — 1,7) — 0,
0—>'Tf“(p, —1,r+ )——>']T(p,q, )—\Ilﬁ’f‘(p,q,r)ﬁ(), and

O—>W(p,q,r,s,t) ( q,rst)—%W(p,q,rs 1,t) — 0
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are also easy to establish. A straightforward calculation shows that ® and ¥ are
maps of complexes. Some of the facts which are used in this calculation are:

(a () X*(u) € F*,

) X
)
()
)
)

(b) (gl ) 0,
u = u as elements of G*,
(d) wg =wg A g[g] war = ’y[g] ANWe,

(e) if &, is in A?G*, then [X(v)](d,) = [X(0)](d4) and 6,(we) = d4(wg) A g,
(f) gzz%q,ﬁt) (DG (p,g — Lr +1,t) = —G.1(p, . 7, 1).
Now that we have established that
01 2 1% L1111 S0
is a short exact sequence of complexes, we consider the induced long exact sequence
= (D) — H(@7) = Ho[¢7)) L Hy(I®) 2= Ho(T™) — 0

of homology for non-negative z. Use Corollary 3.5 to evaluate Hp. It is clear
that ®,: S, N — S.N is the natural quotient map. For positive z, we use the
snake lemma to verify that the connecting homomorphism 0: S, 1N — SN is

multiplication by the element X*(v19!) of the symmetric algebra S, &/ K(N ). O

4. The complex M®),

In this section we split off a split exact summand N*) from the complex I(*) of
section 2. The resulting quotient is isomorphic to the complex we call (M('Z), m).
The module structure of M(*) is given in Theorem 4.5. The differential m is given in
Theorem 4.8. The theorems are proved in section 7. The present section concludes
with numerical information about, and examples of, the complexes M(?),

Definition 4.1. Adopt Data 1.2. For all integers p, q, r, and z, let

V(p,q,7,2) = M(p,q,")[F*] @ A2 G, and
S(p, q,7,2) = K(p, q,7)[F] @ AP G,
where the functors M and K are defined in Definitions 5.2 and 5.4.

Definition 4.2. Adopt the notation of Definitions 4.1 and 2.1. For each integer z,
define the graded R—module M®*) by

M = DSk, q.7.2) & P Tr.0.r)© PUP.a.7) & PVip.ar =),

e e e e
where

S —{(pgr) |0<p<g—f—2—1, 1<q<f, 1<r<f},

S ={(p,g,r)|0<p, g-fF-2<q, f-g+z<r, prqg+r<f-1},
S = {(p,gr)|0<p, 2<q, 0<r, ptq+r<f—1+2z},

SO —{(pgr)|0<p<z—1, 1<q<f, 1<r<f},
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(a) the position of V(p,q,r,2) in M®) is f + 2 -2 —p+q—r,

(b) the position of U(p, ¢,7) in M) is p + ¢ + 2r,

(¢) the position of T(p,q,7) in M®) is p+q+2r+g—f +1, and
(d) the position of S(p,q,r,2) in M® is f + 2+ 14+p—q+r.

Observation 4.3. The graded modules
M and  (MEI7) [~(g+ f - 1))

of Definition 4.2, are isomorphic for all integers z.

Proof. 1t is clear that the sets Séz) and Sé,g %) are equal. Also,
(p,q.7) €S <= (pa.f-1-p—q-r)eSe I

The ideas of Propositions 2.12 and 5.5 produce isomorphisms

[ EB U(p,q,r)r[—(gjtf—l)]g@qr(p,q,r) and

(9—F—=) (2)
Sy’ : St°

(49 | @ Vearg-f-2)] [He+f-1=PSwar.2)
FICEER 56
of graded R—modules. [

Theorem 4.5. Adopt Data 1.2. For each integer z, let 1) be the complex of

Definition 2.8 and M®) be the graded R—module of Definition 4.2. Then there
exists a split exact subcomplex NZ) of 13) such that the graded modules 1¢*) /N(?)
and M) are isomorphic.

Before we are able to describe the differential m of M(#) in Theorem 4.8 we must
identify graded-module maps o: M(*) — I(*) and 7: I(*) — M), This project is
accomplished in the next two definitions.

Definition 4.6. Define

quot: S,F* @ NF* @ A" F* o NP G = Vi(p, g, 2),
s:V(p,q,r,2) = S, F* @ N F* @ N F* ® /\g_z+1+pG,
incl: S(p,q,7,2) = D,F O N Fo \' F® /\pJFHZJrl G*, and
t: D,FO N Fo N Fo N6 —S(pq,r,2)
by: “quot” is the natural quotient map, s is a fixed splitting of “quot”, “incl” is
the natural inclusion map, and t is a fixed splitting of “incl”.

Note. Theorem 5.11 and Proposition 5.5 ensure the existence of s and t.
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Definition 4.7. Define the map of graded modules o: M) — I(?) by

V(p,q,r,2) = S,F* @ N F* @ N F* o NP G

nat

2 Lp,g.f —rg—z+14pz—1—p) =13,

U(p,q,r) =1,  T(p,q,r) —1*), and

S(p,q, 1, 2) ndl, D, FF® /\qF ® /\’"F Q /\p+f+z+1 o

nat

2 W(p,q,f —rpt+frz+lr—p—q)— 13,

Define the map of graded modules 7: I(?) — M(*) by

X(p+t=2—1)-x(g=s+t)-nat

SpF* ® /\q F*® /\f—T F*® /\9—2+1+P G

L(p,q,7,s,t)

Lc}t) V(p7Q7f - Z) — M(Z)a

Ulp,q,r) XE52 MG T(p,q,r) XETZ50M pe)  ang

W(p,q,r,s,) XIEeHI=aHr+stOxpratri=f)nat

D,FONFoN TFoN G LShpq,f—rz) — M.

Note. The map “nat” is the natural isomorphism which is induced by o, — . (wg)
for a, € \" F* and b, — b,.(wp~) for b. € \" F.

Theorem 4.8. There exists an R—module homomorphism P: 1*) — 1) with
P(ng)) - I[,Ej_)l, such that the following statements hold.

(a) The complex 1) /NZ) of Theorem 4.5 is isomorphic to (M), m), where the
differential m: M) — M®) is the composition

M) 2, () 4 q(z) 1=doP 1(z) T, pp(®)

(b) If ¥: I®) — M®) s given by » = 7o (1 —do P), then 1 is a map of
complezxes.

(c) If p: M®) — 1) s given by p = (1—Pod)oo, then p is a map of complexes
and ) o p is the identity map on M),

(d) The image of m is contained in [I1(u) + Iy (v) 4+ I (X)] M),

Remark 4.9. If I®) is a homogeneous complex, in the sense of Remark 2.4, then
the map 1 — d o P of Theorem 4.8 is a homogeneous map of degree zero. If 0 < z,
then M(?) is a homogeneous complex with degree zero maps, provided

(a) the shift of V(p,q,7,2) is —p+q —2r +2f — 2+ z,

(b) the shift of U(p, q,r) is 2p + 2q + 3r — z,

(c) the shift of T(p,q,7)isp+q+3r+2g9—f — z, and

(d) the shift of S(p,q,7,2) isp—q+2r+2f —1+ z.
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If z = —1, then the appropriate grading on M(?) is obtained by subtracting 1 from
each shift in (a)—(d).

Next we record numerical information about the complex M(). The shifts in
M) are given in Remark 4.9; the rank of V(p,q,r,z) and S(p,q,r,2) may be
computed using the note which follows Theorem 5.11. In Proposition 4.10 we record
the first and last contributions of S, T, U, and V, respectively, to M(*). Corollary

4.11 gives the left and right ends of M(*). We let MZ(.Z) denote the submodule of
M) in position 3.

Proposition 4.10. Adopt Let f and g be positive integers with f —1 < g.
(a) If V(p,q,r, z) is a non-zero summand of Mgz), then
0<i<min{2f +z—3,9+2f — 2}.
(b) If V(p,q,7,2) is a non-zero summand of Mgz), then (p,q,r) = (z — 1,1, f).
(c) If V(p,q,r, 2) is a non-zero summand of M@, then (p,q,r) is equal to
(z—=2,1,f), (z—1,2,f), or (z—1,1,f — 1).
(d) If V(p,q,7,2) is a non-zero summand of M;Zf)ﬂfg, then (p,q,r) = (0, f,1).
(e) If U(p,q,r) is a non-zero summand of M,EZ), then
z <i<min{2f + 2z —2,2f + g — 2}.
(f) If U(p, q,7) is a non-zero summand of Mgz), then (p,q,r) = (0, 2,0).

(g) If U(p, q,r) is a non-zero summand of Mé;)_ﬂz, then (p,q,r) = (0,2, f — 1).

(h) If T(p,q,r) is a non-zero summand of Mgz), then
z4+1<i<min{2f+z-1,f+g—1}.

(i) If T(p,q,r) is a non-zero summand of Mi’i)l, then (p,q,r) is equal to
(0,g—f—z,f—g+z).

(j) If T(p,q,r) is a non-zero summand of Mé’})JFZ_l,
equal to (0,9 — f —2,2f —g+2—1).

(k) If T(p,q,r) is a non-zero summand of M(legfl,
equal to (0,0, f —1).

< J+z+1, then the summan D,q,T,2) 1N 18 2€ro.

W) g < f+2+1, then th 4 @S(p,q,r,2) in M i

(m) If S(p,q,r, z) is a non-zero summand of M,EZ), then z+2<i< f+g—1.

(n) If S(p,q,r,2) is a non-zero summand of Mgﬁz, then z < g—f —1 and (p,q,r)
is equal to (0, f,1).

(o) If S(p, q,r, 2) is a non-zero summand OfM_(figfl’ then z < g—f—1 and (p,q,r)
is equal to (g — f —z— 1,1, f).

Proof. The position of V(p,q,r,2) in M®) is (z =1 —p) + (¢ — 1) + (f — r), with

then z < g — f and (p,q,r) is

then g — f < z and (p,q,r) is

0<z—1—-p<min{g,z—1}, 0<¢—-1<f—-1, and 0<f—r<f-—1

Assertions (a)—(d) are now obvious. Definition 4.2 also gives that

z < the position of U(p,q,7) =p+q+2r=2(p+q+r)—p—gq
<2(f—-142)—z=2f -2+ 2.
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Also, p+q+2r <2(p+r)+q<2(f —1)+g. Assertions (e)—(g) follow. Use

z24+1=(9g—f—2)+2(f—g+2) +g—f+1< the position of T(p,q,r)
=ptq+2r+g—f+1=20p+q+r)-p—q+g—f+1

<2(f—-1)+min{f+2—-9,0}+(g—f+1)=min{2f -1+ 2,9+ f -1}

for (h)—(k). The same type of argument also establishes (1)—(0). O

Corollary 4.11. Let f and g be integers with 2 < f and f — 1 < g.

(a) If i < —1 and —1 < z, then M,EZ) =0.

(b) The module Méz) is equal to
U(0,0,0)®T0,g—f+1,f—g-1)=Rao AN G if-1=z,
U(0,0,0) = R if 0= 2,
V(z—-1,1,f,2) 2 S, F* if 1 < z.

If the hypotheses of Remark 2.4 are in effect, then

e { R0j@ R~/ = 2)*) if —1==
0 - f+z-1 .
R[O]( =) if 0 < z.
(c) The module Mgz) is equal to
( (U(0,1,0)  U(1,0,0) T(l,g—f+1,f—g—1)
{ ®eT0,9g—f+2,f—9g—1)®S(0,f,1,2) }
0U(0,1,0) ® U(1,0,0) & T(0,9g — f, f — g9) if 0=z,
V(0,2, f,2) ® V(0,1,f — 1,2) & T(0,1,0) ifz=1,
 V(z-2,1,f,2)@eV(z—-1,2,f,2)®eV(z—-1,1,f - 1,2) if2<z.

(d) If -1<z<g—f+1, then Mgz) =0, whenever g+ f <1, and M;’fgf_l is equal
to

if —1=zand 3 < f,

Sg-f-z-11f2 =Dy s .F f-1<z<g—f—1,
T(0,0,f —1)= R ifg—f=>2
T(0,0,f —1)@UO,g—f+1,f—D)=Rao NG ifg—f+1==z
If the hypotheses of Remark 2.4 are in effect, then
R[—(g + 3f — 4)s"2) if —1 =2z,
Mgy =1 Rl-(g+3f —3)Cs=") ifo<z<g—f,
Rl~(g+3f - 4)' @ R-(2f +9 - 2)0™) ifg—f+1==.
(e) Ifg—f+2<z<g, thenMgz) =0 for2f+2—1<i and
M, ., =U(0,2,f — 1) = A\* G* = R[-(3f — 3+ 2)](9).
f) Ifg+ 1< z, thean(.z) =0 forg+2f—1<i and
M)y, =V(z—1-g.f1.2) = S, oF" = RI-(3f +¢-3)]( 71,
Proof. Use Proposition 4.10, Example 5.3, and Remark 4.9. [
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Example 4.12. Fix f = 3 and g = 6. We record the graded module M) for
—1 < z < 6. We use the notation of the command “numinfo” from the computer
system Macaulay. In other words, 2:1 3:42 4:21 in position 2 of M) means that

M is equal to R(—2) @ R(—3)*2 @ R(—4)2.

M1 g M© ig

position degrees position degrees

0 0:1 1:15 0 0:1

1 2:120 1 2:9 3:20

2 3:315  4:75 2 3:1 4:156

3 4:405 5:351 6:20 3 5:276  6:65

4 5:309 6:565 7:120 4 6:191 7:258 8:15
5 6:125 7:471 8:216 5 7:84  8:261 9:83
6 7:21 8:201 9:190 6 8:15 9:127 10:99
7 9:35 10:84 7 10:24 11:51

8 11:15 8 12:10

M is M®) is

position degrees position degrees

0 0:3 0 0:6

1 1:9 2:8 1 1:26 2:15

2 2:1 3:42 4:21 2 2:36 3:69 4:10
3 4:9 5:174 3 3:6 4:127 5:57
4 6:210 7:33 4 5:33 6:210

5 7:57  8:127 9:6 5 7:174  8:9

6 8:10 9:69 10:36 | 6 8:21 9:42 10:1
7 10:15 11:26 7 10:8 11:9

8 12:6 8 12:3

M®) is M® ig

position degrees position degrees

0 0:10 0 0:15

1 1:51 2:24 1 1:84  2:35

2 2:99 3:127 4:15 2 2:190 3:201 4:21
3 3:83  4:261 5:84 3 3:216  4:471 5:125
4 4:15 5:258 6:191 | 4 4:120 5:565 6:309
5 6:65 7:276 5 5:20 6:351 7:405
6 8:156 9:1 6 7:75 8:315

7 9:20 10:9 7 9:120

8 12:1 8 10:15  11:1
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M®) is
position degrees

0

© 00 O Ui W N+

Example 4.13.

pos.
0

00 O UL i W N

degrees
11
115
11
115
01
115
9:1
11:15
12:1
14:141
15:1
18:840
20:720
22:315
24:56

oo O Ctw N O

0:

00 O UL i W N~

10
11

1125
: 309
: 405
1295
1111
115

:51

21

O O O i W

165
16

148

:291 4:28
5:174
6:456
7:650
8:540

737
:999
: 765
:314
1261
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M) ig

position degrees

0

= © 00 ~J O UL ix W N -

0

0:28

1:174  2:63

2:456 3:397 4:36
3:650 4:1,059 5:231
4:540 5:1,545 6:631
5:258 6:1,325 7:951
6:64 7:663 8:855
7:6 8:177 9:461
9:19 10: 141

11:21

12:1

Fix f =6 and g = 9. We record the graded module M(®,

6:
4:
6:
7
9:

10:
12:
13:
15:
16:
19:

21

23:

84

105
455
105
455
105
3,941
1,113
3,864
504
5,265
12,270
399

7:846
8:3,591
8:1,365

10:
11:
13:
14
16:
17:
20:
01,182

22

5. The functor M(p,q,r).

In this section we introduce a family of functors {M(p, ¢, )}, which are univer-
sally free in the sense of [1, Def. 2.1]. Given the data of 1.2, many of the summands
of the minimal complex M(?) of section 4 have the form M(p,q,7)[F*] ® \° G, for

some integers p, ¢, r, and s.

Data 5.1. Let F be a free module of rank f over the commutative noetherian ring

15,828
14,028
27,099
12,564
19,629
6,264

6,316

9:624
9:8,570

11:
12:
14:
15:
17:
18:
1,849

21

14,061
24,824
31,512
35,624
27,012
16,094

10:
12:
13:
15:
16:
18:
19:

R, and let B(p,q,r) be the R—module S,F @ A?F& \" F.
Definition 5.2. Adopt Data 5.1. For all integers p, ¢, and r, define

M(p,q,7)[F]

( B(p,q,T)
im(@h + 8v)

=4 B(p,qr)
imA

if 1 <p,

if 0 = p,

if p < 0, where

4,500 11:
5,349 13:
17,256 14:
12,865 16:
23,556 17:
9,490 19:
10,956 20:

720
540
3,996 15:216
1,611 17:36
5,196 18:270
876
1,596
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On:Blp—1,9+1,r) = B(p,q,r) and 0,: B(p—1,¢,7+1) = B(p,q,7)
are the Koszul maps, in the sense of (1.15), induced by the identity map on F', and

A: NTF = N"Fo \N'F = B(0,q.r)

is the co-multiplication map.

Ezample 5.3. We use the Schur functor notation of [2, Def. I1.1.3] or [3, pg. 466].
The hook X\ = (g, 17) represents the partition

A_(Q7 7"'71)'
N—_——

p times

Apply Remark 1.16 to see that

(a) if g <0 orr <0, then M(p,q,7r)[F] =0,

(b) if 0 < p, then M(p, 1, f)[F] = M(p, f,1)[F] = Sp1 F,

(c) if 0 < p, then M(p, f, f)[F] = Sp F,

(d) if 1 < p,q, then M(p,q, f)[F] and M(p, f, q)[F] are both isomorphic to the
Schur functor L4 1»)F.

(e) if 1 < ¢, then M(0,q,1)[F] and M(0,1,q)[F] are both isomorphic to the
Schur functor L4 1) F.

Definition 5.4. Let F' be a free module of rank f over the commutative noetherian
ring R, and let B'(p,q,r) be the R—module D,F ® A’ F ® \" F. For all integers
p, q, and r, define K(p, q,r)[F] to be

| H

Ker | B (p,q,7r) —— B'(p— 1,9+ 1,r)® B (p—1,q,7 + 1) if 1 <p,

Ker <B'(0, q,r) 5 N\ F) if 0 = p,
. 0 if p <0,
where

0n(Bp @by @b,) = > 1(Bp) @by A f1 @1,

|I|=1
0u(Bp @b, @) = Y @r(By) @by @ A fi,
[7l=1
and p is exterior multiplication.
The following observation is an immediate consequence of the definitions.

Proposition 5.5. The modules K(p,q,7)[F] and (M(p,q,7)[F*])" are naturally
1somorphic for all free R—modules F'.

The main results in this section are Theorem 5.7, where we resolve M(p, ¢, 7)[F],
and Theorem 5.11, where we prove that M(p,q,r)[F] is a free R—module.
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Definition 5.6. Adopt Data 5.1. For non-negative integers p, ¢, and r, define
B(p,q,r) = B(p,q,r)(F) to be the total complex of the following (extended) double
complex:

NPT R ELN B(0,q,p+1)
j:AJ AN avl
o] o]
o Onp

- B(p_27Q+17r+1) I B(p_17qar+1)
| o]

1¢] 6] o
B(Oap+qar) —h_> —h_) B(p—l,q+1,T) —h_> B(pquT)'

The module B(a,b,c) has position b + ¢ in B(p,q,7), the module AP""" F has
position p + ¢ 4+ r + 1. If the module A\P7%"" F" is ignored, for the time being, then
the rest of the diagram is a double complex. The horizontal map

Op: B(a,b,c) — Bla+1,b—1,c¢)

is the Koszul complex map associated to the identity map on F'. The vertical map
map 0,: B(a,b,c) — B(a + 1,b,c — 1) is (—=1)” times the Koszul complex map
associated to the identity map on F. The module AP""" F maps to each module
of the form B(0,b,c), where b+ c=p+q+r and ¢ <b < p+ q. The map

AT F — B(0,b,¢)

is equal to (—1) times the co-multiplication map APT"" F — A\’ F o N\ F.

Theorem 5.7. Adopt Data 5.1. If p, q, and v are non-negative integers, then the
complex B(p, q,r) of Definition 5.6 is a resolution of M(p,q,r)[F].

Proof. 1t is clear that H,y,(B(p,q,7)) = M(p,q,r)[F]. We prove that H;(B(p, ¢,7))
is zero for ¢ +r + 1 <. Let B/(p, q,r) be the subcomplex

B'(p,q,r) = @ B(a,b,c)

atbte=ptq+r
b<g—1 or c<r-—1

of B(p+ ¢+ r,0,0). Observe that
0—B'(p,qg,r) = B(p+q+7,0,0) — B(p,g,r) =0

is a short exact sequence of complexes. The long exact sequence of homology
completes the proof as soon as we show

(a) B(M,0,0) is split exact for all integers M, and
(b) H;(B'(p,q,7)) =0, whenever g + r < i.
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We first prove (a). Let K be the Koszul complex associated to the R—module
map
[id O]
Fe F ———=F.
It is well known that the homology of K is given by H;(K) = A\’ F for all integers
i. In particular, the non-zero homology of the graded strand
K(M): 0—SoFoANY(FaF)—- - -5 SuFoN(FaF)—0

of K, is concentrated in position M. We kill the cycles of K(M); thereby creating
the split exact complex K(M):

0= AYF S S FoANY(FoF)— - — SuFa N (FoF)—o,

where & sends A™ F onto the summand A" F @ A™ F of
M Mo M—¢
N (FeF)=>> N FaN\ F.
=0

It is easy to see that the commutative diagram

[id 0]
FoF — F

el al
[id id]

FoF F

induces an isomorphism from K(M ) to B(M,0,0).
Now we prove (b). Fix an integer ¢, with ¢ + r < i. Let M = p+ g+ r, and let
z be an i—cycle in B'(p, ¢, ). Decompose z as

q—1 7
z = E T + g T
k=0 k=i—r+1

where z, € B(M —i,k,i — k). Suppose we have found y € B/(p, ¢, r) such that

N i
z—d(y):Z:c;c—k Z Tk
k=0

k=i—r+1

for some N < g — 1, where d is the differential in B'(p, q,r). Apply d to the cycle
z —d(y) in order to see that

By(zy) =0€ B(M —i+1,N,i— N —1).

(This is the key point in the argument. It is essential to notice that O (x;—p41) is
not an element of B(M —i+ 1, N,i — N — 1), because r — 1 < i — N — 1.) Recall,
from Remark 1.16, that the vertical maps

B(M—i—1,N,i—N+1) 2 B(M—i,N,i—N) 2% B(M —i+1,N,i— N —1)
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form an exact complex. Thus, there is an element
y € B(M—i—1,N,i— N+1)CB(p,q,r)

such that 0,(y') = x’y. We now have

N-1 7
d(y +v') Z i+ Z
k=0 k=i—r+1

for some x} € B(M —i,k,i — k). Repeat the procedure to see that z = d(Y") for
some Y € IB%’(p, q,r). O

Our first goal in this section has been accomplished. We complete the section
by finding a basis for M(p,q,r)[F], thereby ensuring that M(p,q,r)[F] is a free
module. Some notation is needed.

Remark 5.8. Let fIU, ... fifl be the basis for F of Convention 1.4. If aq, ... ,Qp,
bi,...,bg,c1,...,c, are integers, between 1 and f, then we let

ar - ap @by AL NANbgRcr AN Ney
represent the element
flaad oo flasl @ gl A oA fload @ fled A oA flerd
of B(p,q,r). Whenever possible, we insist that
(5.9) ap <---<a,, b <--<by, and ¢ <---<cp.
Definition 5.10. If p, ¢, r, and f are integers, then define

LRV 99 ol (o | (e TG 1 (|

i=1 k=1 ¢=1

Theorem 5.11. For all integers p, q, and r, the R—module M(p,q,r)[F] of Defi-
nition 5.2 is free of rank R(p,q,r, f).

Note. As soon as the proof of Theorem 5.11 (including the proof of Theorem 6.7) is
complete, then Theorem 5.7 shows that if p, ¢, r, and f are non-negative integers,
then R(p,q,r, f) is equal to

= () () e

{(a,b)|0<a,b and a+b<p}

moreover, the rank of M(p, ¢, r)[F] is equal to this common value.

Proof of Theorem 5.11. If p < —1,¢ < 0,7 <0, or f <0, then the module B(p, g, )
and the integer R(p,q,r, f) are both equal to zero. Henceforth, we assume that
0<pand1l<gq,nrf.
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We next take p = 0. Define s: B(0,q,7) — A" F by

0 ifCl qu

s N...ANbg®cr AN...N¢eyp) =
" . ) {f[bl]/\.../\f[bq]/\f[cl]/\.../\f[c’“] if by < c1.

(The conventions of Remark 5.8, including the inequalities of (5.9), are in effect.)
It is clear that s o A is equal to the identity on AY™" F. Tt follows that
B(0,q,r) =im A @ ker s;
and therefore, M(0, ¢, 7)[F] is isomorphic to ker s. Pick a basis By for A"" F. Let
S1 ={A(z1) € B(0,q,7) | z1 € By}, and

Soy={biA...ANb;®c1 N...N¢c, € B(0,q,7) | (5.9) holds and ¢; < b,}.

It is clear that ker s is generated by S2 and that B(0,q,r) is generated by S7 U So.
Observe that

ste1si= (L) [0 ()] () -rassan

It follows that S1USs is a basis for B(0, g, r); and therefore, ker s is a free module of
rank (5) (f) — (q+r) which, according to Proposition 6.6, is the same as R(0, ¢, 7, f).

‘s

Henceforth, we take 1 < p. The proof is by induction on p. The Koszul complex
(5.12) 0— B(0,p+gq,r) — ... n, B(p—1,q+1,7) On, B(p,q,7) — -+ — B(p+4q,0,7) — 0

is split exact; hence, B(p — 1,q + 1,7)/im Jj, is a free module of rank

o e ()0

The induction hypothesis ensures that M(p—1,¢q, 7+ 1)[F] is a free module of rank
Pick bases

B(p_LQ"i_lar)

By for mo,

and By for M(p —1,q,7 + 1)[F].

Let
Sl = {ah(xl) S B(p7Q7T) ‘ T € Bl}a
S2 = {0u(22) € B(p,q,7) | 22 € B2}, and
Szs={a1-- ap®@biIA...ANbg®c1A...Ncr € B(p,q,r) | (5.9) holds and ap < ¢; < byg for some i}.

We will prove that

( ) |S3|_ (p7Q7 7f)

(b) [S1] + [S2| + |S3| = rank B(p, q,7),
(c) im(dp + dy) = RS + RSy, and
( ) (p7Q7 ) RSI+RSQ+R83
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Once assertions (a) — (d) are established, then it is clear that S; U S3 U S5 is a basis
for B(p, q,r) and that M(p,q,r)[F] is a free module of rank R(p,q,r, f).

Observe that Sj is the disjoint union |J 7T;, where T; is equal to
i=1

1=

{a1---ap, @by AN...ANbg@ci A... Aepr | (5.9) holds and ap, < ¢; < by < ciy1}
for1<i<r-—1, and
T, ={a1---ap @b A...Abg®c1 A...ANcp | (5.9) holds and a, < ¢, <b,}.

Observe that

n=S (Y)Y

Indeed, if b, is represented by k and ¢; is represented by ¢, then there are (p %*1)
ways to choose a; < --- < a,, with a, < ¢;; (fj) ways to choose ¢; < --- < ¢;_1,

with ¢;_1 < ¢;; (5:1) ways to choose by < -+ < bg—1, with b,_1 < by; and ({;f)
ways to choose ¢;41 < -+ < ¢, with by < ¢;11. It is now clear that |S3| is equal to
R(p,q,r, f), and (a) is established. The values of |S;| and |Sz| are given in (5.13)
and (5.14), respectively. Theorem 6.7 yields (b). It is clear, from the fact that
(5.12) is a complex, that RS; = im 0. We know that the diagrams

B(p_27Q+17T+1) L B(p_]-7Q7T+1)

avl avl for 2 < p, and

Blp—1,q+1,r) —2 B(p,q,r)

A R S B g+ 1)

(71)‘1+1Al z%l
B(07Q+17r) L B(LQar)

commute; see Theorem 5.7, if necessary. It follows that im 9, C RS> + im 0y; and
therefore, (c) is established.

We now prove (d). Let x =aq---a, ®b1 A...Aby®@c1 A... ¢, be an element
of B(p,q,r) which satisfies (5.9).

Claim 1. If max{ap,c,} < by, then z € RS3 +im(9, + O).

Proof. If a, < c,, then x € S3. If ¢, < ap, then
Op(ar -+ ap_1 @b A...ANbg®@c1 AN...N¢cr Nap) =y + (—1)"x,

for some element y of RSjs.
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Claim 2. If max{b,, ¢, } < ap, then z € RS3 +1im(9, + Op).
Proof. Apply Claim 1 to see that

On(ar - ap_1 @b A...NbgNap,@ci A...N¢ep) =y + (—1)%x,

for some element y of RS3 +im(9y, + 0,).

At this point we have
¢ <b; or ¢ <a, = x€ RS3+1im(0 + 0y).
The proof of (d) proceeds by induction. The induction hypothesis ensures that
¢ <b, or ¢ <a, = x€ RS3+1im(0) + 0y),
for some i, with 1 < ¢ < r. Henceforth, we assume that max{a,,b,} < ¢;. We prove
cio1 <by; or c¢i_1<a, = x € RS3+1m(0 + 0,).

(In this discussion, we may treat ¢ as 0.)
Claim 3. If max{a,,c;—1} < by, then z € RS3 +1im(0, + 0Oh).

Proof. If a, < c;—1, then x € S3. If ¢;_1 < ap, then

6v(a1---ap_l®bl/\.../\bq®cl/\.../\ci_l/\ap/\ci/\---/\cr) :y+(—1)i_1:1:—|-y',

where
i—1

Y= Z(—l)k+1a1 e Ap—1-CR@bI AL L ADGRCI AL L NCEN - ACi—1 Nap A A- - -Aey, and
k=1

.
v =Y (-DFar-ap 1 ek ®biA. L Abg®C1 AL A1 Nap Aci A AG A N
k=1

The induction hypothesis ensures that ¢y’ € RS3 + im(9, + ). Each term of y is
in Sg.

Claim 4. If max{b,,c;—1} < ap, then z € RS5 +im(0, + 0p).
Proof. Apply Claim 3 to see that

on(ar---ap_1 @b AN ... ANbgNapy@cr AN...Nep) =y + (—1)z,

for some element y of RS5 +im(0y, + 0,).

So, (d) is established, and the proof is complete. [
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6. Binomial coefficients.

In this section we prove the binomial coefficient identities, Proposition 6.6 and
Theorem 6.7, which were used in the proof of Theorem 5.11. We begin by recalling
some elementary facts about binomial coefficients. More details may be found in
[14, 15]; in particular, identity (e) is Lemma 1.3 of [14].

Observation 6.1. The following statements hold for all integers a, b, and c:

(a) if0<a<b, then (Z’) =0,
G2+ () = (")

if 0 < a, then (Z) = (afb);

)
)
(@) (5) =0 (757, and

(&) 0= then (D" () = (-1 (L)-

Lemma 6.2. Let a, b, and ¢ be integers.

() B0 <a then 2 ()(.1) = (222)

(b) Ifa and c are non-negative, then zb: (=1)%(%) (bik) = (bia) +(—1)b+e (afgj)-

c c—a a—
k=0

Proof. The proof of (a) is by induction on a. If a = 0, then both sides of the
proposed identity are equal to (2) Henceforth, we assume that 0 < a. Decompose
the first binomial coefficient to see that

> () E ) E G )

The induction hypothesis completes the proof.
The proof of (b) is by induction on a. If a is zero, then use parts (d) and (c) of
Observation 6.1 to see that the right side of the proposed identity is

®) if 0<b
(—D)e(P) - (—1)er () =0 ifb <o,

which is equal to the left side. Henceforth, we assume that 0 < a. Decompose the
first binomial coefficient to see that

(DR () = 3 (CDRE () + 3 (- (@) (1),

Once again, the induction hypothesis completes the proof. [
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Lemma 6.3. Let a, b, and ¢ be integers with 0 < a. If, either 0 < b, or else,
b4+c+1+#0, then

2 ()0 - mev ()6

Proof. 1f ¢ is negative, then both sides of the proposed identity are 0. Henceforth,
we assume that 0 < c. If b is negative, then the left side of the proposed identity is
zero. It is easy to see that the right side is

S (SO () S () (44

Lez LeZ
:Z(_l)a+k+1 a+c+1 k
= k b—a+k)’

which, according to Observation 6.1.e, is equal to

04y<b+2+1):0

Henceforth, we assume that 0 < b.
The proof proceeds by induction on a. When a = 0, then the left side of the

proposed identity is
0y [0 1<)
b) L1 if0o=0b,

and the right side of the proposed identity is

0 if1<b
3%&4V+%(*1):1 if0=b
=1 c+1—¢ :

Henceforth, we assume that 0 < a. We must prove that
a+1 c+1
c+O\ (¥ ¢ at+tc+2\/a+1+/¢
4 = —1)*1 .
(64) Z( ) 2. CrrD)

Observe that the induction hypothesis gives that the left side of (6.4) is equal to
T1 —+ TQ, where

a+1+¢\/a+1 et atc4+1\ (a-+?
73:( c )( b) amiT%:E}‘””%}+1_Q(b+Q-
(=1

Decompose the second binomial coefficient to write the right side of (6.4) as T5+1T},
where

c+1 c+1
e e IR T BV e TR ]

Decompose the first binomial coefficient to write T, and perform routine manipu-
lations in order to see that Ty =Ty + (T, — T3). O

Note. Recall that the numbers R(p, q,r, f) are defined in 5.10.
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Lemma 6.5. If p, q, r, and f are integers, then

f+1 _ _
R(p,q,r, f+1) :R(p,q,r,f)+R(p,q,7’—1,f)+; <p+f; 1) (i_i) (qfl)'

Proof. If r < 0, then both sides of the proposed identity are zero. Henceforth, we
assume 1 < r. Separate the middle summation into 1 < k < fand k= f+ 1 in
order to write R(p,q,r,f + 1) =Ty + T, where

e EEEC N0

and 75 is the last term in the proposed identity. Decompose the fourth binomial
coefficient to write Ty = R(p,q,r,f) + R(p,q,r — 1, f). O

Proposition 6.6. If q, r, and f are non-negative integers, then

woar= () ()~ (30

Proof. If r =0, ¢ =0, or f =0, then both sides of the proposed identity are zero.
Henceforth, we assume that 1 < ¢,r, f. We induct on f. Apply Lemma 6.5 to see
that

R(0,q,7,f +1) = R(0,q,7,f) + R(0,q,r — 1, f) + T, where

=000

(The last equality is well known. One could also use Lemma 6.3, with ¢ = 0.)
The induction hypothesis, together with some routine manipulations of binomial
coefficients, yields the result. [J

Theorem 6.7. If p, q, r, and f are integers with 1 < p and 0 < q, then
R(p,q.r.f)+Rlp—1,q,r+ 1.5 = (57 () () = X 0 (572 (10 ()

Proof. Fix integers p and ¢, with 1 < p and 0 < q. The proof proceeds by induction
on fand r. If f <0 or r < —1, then both sides of the proposed identity are zero.
We next consider the case f = 1 with 0 < r. It is easy to see that

1 ifr=q=1,
0 otherwise.

R(p.q,m,1) = {

It follows that both sides of the proposed identity are equal to
1 ifr=q=1,
1 ifr=0andq=1,

0 otherwise.
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Henceforth, we fix integers f and r, with 1 < f and 0 < r. The induction hypothesis
ensures that the proposed identity holds for (p,q,r, f) and (p,q,r — 1, f). We will
show that

R(p7Q7r7f+1)+R(p_17Q7r+17f+1) :Tl +T27
= ()00
f q r

n:—f(—nf(ﬂp;“l) (qﬁm (fjl).

=0

where

and

Apply Lemma 6.5 to write

R(p,q,r,f +1) = R(p,q,7.f) + R(p,q,v — 1,f) + T3, and
R(p_ 1;Q;r+17f+1) :R(p_ 1?Q7T+1af)+R(p_ 17q77a7f)+T47 where

0 o G [ I A
w8

The induction hypothesis yields

R(paQaTaf)_‘_R(p_17Q7r+17f) :T5+T6

and
R(p7Q7r_ 17f)+R(p_17Q7raf) :T7+T87

7= (7 () (),
o= = S0 Y (L) ()
= () (L),
N IR
We will prove that Ty 4+ Tb = T3 + Ty + Ts + Ty + Ty + Ts. It is easy to see that

T+ T = (7157) (1) (1), and

q T

where

p—1
T + 15 = — ego(_l)g (f+§:f_2) (q+{+£) (f—:l)'

Decompose the middle binomial coefficient to write 15, and perform some routine
calculations, in order to see that

wenen= (M)
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It is now clear that

—Tl—T2+T5+T6+T7+T8=—(f;fp) (qfl) (f;”).

Apply Lemma 6.3 to write

p—1
f+p+1 f f+k+2
T3 = Z(_l)k+l<p—1—k> (q—l) <r+1+k)’ and

e e (C(5) ()

Observe that —T7 — Ty + T3 + 15 + T + 17 + Ty is equal to

(ﬁjf) (q{1> (f;H) pz;l) Hl(fjfj;) (qil)(iifii)

We complete the proof by showing that S; + S5 + S3 = 0, where

F+p\/f+1 1 Fap+1\/f+k+2
Sl:(p—1)< r ) SQ:Z(_l)k+1(p—1—k)<r+1+k‘)’ and

k=0
p
+p\ (f+¢
=S )
° ;( =) s
Lemma 6.2.a gives that S5 is

S (S (0

o e N

Y-

_Zp: pz_:l [yt f+p+1 k41
N —-1—-k m
k=
Apply Lemma 6.2.b to see that the expression inside the brackets is equal to

m=0 m—1

O ) = S () = (o)

It follows that

S () -0
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Parts (a) and (b) of Lemma 6.2 give

e (D)

me7

‘i A [C TR

||
o~
0 M»s

|
1M1

i 3

3—1”(“1’}“’”) (-314m)

It is now easy to see that S; + S; + S3 = 0, and the proof is complete. [

m=

7. The proof of Theorems 4.5 and 4.8.

Let (F, f) be a complex of R—modules. Suppose that each module [F,. decomposes
as F,. =1L, &M, &N, and each map f,: F, — [F,._; decomposes as

0O 0 o,
(7.1) fr=10 m, O |:L.,eM, &N, -L,_1®&M,_1BN,_;.
0 0 O

-~

If every map o,: N, — LL,_; is an isomorphism, then it is clear that (M, m) is a
complex which is quasi-isomorphic to (I, f). Unfortunately, when one has a real
example in mind for F, the process of splitting off the split exact summands of F
in order to obtain a minimal complex is more complicated. Indeed, even if one has
good candidates for L, M, and N , a significant amount of linear algebra is required
before each f, has the form of (7.1). The next result describes F after ®N, has
been split off, even if each f, only looks like

* % isomorphism
* % *
* % *

Proposition 7.2. Let (F, f) be a complea: of free R—modules. Suppose that each
module F,. decomposes as F,, =1L, &M, @N Let w8 : F, — A, for A equal to L,
M, and N, be the projection maps which are induced by this decomposition. Suppose

that the composition

~ ﬂ_]L
(7.3) N, g, IL g T,

1s an isomorphism for all r. Let 0,: L, — Nr+1 be the inverse of (7.3). De-
fine (N,n) to be the subcomplex of (F, f) with N, = ﬁr + fr+1(1§1r+1) and n,
equal to the restriction of fr to N,.. For each integer r, define ¢,.: F, — M, by
Y =10 (1— fry100.07%), pr: M — F, by p, = incl, —0,_1 o7x ;o f., and
my: M, — M ,_1 to be the composition

M, 2 F S E o YL M.
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Then the following statements all hold.
(a) The complex (N,n) is split exact.
(b) The modules and maps {m,: M, — M,_1} form a complex, which we
denote (M, m).
(¢c) The maps {1,: F,. — M.} form a map of complexes; furthermore,

0— (N,n) 2L (F, ) L (M, m) — 0

is a short exact sequence of complexes.
(d) The maps {p,: M, — F.} form a map of complexes; furthermore, 1, o p,
18 the identity map on M,..

Proof. 1t is not difficult to adapt the proof of [16, Prop. 3.14] to the present situa-
tion. [

We apply Proposition 7.2, by way of Proposition 7.5, to prove Theorem 4.5.

Definition 7.4. A collection of R—module maps {b,: B, — B,_1 | r € Z} is called
replaceable if there is a finite, totally ordered, set T" and there are submodules IB%,,(f)
of B, for all » € Z and t € T such that the following conditions hold.

(1) Each module B, is equal to the direct sum @IB%@, where the sum is taken
over all t € T'.

(2) Each b, is a non-increasing map in the sense that, if z € B\", then b, (x) is
an element of ZIB%£ )1, where the sum is taken over all t' € T, with ¢/ <.

(3) If b B — ]]337(21 is defined to be the composition

B(t) incl B, _> B,_, proj B?(nt)l,
then the maps {be) : B — IB%it_)l | r € Z} form a complex, which we denote
B®

(4) For each t € T, there is an integer IV, such that either
(a) IB%Z(.t) = 0 for all ¢ with ¢ < N; and the augmented complex

bg\?)+2 t b§\?+1 t au ()

N¢+1 HNt(B(t)> — 0

is split exact; or else,
(b) Bgt) = 0 for all ¢ with N; < ¢ and the augmented complex

(t)
bNt—l

ay ey | B

aug

0 — Hy,(BY)

is split exact.

If the maps {b.} are replaceable, then we let (B,b%) represent the direct sum
@D,y BY of the complexes B®) from (3).

Note. In practice, the maps {b,.} of Definition 7.4 will not from a complex; the
relevant complex (B,b[o]) is obtained by considering only the parts of b, which
preserve the T'—grading. Proposition 7.5 shows how to replace the maps {b,.} with
the homology of the complex (B, %),
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Proposition 7.5. Let (F, f) be a complex of R—modules. Suppose that each module
F,. of F decomposes as F,. = A, & B,. Letb,: B, — B,._1 be the composition

incl fr proj
B, — F, —F,_1 — B,_1.

If the maps {b.: B, — B,_1 | » € Z} are replaceable in the sense of Definition
7.4 and B s the complex (B,b[o]) which s created in Definition 7.4, then there
exists a split exact subcomplex N of F such that N is a direct summand of F and
F./N, 2 H.(B) @ A,.

Proof. Adopt the notation of Definition 7.4. For eacht € T, let {h("): B — IB%SJ)FI}
be a homotopy on the augmented, split exact, complex of hypothesis (4). It follows
that

Im (hffll 0 bg)) embl, N £,

BY ={ Im <h1(f_)1 o aug(t)> @ Im bfi)rl if Ny = r in case (a), and

T

Im (hff_)l o bgt)) @ Im (aug®) if N; = r in case (b).

For every r € Z and t € T, define ]Lq(f) = Tmb'")

r+1s ﬁ?("t) = Im (hfﬂt_)l © b7(”t)>; and

Im <h£i)1 o aug(t)> if Ny = in case (a),

o (t
M = {1 (aug®) if N; = r in case (b), and
0 if N, 7& r.

It is clear that ]B%,,(f) = ]Lgf) @ M&t) @ ﬁ&” for all » and ¢t. It is also clear that the
restriction of bgl to N5~21 gives an isomorphism brt—ﬁ)—l : Ngl — LY for all r and ¢.
Define submodules

L. =PLP, M, =PMP, M, =M A, and N, =PNY
teT teT teT

of F,. . Observe that F,, =1L, &M, & I§TT and that the map of (7.3) sends y € ﬁﬁl

to bgl(y) +y' for some y’ € ) LSF'), with ¢ < t. If the map of (7.3) is expressed as
a matrix, then it is a triangular matrix with isomorphisms on the main diagonal;
thus, it is an isomorphism. Apply Proposition 7.2 to see that N = N+ f (I/\\T) is a
split exact subcomplex of F with N a direct summand of F and

F,/N, ©M, =M, G A, =~ H.(B) & A,. O

Proof of Theorem 4.5. Submodules A and B of I*) are introduced in Definition
7.8. It is not difficult to see that I(?) = A ® B. Let b: B — B be the composition

(7.6) B 2 () 4 1) 2o
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Lemma 7.9 shows that the map b: B — B decomposes as the direct sum

b0

0 b//
(7.7) BoeB ——
Thus, in light of Proposition 7.5, it suffices to show that

B ¢ B”.

(a) the maps of ¥’: B’ — B’ are replaceable with the homology of (B, b[%) equal
to @ V(p, q,r, z), where the sum is taken over S@Z); and

(b) the maps of ¥’: B” — B are replaceable with the homology of (B”,b"l)
equal to @ S(p, ¢,, z), where the sum is taken over Séz).

We first prove (a). The finite, totally ordered set 7" which gives the grading of
Definition 7.4 for B’ is given in Definition 7.11, together with Proposition 7.14.c.
Condition (1) of Definition 7.4 is established in Proposition 7.12; condition (2) in
Lemma 7.13; condition (3) in Proposition 7.14; and condition (4.a) in Corollary
7.19. The homology of B’ is recorded in Proposition 7.20. Thus (a) is established.
Assertion (b) follows from the duality of Proposition 2.12. In other words, the maps
of b': B” — B” are isomorphic to

[the maps of b': B’ — B’ from H(g_f_z)] =g+ f -1

It follows that the maps of b” are replaceable. (Condition (4.b) holds in place of
(4.a).) The observation of (4.4) completes the proof by showing that the homology

of (B", ") is equal to @ S(p, ¢, 7, z), where the sum is taken over Séz). O
Definition 7.8. Adopt the notation of Definitions 2.3 and 4.2. Define submodules
Aand B=B ¢B” of I®) by

A=PUup,er)e@PTr.qr), B =L"cUpqr), and

SHSZ) Séz) g]I(Jz)
B = @ T(p,q,7) ® W,  where
5

57 = {war) €Ty [g<2-1} and 5 ={(p.g.r) e T g <g—f-2-1}

Lemma 7.9. Let B =B @B" be the submodule of I¥) which is given in Definition
7.8, and let b: B — B be the map of (7.6). Then, the compositions

IB/ incl ]B i} IB proj ]B// and B// incl IB i) B proj B/
are both zero.

Proof. The only interesting case involves the map T(p, q,r) — B’ for (p,q,7) € E'EI‘Z).
Definition 2.1 shows that the curcial part is

(7.10) ap ® cq @A) — proj [ an element of Z Ulg—t+r,g—f+p+r—tt)]|.
0<t<qg+r

The hypothesis on (p, ¢, r) guarantees that ¢ < g — f — z — 1 and this ensures that

the middle parameter in the image of (7.10) is at least z + 1; hence, (7.10) is the

zero map. [
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Definition 7.11. Let (7, <) be the partially ordered set whose elements are
T={(p,qr)€Z?>|0<p, 1<gq, and 1<r}.
If (p,q,r) and (p', ¢, r") are elements of T', then (p’,¢', ") < (p,q,r) provided either
g —r' —p' <q—r—p;or else,
{q’—r’—p’:q—r—pandp’<p.

Consider any total order (also denoted by “<”) on T which extends the above
partial order. For (p,q,7) € T, let

D([p, g, 7]] = @D L(a, b, f+a+b—p—q—r,9—2+1+p, z—1+q—a—b)OU(f—r—p—q,2—1—p,p+q),
where the first sum is taken over {(a,b) | ¢ < band a+b < ¢+ p}.

Proposition 7.12. There exists a direct sum decomposition B' = @ D[[p, q,7]],
where the sum is taken over all (p,q,r) € T.

Proof. If LL(a, b, c,d, e) is a non-zero summand of B, then L(a,b, c,d,e) is a sum-
mand D[[z—1—g+d,a+b+e+1—z,f+g—c—d—e]]. If U(a,b,c) is a non-zero
summand of B’, then U(a, b, ¢) is a summand of D[[z —1—-b,b+c+1—2, f—a—¢]].
0

Lemma 7.13. The map b': B' — B’, which is defined in (7.7), is non-increasing,
in the sense of Definition 7.4.

Proof. If 2’ € D[[p’,¢',7']] and = € D[[p, ¢, 7]], with (p’,¢’, ") < (p,q,r) in T, then
we write 2/ < x. The proof of Proposition 7.12 makes it possible for us to calculate
this order quickly. Indeed, if € L(a, b, ¢,d, ), then

“g—r—pforax” =a+b+c+2e+2—-22—f and “pforz” =d—g+2z—1;
and if x is a non-zero element of the summand U(a, b, ¢) of B’, then
“g—r—pfora” =a+20+2c+2—-22—f and “pforaz” =-b+z—1.

Define d\%: D[[p, ¢,7]] — D|[p, ¢,7]] to be the composition

incl z) d P roj
]D[[pa q, T]] - H( ) - ]I( ) u ]D[[pa q, T]]

If z is the element A, @ ap @ b, @ cq @ (© of L(a,b,c,d,e), then Definition 2.3
yields d(z) = 2’ + dl%(z), where 2’ < , and

xla+e<z—2) > o5 Ay ® fr(ap) @b @ cg @ v
1I[=1

F (=)@ +1<d+e)Y s Aa @@ fr Abe @ cq® v,
|J]=1

dOz) =

Also, if 2 = b, ® 6, ® p'® € U(a, b, c), then d(z) = 2’ + dl% (z), where 2/ < z, and

d () = Z (-1 ® pr @ f1 Aby @ bp(wg) ® v 0O

b<t<z—1
[I|=c+b—t
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Proposition 7.14. Let (p,q,7) be an element of T, and N =2 — f — z +p+ 2r.

Recall the complex B(p,q,v) = B(p,q,7)(F*) of Definition 5.6 and the map dl°!
from the proof of Lemma 7.13. Then

(a) the maps and modules (D[[p, ¢q,7]],d”) form a complex,

(b) the complexes (D[[p, q,7]],d)) and B(p,q,r)[N] ® /\‘qup_ZJrl G are isomor-
phic,

(¢) the set {(#/,¢',r") € T | D{[p',q',"]) # O} is finite, and

(d) the module D[[p, q,r]]; is equal to

{O ifi<f+z—-3—-p+q-—r,
Lp,¢,f—rg—2+14+p,2—1—-p) ifi=f+2—-2—-p+q—r.

Proof. Let E denote B(p, ¢, 7)[N] @ A?T?7*T1 G. For integers a, b, ¢, and d, let

(7.15) ®: L(a,b,c,dyjz—14+q¢g—a—>b) — B(a,b,f—c)@/\dG and
(7.16) ®: Ua,b,p+q) > NF e Fra N\ G

be the isomorphisms which are given by

@(Aa R ap b, ®cg® V(Z_1+q_a_b)) =A, R ® bc[wp*] ®cq and
B(by @ 6, @ uPtT0) = (=) TP ] @ Gplwel,

respectively. A straightforward calculation shows that the above maps induce an
isomorphism of graded modules

(7.17) ®: D|[p,q,r]] — E.

Indeed, the domain of (7.15) is in D|[p, q,r|] if and only if the range of (7.15) is
in [E; furthermore, each module has position f + 2 — 2 — a + ¢ — r in its respective
complex. Also, the domain of (7.16) is in D[p, ¢, 7]] if and only if the range of
(7.16) is in E; furthermore, the position of each module is f + 2 — 14+ ¢ — r in
its respective complex. A short calculation now yields that (7.17) is a map of
complexes, thereby completing the proof of (b) and (a). Assertion (c) is clear
because B(p,q,7) @ NYTP7*T G is the zero complex if z < p, or f +1 < ¢, or
f+1 < r. Assertion (d) is also clear because B(p,q,r); = 0, if i < g + r, and
B(p,q,7)¢q+r = B(p,q,7). O

Definition 7.18. Let (p,q,7) be in T, and let n = f + 2z — 2 — p+ g — r. Define
aug: D[[p, q,7]]n — V(p,q,, 2) to be the composition

D[[p,q,7]]n =L(p,¢.f —r,g—2+1+p,z2—1—p)
n_a't> SpF* ®/\‘1 E* ®/\7" * ®/\g*z+1+pG quot V(p,q,r, Z)

See Definition 4.7 for the meaning of “quot” and “nat”.
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Corollary 7.19. If (p,q,7) € T, then
V(p,q,r,z) ifi=f+z-2-p+qg—r,
i, (2l 1) = { e
0 ifitf+z—-2—p+q—r.
In particular, the augmented complex aug: D[[p, q,r]] — V(p,q,r, z) is split exact.

Proof. Combine Proposition 7.14 and Theorems 5.7 and 5.11. [
Proposition 7.20. The homology of (B',v'1)) is isomorphic to @V(p,q,r,2),
where the sum is taken over the set Sé,z) of Definition 4.2.

Proof. We know that (B’,'%)) is the direct sum of the complexes (D[[p, g, 7]],d"))
as (p, q,r) varies over the elements of T'; furthermore, D|[p, ¢, r]] is the zero complex

when (p,q,r) is in T but not S(z). O

Proof of Theorem 4.8. Theorem 4.5 was proved by applying Proposmon 7.2;
thus, during the proof of Theorem 4.5, we decomposed I¢*) as L &M & N where M
is isomorphic to M(®) and the composition

A~

(7.21) Niy1 2L =) 4,

i+1 ]IZ(Z) Loj) IL’Z

is an isomorphism. Let 6 be the inverse of (7.21) and let P be the composition
(2 ro 1ncl (2

Notice that the maps ¢ and 7 of Definition 4.7 are compositions
(7.22) M &M 2L 1) and 1) P S M),

respectively, for a fixed isomorphism ¢ from M) to M. Proposition 7.2 shows that
the differential on M) is the composition

M(z) —>M incl H(z) i)]I(Z) 1—doP I[(Z) proj M et M(Z);

which, in light of (7.22), establishes (a). Assertions (b) and (c) may be read from
Proposition 7.2 in a similar manner.

We now prove (d). Take “=” to mean congruent mod [I; (u) + I1(v) + I;(X)] 1),
We prove that the image of doo: M(*) — I(*) is congruent to zero. There are four
cases. First, we take z € V(p,q,, z) for some (p,q,r) in S\(,z). It follows that o(x)
is in L(p,q,f — 7, s,t), where p+t = 2z — 1 and s + ¢t = g. Definition 2.3 shows
that d o o(z) = 0. For the second case, we take x € U(p, q,r) for some (p,q,r) in
Séf). It is clear that d o o(x) is congruent to an element of > L(x,*, %, *,t), with
q <t < z—1. The hypothesis z < g ensures that d o o(x) = 0. For the third case,
we take x € T(p,q,r) for some (p,q,r) in Sq(rz). We see that d o o(x) is congruent
to an element of U(x,x*,t) with f —p+t— ¢ —r = 0. The hypothesis on (p,q,)
yields that t < —1; hence d o o(z) = 0 in I*). Finally, we take 2 € S(p, ¢, r, z) for
some (p,q,r) in Séz). The definition of S in 4.1 and 5.4 shows that o(x) is killed
by the part of d which does not involve u, v, or X. [
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8. Exactness.

The ultimate proof of exactness occurs in Theorem 8.6. It is an induction on g
and is derived from the short exact sequence of complexes of Proposition 3.6. This
part of the argument closely follows the proof of [13, Thm. 7.36]. The base case,
g = f — 1, requires a substantial calculation, which is the content of section 9. If
g < f — 2, then Example 8.16 shows that I(¥) is not acyclic.

Theorem 8.1. Adopt Data 1.2. If g = f — 1, —1 < z, and the data (u, X,v) is
generic (in the sense of Convention 1.5.b), then 1) is acyclic.

Proof. The proof is by induction on rank F. If f = 1, then I®) is not very inter-
esting, but it is acyclic; see Example 2.5. If f =2 and —1 < z < 1, then Examples
2.7 and 2.8 show that I(*) is acyclic. For 2 < z, I(*) is homologically equivalent to
M) which has length three. Thus, according to the acyclicity lemma, it suffices to
show that I[ﬁf) is acyclic for each prime ideal P of grade 2. The ideal I;(X) + 1 (v)
has grade 4; thus, either I;(X) Z P (in which case, the main argument applies), or
I(v) € P, (in which case, Lemma 8.2 applies).

Henceforth, we take 3 < f; and, we assume, by induction, that the result holds
for rank F = f — 1. The complexes I*) and M(*) are homologically equivalent.
Corollary 4.11 shows that the length of M(?) is at most

g+2f—-2=3(f-1) < f(f — 1) = grade [ (X).

By the acyclicity lemma [7, Cor. 4.2], it suffices to show that 1% is acyclic for each
entry x of X. Fix such an x. There exists R,—module isomorphisms v : F, — F,

and ¢y: G, — G, such that w;loXowl is equal to [)é/ ﬂ forsomeg—1x f—1

matrix X’. Let I denote I®) [y (u), 95" o X o 1,97 (v)]. Observe that there
exists a subring R; of R, such that R, is a polynomial ring with coefficient ring
equal to Ry and indeterminates given by the the entries of 3 (u), X', and ¥ *(v)
(including the last entry from each of 3 (u) and 7 *(v)). Lemma 8.3 shows that

I$?) is isomorphic to [ If the entries of ¥3(u) are uy,...,uy and the entries of
Y1 (w) are v), ... , V%, then let
v
u' =[uy, ..., wug_y] and ' =|
Vr

Let I’ represent the complex I¢*)[u/, X’ v']. The induction hypotheses ensures that
I’ is acyclic. Theorem 9.1 shows that I is homologically equivalent to the tensor
product

]
/ / /
H,®(OHRxLRx@RxM}Rx),

The indeterminates u;, v} form a regular sequence on Hy(I'); hence, Tis acyclic.
O
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Lemma 8.2. Adopt Data 1.2 withf =2,9=1, and2 < z. If [, (X*(u))+11 (X (v))
is an ideal of grade 2 and I,(v) = R, then 1%) is exact.

Proof. We use the notation of Conventions 1.4 and 1.5.a. No harm is done if we
assume that v = f12. Under this assumption, v(wp+) = @1, First we fix z, with

3 < z. Recall the index set THEZ) from Definition 2.3. Observe that (p,1,r,s,t) is in
THEZ) if and only if (p,r,s,t) is taken from the following list:

(—3,0,0,2), (2—2,0,1,1), (—2,1,0,1), (z—1,1,1,0), (2 —2,0,0,1), and (z—1,0,1,0).
For each such (p,r,s,t), let
Clp,r,s,t] =L(p—1,2,7,s,t) ®L(p, 2,7, 5,t) B L(p, 1,7, 5,1).

Observe that 1(*) = @ C|[p, r, s, ], where the sum is taken over the above list. Filter
I?) by taking (p',¢',7",s',t') < (p,q,r,s,t), whenever

' <t; orelse, t' =tandr’ +s <r+s.

Observe that d is a non-increasing map. Let dl” be the component of d which is
homogeneous with respect to the above filtration. We see that d\% carries each
C|p,r, s,1] to itself and that the map

[0]
Lp—1,2,7,5t) &L(p,2,7s1t) —— L(p,1,r,s,1)

is one-to-one and has cokernel ¢@? @ p@ @ A" F © A\°G @ ). Let N represent
P L(p,2,r,s,t), where the sum is taken over all (p,r,s,t) such that (p,2,r,s,t)

is in THEZ), and let N be the subcomplex N + d(N) of I*). Tt is easy to see that
d(N) C im d!® + N; thus, N is equal to N + im d[%; and therefore, N is split exact.
Let  represent mod N. We see that i(z) looks like

_ - L(z —2,1,1,0,1) - L(z —2,1,0,0,1) -
0—L(z-3,1,0,0,2) = @ =2 ® “L L(z-1,1,0,1,0).

L(z—2,1,0,1,1) L(z—1,1,1,1,0)
If we take bases: p?? @ Pl @10 1@ v® for L(p,1,0,s,t), and
¢[2]P ® QO[Q] ® f[l] NI l/(t), QO[Q]p ® QO[Q] ® f[2] NI l/(t)

for L(p,1,1,s,t), then

_ 0 _ — U1 —U1re2 —Uy _
d3 = —1 3 d2 = — X2 0 0 3 and d1 = [IEQ —U1T1 —leg] .
T2 0 —XT2 -1

It is clear that ﬁ(z)

The only_modiﬁcation which is required when z = 2 is that E(z) now has@(O, 1,1)
in place of L(z — 3,1,0,0,2). We take 1 ® wg- ® 1) to be the basis for U(0,1,1).
The matrix for ds3 remains unchanged. [

is acyclic.
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Lemma 8.3. Adopt Data 1.2. If¢: F — F is an isomorphism, then 1) [u, X, v]
is isomorphic to 1®[u, X o1, y~*(v)]. If ¢¥: G — G is an isomorphism, then
1) [u, X, v] is isomorphic to 1) [yp* (u), v~ o X, ].

Proof. In the first case, define W: I(*)[u, X, v] — I®)[u, X o 4,4~ (v)] by

V(Ap @ ag®br ®cs @ V(t)) = (Sp¥*)(Ap) @ (N P*)(aq) @ (A" w_l)(br) ®Vcs ® V(t)7
Wby ® g @ pu™) = (AP ~1)bp @ 64 @ ul,

U(ap ®cqg ® M) = (AP P )ap @ cqg ® A and

U(Bp @by ® ar ® 85 @ €W = (Dpyp=1)(Bp) @ (AT 71)(bg) © (A" ¢*) (o) © 65 @ £,

In the second case, define ¥: 1*)[u, X, v] — I®)[y*(u), ! o X, v] by

V(Ap ® g ®br @ s @) = Ap ® ag @ br @ (NP1 (cs) @ v,
W (bp ® g @ ")) = bp @ (N79*)(6q) @ p(,
U(ap ®cqg @A) = ap @ (A9~ ") (cq) ® A7), and
U(Bp @by ® ar ®3s ®EM) = By @ bg ® ar @ (A° ¢*)(0s) @ EM).
Each map V¥ is an isomorphism of complexes. [
We use the following well-known result many times.

Observation 8.4. Let I and J = (ry,...,ry) be ideals in the commutative noether-
ian ring R, and f be the element Z?Zl rjx; of the polynomial ring Rlxq, ..., zy).
If m < gradel and m + 1 < gradel + J, then m + 1 < gradel + (f).

Proof. We may mod out by a regular sequence of length m in I; and therefore,
it suffices to treat the case where m = 0. Suppose that 1 < gradel + J, but
0 = gradel + (f). Then there is a non-zero polynomial ¢g in R[z1,...,x,] such
that g/ = 0 and gf = 0. Use the argument of [18, (6.13), p. 17] to find a non-zero
element of R which annihilates I + J, and thereby reach a contradiction. [J

We now collect the grade estimates which are used in the proof of Theorem 8.6.
Most of these estimates may be found elsewhere in the literature.

Lemma 8.5. Adopt 1.2 with data which is generic in the sense of Convention 1.5.b.
Assume that 0 < f —1 < g. Let K be the R—ideal I, (uX) 4+ If(X) + I, (Xv), and
X' be the submatriz of X consisting of columns 2 to f. The following statements
hold:

(a) f+g—1<gradeK;

(b) f+g <gradeK + I (v);

(c) f+g<grade K + (v1) + If_1(X'); and

(d) if1<t<f—1, then2g+1—t<gradel;(uX)+ I;(X).

Proof. One can prove (a) by mimicking the proof of [5, Prop. 4.2.a]. (An alternate
proof is given in [4, Theorem 1.2], provided f < g.) Assertion (b) is clear because
I (uX) + I§(X) has grade g. We now prove (c). Let v" be v with row 1 deleted.
Assertion (a) guarantees that g + f — 2 < gradel; (uX’) + Iy_1(X') + I, (X"0').
Also, g+ f —1 < 2g < gradel;(u) + If_1(X') + I (X'?'); hence, Observation 8.4
yields that g+ f —1 < grade I1 (uX )+ If_1(X’)+I;(X'v’). (The entries of the first
column of X play the role of the new indetermiates.) The proof of (c) is complete
because v is yet another new indeterminate. The argument of [13, Lemma 7.33.b]
establishes (d). O
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Theorem 8.6. Adopt Data 1.2 with f —1 < g and —1 < z. If the data (u, X, v)
is generic (in the sense of Convention 1.5.), then 1(3) is acyclic and Hy(I*)) is
isomorphic to an ideal of Hy(I().

Proof. Take u, )A(/, and T as in Proposition 3.6. Let I®¥), K, bs, po, N, and DM be
the complexes, ideals, and modules which are created in Definitions 2.3 and 3.1 and
Observation 3.3 using the data (u, X,v). Use the data (7, X, v) to create I*), K,
and Eg; and use (u, X,v) to create ﬂ(z and K. The proof proceeds by induction on

g. Theorem 8.1 takes care of the acyclicity of I(*) when f — 1 = g. We prove that
Hy(I*)) is isomorphic to an ideal of R/K at the end of the proof. In the mean

time, we assume that f < g. Let w = Z{Zl Zgiv;. Observe that the composition

X*
— " — b3

o
of Observation 3.3 carries v9) to w. N

The induction hypothesis guarantees that I(*) is acyclic for all z with —1 < z.
Therefore, the long exact sequence of Proposition 3.6 yields H; (ﬁ(z)) = 0 for all z
and j with 2 < 7 and 0 < 2. The following observations are necessary before we
consider H; (i(z)).

(8.7) The R—ideal K is perfect of grade f +g — 2.

(8.8) The R/K—ideal bs has positive grade.

(8.9) The element w is regular on R/K.

The induction hypothesis gives that I() is acyclic; hence pd R/ K<f+g—2 On
the other hand, Lemma 8.5.a gives f+g—2 < grade K. When we combine these two
inequalities we obtain pd R/ K < f+g—2 < grade K; and thereby establish (8.7).
Assertion (8.8) follows from (8.7) because of part (b) of Lemma 8.5. Observation
8.4 ensures (8.9).

We saw in Observation 3.3 that there is an R/ K —module surjection

(8.10) Ho(I®) = S, (N) —» b3

for all z with 0 < z. Since Eg has positive grade, and Hy (i(z)) is isomorphic to an
ideal of R/K (by induction), we conclude that (8.10) is an isomorphism. When
the isomorphism of (8.10) is applied to the exact sequence of Proposition 3.6, we
obtain the exact sequence

0= H,@®) - H,[I7) - 657 b5

thus, Hy (E(z))_: 0 for all z with 1 < z.
The ideal K also contains w; consequently, the same argument as above yields
that the surjection Ho(I-") — K /K of Proposition 3.6 is also an isomorphism. It

follows that H; (E(O)) = 0; and therefore, I is acyclic for all 0 < z. The complex

19 has length g+ f —1 (see Corollary 4.11), and it resolves a prefect R—module
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of projective dimension g + f — 1; thus, Y (ﬁ(gifﬂ)) [—(g+ f —1)] is also
acyclic.

View R as a graded ring where each element of Ry has degree zero and every
entry of X, u, and v has degree one. The short exact sequence

O—>R£>R—>R/(ug)—>0
induces a short exact sequence of graded complexes
0— 1™ M1 1% .

The corresponding long exact sequence of homology yields that multiplication by
ug is an automorphism of H; (I*)) for all i and j with 1 < j and —1 < 2. Since the
homology of I(*) is finitely generated and graded, and ug has positive degree, we
conclude that I(*) is acyclic for —1 < z.

It remains to show that Hy(I(*)) is isomorphic to an ideal of R/K whenever
f—1<g. Fix1 < z It is easy to see that the R/K —module Hy(I**)) has rank
one. Indeed, if P is an associated prime of R/K, then (8.8) gives I;(v) € P;
hence, Example 8.14 shows that Ho(I*))p = (R/K)p. Let j be an integer with
g+ f<j<2f+g—2, and let F; be the radical of the R—ideal generated by

{z € R|pdp, Ho(I¥), < j}.
A quick look at Example 8.15 shows that if A is a ¢ x ¢ minor of X, then
pd Ho(I)s < 2f +g—2—t.

It follows that Ir(v) + I (uX) + Iof+g—1-;(X) € F;. Apply Lemma 8.5.d to see
that

(8.11) JH+H1<j+1+(g+1—f)<gradeFj.

It follows that Ho(I(*)) is a torsion-free R/K—module. We conclude that the sur-
jection

(8.12) Ho(I®)) — b2

is an isomorphism. Finally, we consider the case z = —1. We have seen that
Hy(19=f+1) is a perfect R—module of projective dimension g + f — 1, and that
(8.13) Ho(I7Y) = ExtSH 1 (Ho (194D R).

It follows that Ho(I"Y) is a torsion-free R/K—module. If P € Ass(R/K), then
Example 8.14 shows that Hy(I9—f+1)p is obtained from Rp by modding out a
regular sequence of length g + f — 1; thus, (8.13) yields that Ho(I-") has rank
one. Recall, from Observation 3.3, that there is an R/K—module surjection

Ho(ID) = py.
The R/K —ideal on the right side has positive grade. It follows that this surjection
is an isomorphism. [J

Remarks. (a) If 2 < f < g, then the ideal ay of Theorem 0.3 has positive grade;
hence, the argument surrounding (8.12) also yields Hy(I*)) = a3.

(b) The inequality of (8.11) is the best possible. Indeed, Example 2.8 shows that if
(g,f) = (1,2), then grade F3 = 4.
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Example 8.14. Assume f —1 <g. If Ris local and Iy_;(X) = Ror I;(v) = R,

then Hy(I*)) = R/K for 0 < z. Indeed, in the first case, one may choose the bases
for F' and G so that the matrix of X is

It readily follows that K = (u1,...,uf_1,2¢f,...,Zgf,01,...,0f—1) and N = R/K.
In the second case, one may choose the bases for F' and G so that the matrix of
vis [10..0]" Tt readily follows that K = (z11,...,241, (uX)z,... (uX)s), and
N =R/K.

Example 8.15. Suppose that T and T, are indeterminates over R. Let

u=[u Ty], X= [)0((1)] , V= [;2] , and N = N(u,X,v).
It is clear that the R[T]—ideal K(u,X,v) is equal to K + (11,T%). Furthermore, if
the R—module N is viewed as an R[T},T5]—module by way of the ring homomor-
phism

R[Th,To] — R, T5]/ (T, T2) = R,

then N and N are isomorphic as R[T}, Tz]—modules. Consequently, if the R-module
S:(IV) has finite projective dimension, then pdg7, 7,1 5:(N) = pdg S5 (N) + 2.

Example 8.16. Adopt Data 1.2 with generic data. If g < f —2, then H; (I(?)) £ 0.
Indeed, z = [(A? X*)(we+)](bgs1) ® 1 @ u® € U(1,0,0) is a cycle in 1(®). On the
other hand, the only summands of I(?) which might map to this cycle have the form
T(p,q,r), with (p,q,r) in the set Téo) from Definition 2.3; in particular, f —g <.
Furthermore, d of T(p, q,7) is contained in T(®) @ D, U(g+r—t,g—f+p—t+rt).
Thus, if T(p, q,r) maps to U(1,0,0), then ¢+ r = 1. It follows that z represents a
non-zero element of homology whenever g < f — 2.

9. The caseg=f —1.
Theorem 9.1 is the main calculation in the proof of Theorem 8.1.

Theorem 9.1. Let F and G be free modules of rank f and g, respectively, over the
commutative noetherian ring R. Letu € G*, v e F, X: F — G be an R—module
homomorphism, and (]I(Z),d) be the complex which is constructed using the data
(u, X, v). Suppose that the above data decomposes as F = F & Rf, F* = F* @ R,
G=Gad Rg, G"=G" D Ry,

X 0 v
X—lo 1}, u=[u ug], and V—[Uf},

where F' and G are free R—modules of rank f —1 and g — 1, respectively, ¢(F') = 0,
o(f) =1, f(F*) =0, v(G) = 0, v(g) = 1, and g(G*) = 0. Let (I¥),d) be the
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complex which is constructed using the data (u, X,v), and let (Y,y), be the total
complex which is associated to the double complex

0— 1

If =1 <z and f —1 =g, then the complezes (I*),d) and (Y,y) are homologically
equivalent.

Remark. The result remains true if the hypothesis f —1 = g is replaced by f—1 < g;
however the proof becomes more complicated.

Proof. The hypothesis f —1 = g affords two immediate simplifications. First of all,
every W—type summand of I¢*) and 1(*) is zero. Indeed, if (p,q,7,s,t) is in the set

TWSVZ) of Definition 2.3, then 2f + 2z + 1 < s + f; hence, g < s. In a similar manner,

the set quz) becomes {(p,q,7) | p+q+r < f—1 and 1+2z < r}. The complex I(*)

is formed using components L(p, ¢,r, s,t), U(p, q,7), and T(p, q,r), and constant
Oz (p7 q,T, t) = (_1)r+z+q+qf9q9p (f72;fli—qzir+t> :

The complex I*) is formed using components L(p, ¢, r, s,t), U(p, ¢,r), and T(p, ¢, ),

and constant
o.(p,q,rt) = (_1)r+z+qf9q9p (f—l—p—q—H—t)'

r—1—z

For integers a, b, ¢, and d with 0 < a, and 0 < b,¢c,d < 1, let

L(p,q, 7 s, t;a,b,c,d) = [SpF* - ¢ @ [N F* A¢®] @ [N\" FA£]® [N°GAgd] @v®),
U(p)QaT;b7 C) = [/\p EFA fb] & [/\q G* /\'YC] ® M(T), and
T(p,q,7m;b,¢) = [\? F* A¢?] @ [N?G A gc] @A),

Let U(b, ¢) be the direct sum of all submodules of I*) of the form U(p, q,7;b,c).
The symbols L(a, b, c,d) and T(b,c) are given meaning in the analogous manner.
Define submodules A, C, E, and J of I*) by

${(p,q,r,s,t)\p+t§z—l, z<p+q-+t, 2f—3:r+s+t}]l‘(p’q’r7S’t;0707071)

DD ((p,q,rs,t)lprt<z—1, s—1<pratt, 2f—3=r+ste} LD a:7,5,10,1,0,1)

DD ((p,arla<e—1, 2<qtr, f-1=p+r} U(P:4:750,0)

SDi(parlg<z—1, =—1<qtr, f-1=p+r} V(P ¢7;0,1).

695']L(not) ]L(p, q,m,8,t;a,b,c, d)

69ea{(p,q,'r,s,t)\7‘—‘,—5—1—1&§2f—4, f—2<s+t, ptqtt=z—1} L(p’Q7T’S7t;O717O71)

DD ((p,q,r,s,t)Ir+st+t<2f—4, f-2<s+t, prati=z—1} L0407 540,1,1,1)
DD (p.anlosr, prr<f-2, qrr=-—130@:0,750,1) ®U(p, ¢, 1,1)], where

z<p+qg+t+a+b,

S]L(l’lOt) = (p,q,r,s,t;a,b,c, d)
r+s+t+c+d<2f—2, and (a,d)# (0,1)

p+t+a<z—1, f—-1<s+t+d, }



TWO VECTORS AND A RECTANGULAR MATRIX 65

E= . U(p,¢,0;0,0) @ &b T(p,q,z + 1;0,0), and
{(p,9)|p+a=Ff+2—1} {(p,q)|p+q=f—2—=2}

EB]L(p,q,r s,t;0,0,0, 1)@@L(p,q,r s,t;0 O,l,l)@@][.(p,q,r s,t;0,1,0,1)

@@L(p,qﬂ"sto L, D® 69 U(p,q,7;0,0) ® EB U(p,q,7;0,1)

J= Sy (0) Sy(1)
R ) 69 U(p,q,7;1,0) ® @ Ulp,q,r;1,1) ® @ T(p,q,7;0,0)

SU() SU 2) ST(O)
®© @ T(p,q,m;0,1) ®© @ T(p,g,7;1,0) ® @ T(p,q,r;1,1),

St(1) St(1) St(2)

where
S]Lf{(p,q,r,s,t) z<p+gq+t, and T+s+t§2f—4}

{(p,q,O)‘ p+qg<f—-2+z and 2<gq}

1STa p+q+TSf_1+Za
p+r<f—-2 and z<gqg+r

su)={ U {<p,q,r>

U{(?v‘]ﬂ")‘lﬁr, p+r=f—1, and z:q},

Ta p+q+7ﬂ§.f_2+z7
p+r<f—2 and z<gqg+7r [’

Ta p+q+7ﬂ§.f_3+z7
+r<f—2 and z<gqg+7r [’

Sp(1) = {(p,qﬂ’)

Sy(2) = {(p,qﬂ’)

ST(O):{(p,q,z—l—l)|p—|—q§f—3—z}U{(p,q,T)|p+q+r§f—1, Z+2ST,},

ST(l):{(p,q,T)|p—|—q—|—7"§f—2, Z+1§Ta}7and
Sr(2) ={(p,a,7) | p+q+r<f-3, =2+1<r}.

A straightforward, but long, calculation shows that, as a module, I*) is equal to
the direct sum A@CHE @ J. A short calculation yields that C is a subcomplex of
I(*). The complex (C,d) is split exact, by Proposition 9.8; and therefore,

GEDI

A
(]I(Z) ,d) P2, (A®E & J,projteE®d od)
is a quasi-isomorphism of complexes. Define

My : @ U(p,z,7;0,0) CE®J — A, by

ptr=f—1
Miby @5 @pd ) =~ % fre (N X)) (6. @ a,
F—p<t
[T|=f—-1—t

(Define M; on all of I*) by taking M; to be zero on all other summands L(x; %),
U(x; %), and T(*; *).) Lemma 9.4 shows that (A, proj* od) is a complex and that

A
(A®E e J,proj* @@ od) 2L IEL (A proj od)
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is a map of complexes. The complex (A, proj* od) is split exact, by Proposition
9.8; and therefore, Lemma 9.3 yields that

(E@ J, proi=® od o (1 — M;)) A=My (A ®E @ J, proj*®E®y oq)

is a quasi-isomorphism of complexes. Define

My: @  U(p,q,00,0)CE—1J
p+g=f+z-1

by Mo, <bp ® 0g ® u(0)> is equal to

( Hf—Q—qgf—l—p(_1)1+z+qf (v Abp)(wr+) ® §g(we) @ A=
+X(1 < p)bf—2-gf5-1-p(—1)* T (0p-) @ (uA §g)(wa) @ AEHY

Fxp<f-2) S (0t afe [N X)) (6 Ay @ u®

0<t
[I|=p—1—t

“Xp<f-2) X fre (N X)) (0) @ u.

o<t
\ [I|l=p—t

(Extend the domain of M to be all of I®).) Let dg: E — E represent the map
proj®od o (1 — M) o (1 — My). Apply Lemma 9.13 to see that (E, dg) is a complex

and that
(E,dg) —2 (E @ J, proj*® od o (1 — M)

is a map of complexes. It is easy to see that the complex (E,dg) is split exact.
Indeed, if z = o), ® c; ® MG e T(p, g, 2 + 1;0,0) C E, then

dg(z) = (—1)%0.(p, ¢, 2+1,0)ap(wp) Ry (we ) @p” € U(f—1—p, f—2—¢,0;0,0).

Thus,

de: P Tpaz+100— H  Upg0:0,0)
ptq=f—-2—= pta=f+z—1

is an isomorphism and (E,dg) is a split exact complex. Let dj: J — J be the map
(proj’ +My) od o (1 — M;). Lemma 9.3 yields that

(9.2) (E @ T, proj=® od o (1 — My)) 22, (1 q))

is a quasi-isomorphism of complexes. In Lemma 9.16 we exhibit a map of complexes
U: (Y,y) — (E® J, proj®® od o (1 — My)).

Let W: (Y,y) — (J,dy) be the composition

pron + Mo
e T

Y LEa] J.

We prove in Lemma 9.17 that W is an isomorphism of complexes. [
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Lemma 9.3. Let (F, f) be a complex such that, as a module, F is equal to the
direct sum A @ E.

(a) If (A a) is a complex and M : E — A is a module homomorphism such that
proj® +M : (F, f) — (A, a) is a map of complexes, then

(B, projfof o (1 — M)) ——L (F, f)

is a map of complezxes.
(b) If (E,e) is a complex and M : E — A is a module homomorphism such that
1—M: (E,e) — (F, f) is a map of complexes, then

(F, £) 22 (A (proj* +M) o f)

18 a map of complexes.

Proof. (a) Observe that ker (projA +M:F — A) =im (1 —M:E— ]F) Ifx cE,

then f o (1 — M)(z) is in the kernel of proj* +M; and therefore, f o (1 — M)(x) is
equal to (1 — M)(y) for some y € E. Tt follows that proj™of o (1 — M)(zx) = y; thus,
(1—M)oprojfofo(l—M)(x)=fo(l—M)(z), as desired.

(b) It is clear that (proj® +M) o f(z) = (proj* +M) o f o (proj* +M)(z), if z € A.
We must establish the above equation for x € E. In other words, we must show that
(proj* +M) o fo (1 — M) kills E. However, the hypothesis ensures that f o (1 — M)
is equal to (1 — M) oe, and it is clear that (proj® +M)o (1 — M) kills E. [

Lemma 9.4. Adopt the notation of Theorem 9.1. Then (A, proj* od) is a complex

and

A
(A®E® J, proj®*e! od) ZT T,

(A, proj* od)
1s a map of complexes.

Proof. Tt suffices to show that the diagram

projAeBE@J od
APER)] —— AGE®]
(95) projA —&—Mll projA —|—M1J(
A projA od A

commutes. If € A, then both paths around (9.5) send z to proj* od(z). If
T=b, R0, ® p") € U(p, q,7;0,0) C E, then both paths around (9.5) send z to

x(a=2) S (CDPHRLE (A X*) () s ® i Abp @ g Adgwe) Ag B 1O,
{(t,s)|t<z—1, gq<s+t}
|K|=r+q—s—t
[J|=s

(The counter-clockwise path involves the argument used to show “I3 — T = 0”7 in
the calculation related to (9.6).) If x = a, ® ¢, ® A7) e T(p,q,;0,0) C E, then
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the counter-clockwise path around (9.5) sends x to 0 and the clockwise path sends
z to

xp=0) 2 (-D%:(p.am)f1 @ [(/\f_J”“_'l_’"_1 X) ((p1 A op)wr]) A Cq} (we=) @ p®

|I|=g—t+r

+ x(p = 0)M1 ((—1)%0=(p,q,7,0)ap(wp) ® cq(we=) @ u),

which is also equal to zero.
The counter-clockwise path around (9.5) kills all of J, except

(9.6) U(p,q,7;,0,0),with 1 <r, p+r=f—1, and z=g.
The clockwise path kills all of J, except (9.6), and, possibly,
(9.7) T(p,q,r;0,0),with p+g+r=f—1 and z+2<r.

Fix 2 = b, ® 6, ® u(™ as described in (9.6). The counter-clockwise path around
(9.5) sends z to Ty + T» + T3, where

= Y (DI XE) ([T X)) (6) @ u,
f—p<t
[I|=f—-1-t
=- ¥ oAfe (AT X (erlb))] (60) @ ptY), and
=5
Ty = Y (DU St @ (N X (1) A ek
f—p<t {(t',s)|t/<z—1, 2+f—1—t—p<s+t'}
[T|=f—-1-t |K|=24+f—1—p—s—t/

|J|=s

@fx A f1 @ g A ([N X)(rlb])| (0)) (we) g @ vt
The clockwise path sends = to Ty + 1% + Ty, where

Ty = (=1)Pby ® [X(0)](5y) @ u(™),

Ts= Y (Do (NPT X) (erlv Abp))| (6g) @ u®), and
f—p—1<t
IT|=f—1—t

T = ) (—1)PsttEPs1 @ (NS X*)(v5) Ao

{(t,s)|t<z—1, q<s+t}
|K|=r+q—s—t
[J]=s

®f Nbp ® g Adg(wa) ANg@v®).

We see that

N-Ti= X ()@ (W2 )@ Awib)] (6) @ n®.

f-p—1<t
[T|=f—-1—¢t

Apply Lemma 1.9.e to obtain

L= 5 ()7 (N X (enlb)] (6) @ u®.

f—-p—1<t
T|=f—t—1
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Proposition 1.1.a now yields that 77 — Ty + 15 — T5 = 0. Apply Lemma 1.9.e and
Proposition 1.1 to T3 — T, which is equal to

/
> (D) DHEH L @ (N° X*) (7)) A exe
f—p—1<t {(t/,8)|t/<z2—1, z+f—1—t—p<s+t'}
[I|=f—-1-t |K|=2+f—1—p—s—t/
|J|=s

@fxc A 1@ g5 A ([N X0 (rlbp))] (80)) (wa) Ag @ ),

in order to obtain

2 (_1)(f—t)s+t’+f—t
f—p—1<t {(t/,8)|t/<z—1, z+f—-1—t—p<s+t'}
[I|=f—-1-t |K|=z+2f—2—p—s—t/—t

| J|=stp—f41tt
R(er[bp]) ((/\s+p_f+1+t X*)(’YJ)) A fror) ® fix ® g7 Adg(wa) Ag @ v,

Let L=s+p—f+ 1+t Lemma 1.9.d now yields that T5 — Tj is equal to

(—nEPH I, ((/\L X*)(va) A ‘PK) ® fx ® g5 Noq(we) Ag@vt),
(¢, L)|t/ <21, 2<L4t'}
|K|=2+f—1—L—t'
[J]=L
and this sum is zero because rank F' < f < L + |K]|.
Fix © = a, ® ¢; ® A", as described in (9.7). The clockwise path around (9.5)
sends x to
> (=% .(p,q,myr—2—1)
[I|=q+2z+1

dpo My (f] ® {(/\T—Z—l X) ((p1 N ap)wr]) A cq} (wg*) ® ’u(’r—z—l))

+ X Y (=1)%=(pa,m ) f1 ® [(A"X) ((p1 A ap)wr]) Acg] (wg=) ® u®)
r—z<t|I|=q—t+r

(_1)q+1az(p7qu7r_z_ 1) Z Z fJ
[I|=q+z+1 |Jr:_fz§1t—t
= 60 ® (N X) (ealf1 A Gor Aap)lwr]) A (we) @ u®

+ _Z<t |I|_2t+ (=1)0=(p, a7, 0)f1 ® [(A* X) (01 A ap)[wr]) A cq] (wer) @ u).

Apply Lemma 1.9.f in order to conclude that this sum is zero. [
Proposition 9.8. The complexes (A,projA od) and (C,d) are split exact.

Proof. Let D[[p,q,7;0]] be the submodule of A which is given in Definition 7.11
with

(9.9) rank F' replaced by f — 1, rankG replaced by f — 2, and

L(a,b,c,d,e) and U(a,b,c) replaced by L(a,b,c,d, e;0,0,0,1) and U(a,b,c;0,0),
respectively. In a similar manner, let D[[p, ¢, r;1]] be the submodule of A which
is given in Definition 7.11 when hypothesis (9.9) is in effect, and the modules
L(a,b,c¢,d,e;0,1,0,1) and U(a, b, c;0,1) are used. It is not difficult to see that A
decomposes as the direct sum

A= @ Dlpa0ole @ Dlpq0:1]

{0<p, 1<q} {0<p, 0<q}
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Filter A as follows. Take € D[[p, ¢, 0;0]] < € D[[p, ¢, 0; 1]], and

(9.10) D[[p',q,7"; 4] < D[p,q,7; 4] < (',4q',7") < (p,q,r) in the order of Definition 7.11,

for £ = 0,1. Let d® be the component of projA od which is homogeneous with
respect to the above filtration. It is not difficult to see that if x is a homogeneous
element of A, then proj® od(z) = ' + dl%(z), for some 2’ € A with 2/ < z. Let
(D[[p, g, 7]],d") be the complex of Proposition 7.14.a with the hypothesis of (9.9)
in effect. It is not difficult to establish isomorphisms from (ID[[p, g, r;0]],d”)) and
(D[[p, g, 7;1]],d%) to (D[[p, ¢, 7]],d®). Apply Proposition 7.14.b and Theorem 5.7
to see that (D[[p, ¢,7]],d?) is split exact. It follows that the complex (A, proj* od)
is split exact.

Let D[[p,q,7;1']] and D[[p, ¢, r;2]] be the submodules of C which are given in
Definition 7.11 when hypothesis (9.9) is in effect. Modules of the form

) and U(a, b, ¢;0,1) are used in D[[p, q,r; 1']], and

L(a,b,c,d,e;0,1,0,
0,1,1,1) and U(a, b, c; 1,1) are used in D[[p, ¢, r;2]].

L(a7 b? C? d7 e; Y Y I

Let Q represent PL(p,q,r,s,t;a,b,¢,d), where the sum is taken over the set
S (not). Observe that that (Q,d) is a subcomplex of (C,d). It is easy to see

that
c=Qe P Dporl]e € Dlpo,r2)

{0<p, 1<r} {0<p, 1<r}

Filter C by taking Q < @DI[[p,0,7;1']] < @ D[[p,0,r;2]], and (9.10) for £ = 1’,2.
Let d® be the component of d which is homogeneous with respect to the above
filtration. It is not difficult to see that d is a non-increasing function on C and that
the complexes (D[[p, ¢,7;1']],d”)) and (D[[p, ¢, 7;2]],d")) are isomorphic to the split
exact complex (D[[p, q,7]],d”)), which is defined in the first part of the proof. To
complete the proof, it suffices to show that (Q,d) is split exact.

Filter Q by taking L(p’, ¢, ', s',t';a’, ', ¢/, d") < L(p, q,r,s,t;a,b,c,d), whenever

q <gq, or
¢ =qandr’ +s +2(t' ++d)<r+s+2(t+c+d), or
g =q r+s+2 ++d)=r+s+2(t+c+d), andad +b —c —d <a+b—c—d.

Let dl% be the component of d which preserves this filtration. It is not difficult to
see that the restriction of d to QQ is a non-increasing function and that if

r=¢"A, ®ay AP @b, NS @ cs Agl o v® e L(p,q,r, s,t;a,b,c,d) CQ,
then dl’(x) is equal to

+(=D)ix(b=1Dx(p+a+t<z—2)¢" 1A, Qa; @b AMfC®cs Agd @ v®)
+x(c=0) (=)o (f <s+d+ 1)t A, @ ag AP @b Af R cs Ag? @vE—D
+ x(d = 0)(—1)atbFrtetitsgatifg @ a, A¢* @b, NS @ cs Ag@ v,

At this point, it suffices to show that the complex (Q,d!")) is split exact.
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Define Fp, q,r, s,t,a] to be the sum of all L(p, q,r, s,t';a’,b,¢,d) C Q such that
t=t —24+c+d and a=d +b+2—c—d.

Observe that Q = @ F[p, q,, s,t,al, where the sum is taken over all (p,q,r,s,t,a)
with

(9.11) p+t+a<z f—-3<s+t, z<p+qg+t+a, r+s+t<2f—4, and 1<a.
It is now obvious that the complex (Q,dl”) is the direct sum of the subcomplexes
(Fip,q,r,s,t,al, d[o]). In the ensuing discussion, fix prameters p,q,r, s,t,a,b, c, and

d. Take <t;a,b,c,d> to be the module L(p,q,r,s,t;a,b,c,d), and F to be the
complex (F[p,q,r,s,t,a],d"). If

(9.12) ptt+a<z—1, f—-2<s+t,

and 3 < a, then F is

<t+2;04—2,0,0,0> <t+1;04—1,0,0,1>
55 ® 5o ® 51
0—<t+2,a—3,1,0,0> — <t+1;0—-2,1,0,1> — <t+1;0—-1,0,1,0> — <t;a,0,1,1> — 0;

® (&3]

<t+1;a—2,1,1,0> <t;a—1,1,1,1>

where
* * % 0
dg=|x*x|, do=1|* 0 x|, and & =[x *x x],

0 * =

and each map which is labeled * is an isomorphism. It is clear that the complex
F is split exact. There are a handful of degenerate versions of this complex, and
each of these is also split exact. First, we continue to assume that (9.12) holds. If
2 = a, then F is

<t+2a—2,0,0,0> <t+1;a—1,0,0,1>
b2 ® 61
0— ® 2 <t+1;a—1,0,1,0> —5 <t;a,0,1,1> — 0;
@
<t+1;a—2,1,1,0> <t;a—1,1,1,1>

if 1 = a, then F is
0 <t+1:a—1,0,1,0> 5 <t:0,0,1,1> — 0.
Next, we take p+t+a<z—1land f —3=s+t. If 3 <a, then F is

<t+2;a—2,0,0,0>
0— <t+2;a—3,1,0,0> — @ 22 <t+1;a—1,0,0,1> — 0;

<t+1l;a—-2,1,0,1>

if 2 =aq, then F is

<t+2a—2,000>2 <t4+1:a—1,0,0,1>;
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and if 1 = a, then [F is the zero complex. Next, we take p+t+a = z and f—2 < s+t.
If 3 < a, then F is

s, <t+lia—21,01>
0— <t+2;a—3,1,0,0> — > 2 <tia—1,1,1,1> — 0;
<t+1;a—2,1,1,0>

if 2 =aq, then F is
0 <t+1;a—2,1,1,05 22 <t:a—1,1,1,1> — 0;

if 1 = a, then F is the zero complex. Finally, we take p+t+a =z and f —3 = s+t.
If 3 < a, then F is

0 <t+2a—31,00> -2 <t+1:a—2,1,0,1> — 0:

and if a < 2, then F is the zero complex. We conclude that (F[p, q,7, s, t,a],d) is
a split exact complex, whenever (9.11) is satisfied. [

Lemma 9.13. In the notation of Theorem 9.1, (E,dg) is a complex and

(E,dg) 1M,

is a map of complexes.

Proof. Tt suffices to show that the diagram

(E® J, proj*® od o (1 — M)

proj&®J odo(1—My)

Eal EalJ
commutes. In other words, we must show that 7 = (proj’ +My)odo (1 —M; — M)
kills E. If 2 =, ® ¢; ® A" € T(p,q,7;0,0) C E, then 7(z) is equal to
(—1)P~tu(ap) @ cqg @ AT
+ (—1)PHIx(1 < g+ )y ® u(cqg) @ A

+x(1 <p) > (—1)P~1 "o (p,q,7t) f1 A f
o<t
[I|=g—t+r—1

® [N X) (o1 A ap)wr) Aeg| (we=) Ay @ ul?

+x(1 <p) 1;1& (-1)%(p,q,7,t)f1 @ [(/\t X) ((p1 AN ap)wr]) Acql (wa=) @ p®
[I|=q—t+r

+ (=1)%0(p, ¢, 0) M2 (aplwr] ® ¢g(wer) © u®)
and this is easily seen to be zero. If x = b, ® 64 ® ) e U(p,q,7;0,0) C E, then
7(z) is equal to
Of—2_q0f—1—p(—1)*T (v Abp) (wr+) ® g (we) @ AETD
—X(1<p)g o g5 1 p(=1)"TF T by (wpe) @ (u A 6g)(wa) @ AETD

(prof +M) 0d | FXPF=2) T (DT AL (AT X)ler(By)]] (30) Ay © )
[I|=p—1—t

+ X 10 [N X)(er®))] (6g) @ u®.

|T|=p—t
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After 7(x) is expanded, and the easy cancellations are made, one is left with a sum
of 13 terms. The technique which was used on T35 — Tg in the proof of Lemma 9.4
shows that the term in IL(0,0,0, 1) is zero. Six terms are in U(0,0): three of these
involve u, the other three involve v. Six terms also are in U(1,1): once again, three
involve u, and the other three involve v. Each of these four triples adds to zero by
way of Proposition 1.1.a. [

Remark 9.14. The complex Y is defined in the statement of Theorem 9.1. The
summand of Y in position i is equal to Y; = I, & 1), & 1), & 1), We think of
the elements of Y as column vectors. In particular, the element b, ® 6, ® pw) of
U3] CYis

0

0

by ® 6y & p(r)
0

The differential y;: Y; — Y;_; is given by

d 0 0 0
| (= l)H_lvf d 0 0
o= (=) iugp_y 0 d 0
0 (1) tup_y (1)l d
Definition 9.15. Define U: Y = E® J by
(A Rag®b @cs@v) €LA]) =ApRa; @b Qcs Ag@v®),

4)
@0y @by ®cs ® V(t)G]L[3):( D)5t 14, @ ag A @ br ® cs Ag @ v®),
)

ApRag®@br@cs @v® €L[2]) = (-1)*Hf 14, Raq @b AfRcs Ag@ vt

ASOBLC VI SV S

]
]
]
p @ g @by ®cs @ v e]L[l]) = (-4, QAP Rb- ANfRcs Ag@ D),

1<r)x(z+1<q+7r)(=1)bp Af@Ig Ay ® (r—1)
by ® 8, @ u(™) € U4 ]) {ﬁb ®2Sx( " q+r)(=1) dAY O p
p q

bp ® g @ ™) EUB]) =bp @6 Ay @ "),
p ® 6@ p(") € U[2]) = (=1)9p Af® 6 @ p(7),

)

[SHENE

(4
(
(4
(
(
(v

% (bp ® 6, @ pum € U[l]) is equal to

x(p+a+r<f—3+2) (-1 Af @5, Ay @ p")

—x(p+g+r=Ff—-2+2)x(p+r<f-3) Z< f1® [(/\t—l—r X) (wj(bp))} (8q) ® pu®
|I|;;4}f4fr—t
—X(p+a+r=F-2+2)x(p+r=F—2)bp @5 @u"t

txptatr=Ff-2+2) ¥ (N)TTTALE (A7 X) (1 (b)) (60) Ay @ u®
|I|=p+r—t

+X(r=0x(p+a=F+2z-2)05 1,0 5 o(~1)F TP (0 Aby)(wr+) @ 6g(wg) @ AETD
+x(r=0xp+a=Ff+2-2)05 1,05 3 ,(—1)FT2Hb,(wps) ® (uA §g)(wg) @ ANEHD,
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ap @cqg ® ()
+(=DPTIX(z+2<1)ap AR cg Ag@ AT,
—1)Pta, A cqg @ AT,

S

ap ® cq @ A1) € T4

3

SISV

( )

(ap ® cqg @A™ €TI3]) = (

(ap ®cg® A € T[Q]) = (=D, @cg Ag®@ A and
ap ® cqg @ A1)

¥ (ap ®cq @A €T[)) = “Xpratr<frz-2 5 eshop

®cq A (N7 X)(f7) @ AGTD.

Lemma 9.16. If the notation of Theorem 9.1 and Definition 9.15 are adopted,
then R
U: (Y,y) — (B J,proj*® od o (1 — My))

is a map of complezxes.

Proof. Most of the calculation that W o y(z) = proj®® od o (1 — M) o ¥(z), for
x € Y proceeds without much difficulty. The two interesting cases are x € U[1] and
x € T[1]. We first treat x = b, ® d, ® u") € U(p, q,r) C U[1], with

0<r, p+tq+r<f—-2+z p+r<f—-2 and z<qg+r
One can calculate that ¥ o y(z) = 21131 Si, where
S1= (=X (u)](bp) N f @ dq /\’Y®H(T)a

Se=xA<r)xp+ag+r<f—3+2)(—1)PT Af@uAdg Ay@pur=1),

S3=x(1<r)x(p+q+r=Ff—2+2) > (—1)rHtratp frAf

r<t
[I|=p+r—1—t

® |:(/\t—r+1 X) (wz(bp))] (uASg) Ay @ p®),
Sy = X(Z—l— 1< q+r)(_1)p+q+1bp A ® [X(U)]((Sq) A’Y@LL(T),
Ss =x(1<r)x(z+1<qg+r)x(p+g+r<f-3+2)(—1DwAbyAfR Ay @ plr=1,

Se =x(1<r)x(z+1<qg+r)x(p+qg+r=Ff—-2+2) Y (=) Af
r<t
[I|=p+r—t

® [N X) (1w A bp))] (50) Ay @
Sr=—-x(1<rxz+1<gxlp+qg+r=Ff—-2+2) ;t 1

[I|=pF14+r—t

@ [N X) (pr (v A bp)] (6) @ u®,

Ss=—x(1<r)x(g=2)x(p+7=F—2)vAby ® g @ ul",

So=xA<r)x(p+q+r=F-2+2)(-DP > f1®[(A"77X)(er(bp))| (undy) ®p®,

r<t
[I|=p+r—t
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S0 = S (TP @ (AT X)) (v) Apr AP ® fr Abpy Af ® g5 Adg(wa) Ag@v®),
{(t,9)[t<z—1, g<s+t}
|J|=s
[I|=r+q—s—t

S11 = (—1)p+111fbp N ®bg® ,u(r), and

S12 = (—1)PT9up_1bp ® g Ay @ plm).
On the other hand, (1 — M) o \Tl(x) is equal to

X(p+a+r<f=3+2)(-1)y Af @5 Ay @ p)

—xpratr=f-24apr<f=2) 5 1o [(NTTX) (erby)] 6o @
|I|l=p+14+r—t

Fx@ratr=f-242) 5 (U ALS [T X) (er(b)] (00) Ay @
|I|l=p+r—t

+X(r=0x(p+a=F+2z-2)0p 105 5-g(-1)F TP (0 Aby)(wr+) ® 6g(we) ® AETD

+x(r=0)x(p+a=Ff+2z—2)0f 1,05 3_o(—1)* T by (wp+) ® (uAdg)(we) @ AEFD.

So, proj*® od o (1 — M;) o U(z) = %% T;, with

=1
T =x(p+q+7<f—3+2) (DX (W)](bp) AN @ Ay @ pl™,
To=x(z+1<qg+r)x(p+q+r<f—=3+2)(—D)PHp, AMf @ [X(0)](0g) Ay @ pul"),
T3 =x(z4+1<q+m)x(P+q+7<F=3+2)x(A1 <) (~D)WAby Af @5 Ay @ ulr—1),
Ti=x(p+q+r<f=3+2)x(1<r)(=1)PTby Af @uAdqg Ay@pul™h,
Ts=x(p+q+7<f—3+2)(-1)Pus_1b, ® 6q Ay @ pu(",
To=x(p+q+7r<f—3+2) (-1 opb, Af @5, @ ul,

Tr=x(p+q+r<f—-3+2) > (—1)pstrtita
{(t,8)|t<z—1, q<s+t}
|K|=r+gq—s—t
[T]=s

@ (N X)) Ao NP ® fix Nbp AN @ gy Adg(wa) Ag @ v,

Ts=—x(p+q+r=Ff-2+2) Eﬂ X @] @ (N7 X) (er(bp)] (60) @ u®,
[I|=p+14+r—t

To=x(p+q+r=Ff—-2+z2)x(p+r<f—-3) > (—1)Ptr=tfy
r4+1<t
\I\:;Srlq»rft

@ [(A7 ) WA r(bp)] (6) ® u®,

Tio=-x(p+qg+r=Ff-2+2)x(p+r<f-3) 2 vA T
rH1<t
|I|:;+l_+'r'7t

® (A1 X) (pr(6p))] (80) @ 1),

Tin = —x(q = 2)x(p+7=f = 2)v A by ® 5 & ",
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Tiz=x(p+g+r=F-2+2) > ()Pt
r4+1<t
[T|=p+1+r—t

QuA [(/\t—l_r X) (1 (bp))] (3g) @ ut=1),

Tis=x(p+g+r=f—-2+2) > > (—1)pstetrsttotatrt
r+1<t {(t',8)|t/<z—1, q+1+r—t<s+t’}
| Il=p+1+4r—t |K|=q+r—s—t’
[J]=s

QN X)) Npr Nd® fr NfrAf®@gy A ([(/\t_l_T X) (Wl(bp))} (5q)) (wa) Ag @ v,

Tia=xp+qg+r=Ff—-2+2) > (=Pt
r4+1<t
[T|=p+1+r—t

vpfr AE® (A1 X) (0r(bp))] (8) © u,

Tis =x(p+g+r=f-2+2) > (=D)Ptup o fr
r1<t
[I|=p+1+r—t

® {(/\t—l—T X) (W(bp))} (6g) Ny @ put=1),

Tie=x(z+1<ox(pta+tr=Ff-2+2 ¥ Y (—1)sphrstte byt
r+1<t {(t",8)|t'<z—1, q+1+r—t<s+t’}
[T|=p+1+r—t |K|=q+14+r—s—1t/
71=s

® (N X)) Ao ® I A 1@ g1 A ([N X) (er(5p)] (5)) (we) Ag @ v,

Tir=x(p+q+r=Ff—2+2) X (=" THTAX*(W)](fr) A f

14+r<t
[I|=p+r—t

® [(A7 20 (pr(bp))] (6) Ay @ 0,

Tis=x(z+1<q+r)x(p+ag+r=Ff—-2+2) > (-1DITPfiAf
14r<t
[I|=p+r—t

@ X@I((A" X) (p1(bp))] (50)) Ay @ u®,

To=x(z+1<q+r)x(p+aq+r=Ff—-2+2) > (DT TawwAfAf
1+r<t
[I|=p+r—t

® (A" X) (e1(6p))] (6) Ay @ =D,

Too=x(p+q+r=Ff—-2+2) Y (-D'TerPfAf
14+r<t
[I|=p+r—t

QuA [(/\t—r X) (@I(bp))} (64) Ay @ pt=1),

Tn=x(ptatr=F-2+2) ¥ (D upafre (A7 X) (er0p)] (60 Ay e u®,
|T|=p+r—t

To=x(ptatr=F-2+2) £  (DFPo i AT@ (N X) (r(by))] (60) © ),

14+r<t
[I|=p+r—t
Tos =x(p+q+r=Ff—-24+2) 3 o (—1)sptrsttstriq
1+r<t  {(t/,s)[t/<z—1, q+r—t<s+t'}
|I|=p+r—t |K|=q+r—s—t/

| J|=s

® (N X)) Apr NS ® fic At AE® gy A ([N X) (er(5))] (8)) (we) Ag @ v,
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Toa=x(r=0xp+a=Ff+z-2x(z+1<q)0f 1 05 3 ,> > (—1)at=Fi+t+af
0<t |I|=p—t

az(f_z_pvf_z_(LZ—'_ 17t)f1 /\f® |:(/\t+1 X) (‘PI('U/\bp))} (6Q) /\’7®/~’L(t)a

Tos =x(r=0)xp+a=Ff+z—2x(p<f—3)05_1_p05_3_,(—1)tftrtfta 3
0<t|I|=p—t+1
o:(f—2-p,f-2—q2+1,)fr® (A" X)(pr(vAbp))] (6) @ pu®,
Tos = x(r =0)x(qg=2)x(p=f —2)05_1_,05_3_,(—1)aF trtfta
oz(f—2—p,f—2—q,z+1,0)1)/\bp®6q®u(0),

Tor=x(r=0)xp+qg=F+2—2)05 1 05 3,5 S (=1)zFt+f+af
0<t|T|=p—t—1

o:(f —1-p.f=3-a,2+ 10 AFS (AT X)ler(Bp)]| (wA8g) Ay © u®, and

Tos = x(r=0)x(p+q=Ff+2—2)0f_1_p05_3_o(—1)F P 3
0<t [I|=p—t

o:(f—1-pf-3-q2z+1L0)fI® [(/\t X)[Sol(bp)]] (uAdq) ® u®.

77

Observe that So = Ty, S5 = T3, Sg = T11 + Tog, S10 = 17 + T3 + To3, S11 is equal
to T + T4 + Toe, and S1o = T5 + 115 + T51. Use Proposition 1.1.a to see that
S7 = Ty + Tio + Tos, Sg = Ty + T12 + Tog, S1 + S3 = T1 + Ti7 + Tao + T27, and
54 + S6 = T2 + T18 + T19 + T24. The argument which shows that T3 - T6 =01in

the proof of Lemma 9.4 yields that 774 = 0.
Finally, we take z = a, ® ¢, ® A7) e T(p,q,7) C Y[1], with

p+q+r<f—-2 and z+1<r.
We have U o y(z) = Zzﬁl S;, with
S1 = (=1)PTw(ap) ® cg @ AT,
Sz = x(1 < q+7)(=1)PHap ® u(eg) @ A,
Sy =x(z+2<r)x(1 <qg+r)ap AX*(u)] ®cg @A),
Si=x(z+2 <) (=1)Pap ® cq A [X(0)] @ AT,

Ss = (—D)Px(p+q+2r <f4+z-1) ¥ @sAv(ap) @cg AN X)(fr) @ AETD,

|J|=r—z
Se =x(1 < q+7)x(p+q+2r < f42—1)(-1)PTat! |J|2 ©J A ap
®uleg) AN X)(fr) @ AEFD,
St==xE+2<nrx(ptag+2r<f+z— 1)|J|72 1<PJAapA (X (u)]
® cq A AT X)(f0) @ AGTD,
Ss =x(z+2<r)x(p+q+2r < f+z—1)(-1)PH! |J|—Z | pINa
® cg A X )] A NI X)(fr) @ AETD,

So= > o:pagrt)x(p+ag+2r—t < f—2+42)(-1)PTTITLf AT
o<t
[I|=q+r—t

® [(NF TP X)) ((901 A O‘p)[WF]) A CQ} (war) Ay @ ulh,
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Si0=—0:(p,q,r,q+2r —f —z+1+p)x(f+2-1<p+qg+2r)x(¢+7r < f—3)
S B[N X) (@) A ler Aap)lr]) Acy] (we) @ ),

pt+g+2r—f—z+2<t
|J|=q+r+1-t
[I|=f+z—1-p—r

Sll:_ Z UZ(pqurar"i_p_l_z)X(q+T:f_2)f]
[I|=q—p+1+=

® [(N 727279 X) ((p1 A ap)lwrl]) Acq| (war) ® pr+9=2),

Si2=o0:(p,q,p+qg+2r—f—z+x(f+2—-1<p+q+2r) 3 (—1)ttptr
p+q7—J2|r—i—z—:2§t
=q+r—

[I|=f+2z—1—p—1r

FrnE@ (NPT H N X) (0 (F1) A pr A ap)lwr]) Acq| (wae) Ay @ ul®,

Sis= Y o:(pgr,0x(p+qg+2r=Ff+z—-10; 1 4 05 o , (—1)PFT7F+S
|I|=g+r

(1) (0 A fr)wr) ® (A7 X) (o1 Aag)lwn]) A g ® AEHD,

Siu= Y o:(pg,r0)x(p+q+2r=Ff+z—105 1 4 b5 o, (—1)PFtrftrta
[I|=g+r

Jrwr) @ u [N 777707 X) (o1 Aap)lor]) Acq| @ ACHY,
S15 = (—1)Pvfap ® cq Ag ®@ A7), and

S16 = uf_10p ANPRcg® (),
On the other hand, proj®® od o (1 — M;) o ¥(2) is equal to 21121 T;, with

Ty = (—1)P~1o(ap) ® ¢qg @ AT,
Ty = (_1)p+qap ® u(cq) ® )‘(T+1)v
Ts = ap A [X*(u)] ® cqg ® A,

Ty = (=1)Pap @ cq A [X(v)] @ A",

Ts=Y Y (—1)Prerrtitie (pgr+1,t)f1 Af
0<t [I|=q—t+r

® (|:(/\f7p+t7¢I*T71 X) (o1 A ap)[wr]) A cq} (wG*)> Ay @ pu®),
Te =up_10p NPpRcq ® )
T; = (—1)pvfap ®RegNg® )\(’“),

Ts =x(g+r<f—-3) > > (=190 (p,q,m + 1,t) f1
0<t |I|=g—t+r+1

@ [(N7PH70772 X) ((pr A ap)lwr]) Acq| (wae) @ ),

To=x(g+r=f-2) X (-D%:(p,q,r+1,r—2)fr
[I|=g+z+1
& [(/\f—p—z—q—Q X) ((SDI A Oép)[wF]) AN qu| (wG*) ® M(T_Z)’
Tio=x(p+qg+2r<f+2-2) 3 (—1D)PT 20(pr Aap) @cg AN X)(fr) @ AEHD]

|J|=r—=z
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Tin=x(p+q+2r<f+2-2) > (=1)PHHlp; Aap@u(cg AN 7 X)(f) @ AETD,
|J|=r—=z

Tio=x(p+qg+2r<f+2-2) > (—ptatatteg (p+r—2z,g+r—2,2+ 1, ) f1 ANf®
|

[(/\f+z—1—p—q—2r+t X) (o1 ANpg Aap)wr]) Acg AN 7 X)(fJ)} (we=) Ay @ p®,

and
Tis=x(pt+g+2r<f+2z-2) > > (—D)atrt2tlg (p+r —z,g+ 71— 2,2+ 1,t)
J|l=r—=z 0<t
Il [T|=q+7r—t+1

f1® {(/\H—Z_Q_p_q_zrﬂ X) ((pr Ay Aap)wr]) Acg AN X)(f)] (we) @ p®).

Observe that Sl = Tl, 52 = TQ, 511 = Tg 815 = T7, and Sl6 = T6. Use parts (e)
and (g) of Lemma 1.9 to see that Sy + S5 + Ss — Ty — T1p and —Si3 are both equal
to

(COPFE X2 = fa=1) 5 vlprhay)@eg AN X)(F) @A

|J|=r—=z

and that S3 + Sg + S7 — T3 — T11 and —S74 are both equal to

(—Lpratiy(p+q+2r = f+z—1) 3 wJAawqu%A(A“¢ngﬂ)®A®+U.

|J|=r—z

Apply part (c) of Lemma 1.9 to T2 and Ty3, and part (f) to S12 and Sy, in order
to see that Tio — Sg — S1» is equal to —T5, and that S19 — Ty and T3 are both equal
to

x@tr<f-3xptat2r<ft+z-2 3 (—1)ratatafg g, (F 2 Pm i) £
[I|=g—t4+r+1

(/\f—p+t—q—T—2 X) ((‘PI A ap)[WF]) A cq (WG*) X M(t), O

Lemma 9.17. The map ¥ from Theorem 9.1 is an isomorphism of complexes.

Proof. In light of Lemma 9.16 and (9.2) it suffices to show that ¥: Y — J is a
module isomorphism. The assertion is clear on the IL level. We calculate that

X(1 <r)x(z+1< g+ (=19 ANf @ 5g Ay @ p(m=D
W (by @ 8 ® 4" € U] = €U(p,q,r — 1;1,1)
+bp ® 6q @ (™ € U(p, q,7;0,0),

N (b,, ® 6, @ ul € U[B]) = by ® 354 Ay @ p) € U(p,q,7;0,1),
v (b,, ® 5, @ ) € IU[2]) = (~=1)%p A ® 8, @ u(™) € U(p,q,7;1,0),
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and ¥ (bp ® 6, @ pu € U[l]) is equal to
X(p+a+r<f=3+2)(-1)%p Af@5 Ay®u" €U(p,q,r;1,1)

—X(pratr=Ff-2+xptr<f-3 3 F1® [(N7177X) (pr(bp)] (3) @ ™
r41<t
|I|=p+1+r—t
eUp+1+r—t,g+1+4+r—1tt0,0)
—x(p+g+r=Ff—-2+2)x(p+r=Ff—2)bp®@pu"+) € U(p,q,7 +1;0,0)

Fxpratr=f-242 3 (—nrHtHlta g Af @ [(/\t—’“X) (w(bp))} (6g) Ay ©
eUlp+r—t,g+r —lll,:tp,ﬁr,_lt)

Observe that the set Sy(0) is equal to the disjoint union AU B U C for

A=A{(p,q,7)|0<r, p+q+r<f—-2+z2 p+r<f—2, and z<qg+r},

B={(p,q,r)|1<r, p+q+r=f—1+4+2 and p+r<f—2} and

C={(p,qr)|1<r, p+r=f—-1, and z=gq}.

It follows that the map ¥ carries @@ U[k] — U as follows:

U[3] U[2] U[1] U[1] U[4] U[1]
p+q+r<f—-3+z ptqtr=Ff—-2+=z prg+r=f—2+=z
p+r=f—2 p+r<f-3
U(0,1) o
U(1, 0) =
U(l, 1) = * * *
U(0,0)n C S
U0,00Nn A = *

U0,0)n B ,
and this is an isomorphism. We calculate that
O‘p ® Cq ® )\(T) € T(p7 q,T; 07 0)
+ (=1)Ptly (z+2 g r)apA¢®cq Ag@ =D
€T(p,q,r —1;1,1),
(—1)PT9ap A R cqg ® )\(T) € T(p,q,7;1,0),
1)1+qap ® Cq NG ® )‘(T) € T(p7 q,7; 0 1)
ap ®cg @AY € T(p, ¢, 7 + 1;0,0)

—xp+q+2r<f+z—f|’>)‘2 prNap®@cg NN X)(fr)
J

NG e T(p+r—2z,qg+r—22+1;0,0).
The map ¥ carries @ T[k] — T as follows:

T[3] T|[2] z+’]I‘£4]: . T[1] Z+’]I‘£4]< .

v ®cq @A) € T[4]

ap @ cq @ A7) € T[2]

T (ap ®cqg @A) € T[1]

(o 4) =
(a ®Cq®>\(T)€T3)
v ( 21) =
( ) =

~

112

I
lle

R«

and this also is an isomorphism. [
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