HUNEKE-ULRICH ALMOST COMPLETE
INTERSECTIONS OF COHEN-MACAULAY TYPE TWO

ANDREW R. KUSTIN

ABSTRACT. Let (R, m, k) be a commutative noetherian local ring, n > 2 be an
integer, X be a 2n+1x2n+1 alternating matrix with entries from m, Y be a 1 x2n+1
matrix with entries from m, I be the ideal I = I1(Y X), and A be the quotient ring
R/I. Assume that the grade of I is at least 2n. (In this case, I is a perfect ideal of
grade equal to 2n and I is minimally generated by 2n + 1 elements.) We prove that
the minimal resolution of A by free R—modules is a DGI'—algebra. Furthermore,
we identify the algebra Torf(A, k) and prove that, if R is regular and chark = 0 or
(n +2)/2 < chark, then the Poincaré series P}/ (z) = 352 dimy, Tor{ (M, k)z* is a
rational function for every finitely generated A—module M. As a consequence, we
deduce that if the projective dimension of M is infinite, then, eventually, the betti
numbers of M form an increasing sequence with strong exponential growth.

Fix a commutative noetherian local ring (R, m, k) and an integer n, with 2 < n.
Consider matrices Xop11x2n+1 and Y7 xo,4+1 with entries from m. Assume that X
is an alternating matrix. Huneke and Ulrich [19] showed that the grade of the ideal
I = I,(Y X) is no more than 2n; furthermore, if the maximum possible grade is
attained, then I is a perfect ideal whose grade is exactly one less than its minimal
number of generators. (Such ideals are called almost complete intersections.) When

R is Gorenstein, the Cohen-Macaulay type of A = R/I (which is defined to be

dimy Extjl%epth A(k, A), and is also equal to dimy, Torl?d 4(A, k), because [ is a perfect

ideal) is equal to two (see, for example, Corollary 2.18); which, according to [23], is
the smallest possible value. (There do exist almost complete intersection ideals of
type two which do not have the form of I, see [32]; such ideals are not considered
in the present paper.) Huneke and Ulrich also investigated the linkage history of
I. They found that I is in the linkage class of a complete intersection; indeed, I is
linked to a hypersurface section of a grade 2n — 1 Gorenstein ideal I’ = I (Y'X") 4+
Pf(X’) (where X’ and Y’ have shape 2n x 2n and 1 x 2n, respectively, and X’
is an alternating matrix); furthermore, I’ is linked to a hypersurface section of
a grade 2n — 2 almost complete intersection ideal I = I;(Y”X") (where X"
and Y” have shape 2n — 1 x 2n — 1 and 1 x 2n — 1, respectively, and X" is an
alternating matrix). Ideals of the form of I’ are known as Huneke-Ulrich deviation
two Gorenstein ideals; they are studied extensively in [24, 38, 28]. The interplay
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between the Huneke-Ulrich almost complete intersection ideals and the Huneke-
Ulrich deviation two Gorenstein ideals has recently played a role in Beauville’s
study [11] of hypersurfaces in positive characteristic.

In the present paper we prove, in Corollary 3.21, that the minimal resolution,
M, of A by free R—modules is a DGI'—algebra. We also prove, in Theorem 5.2,
that, if R is regular and chark = 0 or (n + 2)/2 < char k, then the Poincaré series

P (2) = Z dimy, Tor (M, k)2
=0

is a rational function for every finitely generated A—module M. As a consequence,
we deduce, in Corollary 5.3, that if the projective dimension of M is infinite, then,
eventually, the betti numbers of M form an increasing sequence with strong expo-
nential growth.

Examples of minimal resolutions which do not support a DGI'—structure have
been found by Hini¢ [1], Avramov [3], and Srinivasan [39, 40]. Roughly speaking,
there are three ways to put a DGI'—structure on the minimal R—resolution, M,
of A. The first approach is to observe that M always has a multiplication which
satisfies all of the DGI' axioms, except, it is associative only up to homotopy.
If sufficient additional hypotheses are imposed, then every choice of homotopy-
associative multiplication is, in fact, associative. This approach works if

e codim A < 3 [12]; or if
e M is a graded resolution whose grading satisfies the inequality

daj + dbk + ng < d(a+b+c+1)i7
for all a,b,¢c,1,j,k, and £, where M, = @ R(—d,,) [41].
J

The second approach is to prove that if M is sufficiently short, then a homotopy-
associative multiplication can be modified in order to become associative “on the
nose.” This is the approach of:

e [29, 25] for codim A = 4, and A Gorenstein; and
e [33, 26| for a codimension four almost complete intersection A in which two
is a unit.

The third approach is to record an explicit multiplication table for M and show
that it satisfies all of the relevant axioms. This approach works if A is:

e a complete intersection, (in this case, the resolution M is an exterior alge-
bra);

e one link from a complete intersection [10];

e two links from a complete intersection and is Gorenstein [30];

e a codimension four Gorenstein ring defined by the (n — 1) x (n — 1) minors
of an n x n matrix [17];

e a determinantal ring defined by the maximal minors of a matrix in equichar-

acteristic zero, or the ring defined by I*, where I is generated by a regular

sequence [37]; or

a Gorenstein ring defined by a Huneke—Ulrich deviation two ideal [38].
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In section 3 we produce the multiplication table for M, when A is a Huneke-Ulrich
almost complete intersection.

For the time being, let A be a quotient of a regular local ring (R, m, k), and let M
be the minimal resolution of A by free R—modules. If M is a DGI'—algebra, then the
machinery of Avramov [2, 5, 9] may be used to convert many interesting and difficult
questions about A into questions about the algebra T, = Tork (A, k); for example,
Pk(z) = P};(z)Pq’i.(z). The algebra T,, although graded-commutative instead of
commutative, is in many ways simpler than the original ring A. This philosophy
has lead to some striking theorems in the case that A has small codimension or
small linking number. If any one of the following conditions hold:

(a) codim A < 3, or

(b) codim A =4 and A is Gorenstein, or

(c) A is one link from a complete intersection, or

(d) A is two links from a complete intersection and A is Gorenstein, or

(e) A is an almost complete intersection of codimension four in which two is a
unit, or

(f) (A, m, k) is a Huneke-Ulrich, deviation two, Gorenstein ring, of codimension
2n — 1, with either chark = 0, or n — 1 < chark,

then it is shown in [20, 10, 6, 31, 28, 42] that all of the following conclusions hold:

(1) The Poincaré series P{(2) is a rational function for all finitely generated
A-modules M.

(2) The Eisenbud Conjecture [13] holds for the ring A. That is, if M is a finitely
generated A—module whose betti numbers are bounded, then the minimal
resolution of M eventually becomes periodic of period at most two.

(3) The betti sequence {b(M)} is eventually nondecreasing for every finitely
generated A—module M.

(4) The growth of the betti sequence {b(M)} is either polynomially bounded
or strongly exponential for every finitely generated A—module M.

(5) If R contains the field of rational numbers, then the Herzog Conjecture [18]
holds for the ring A. That is, the cotangent modules T;(A/R) vanish for all
large ¢ if and only if A is a complete intersection.

The study of the rationality of Poincaré series has a long and distinguished history;
see [36] or the introduction to [10] for a brief synopsis. Gasharov and Peeva [14]
found counterexamples to the Eisenbud Conjecture. Questions like (3) and (4)
about the asymptotic behavior of betti sequences have been considered at least as
far back as [34] and [4]. The present status of these and other, similar, questions
may be found in [8]. Ulrich [43] has proved the Herzog Conjecture when A is in the
linkage class of a complete intersection; the conjecture remains open for arbitrary
rings. (Strictly speaking, as stated, [43] only deals with the weaker version of the
Herzog Conjecture, where the vanishing of T; is required for every ¢ > 2. But in
fact, [43, 2.9 and 1.3] does prove the stronger conjecture (as stated in (5)) for ideals
in the linkage class of a complete intersection.)
In each case, (a) — (f), there are three steps to the process:

(i) one proves that the resolution M is a DG—algebra;
(ii) one classifies the Tor—algebras Torl(A, k); and
(iii) one completes the proof of (1) — (5).
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In the present paper we prove that the hypothesis

(g) (A,m, k) is a Huneke-Ulrich almost complete intersection of codimension
2n, with either chark = 0, or (n +2)/2 < chark

also leads to conclusions (1) — (5). Step (i) is carried out in section 3, step (ii) in
section 4, and step (iii) in section 5. The resolution M is described in section 2;
section 1 consists of identities involving pfaffians and binomial coefficients.
Finally, we note that, if A is a Huneke-Ulrich almost complete intersection, then
the Poincaré series Pj(z) depends on the characteristic of k. In particular, if A is
the ring Z[X,Y]/I1 (Y X), where the entries of X and Y are indeterminates, then
there is no minimal graded A—free resolution of Z = W. This example
must be included with the growing list of “determinantal-type” modules whose
minimal resolution is characteristic dependent; see, for example, [16] and [35].

1. Preliminary results.

In this paper “ring” means associative ring with 1; furthermore, all rings are ei-
ther commutative or graded-commutative. We often consider binomial coefficients
with negative parameters; consequently, we recall the standard definition and prop-
erties of these objects. See [27] or [28] for more details.

Definition 1.1. For integers a and b, the binomial coefficient (Z) is defined to be

ala—1)---(a—b+1)

it 0 <0,
a\ b!
b 1 it 0 =b, and
0 it b <0.

Observation 1.2. Ifa, b, and c are integers, then the following identities hold:
(a) if 0<a<b, then (}) =0;

)0~
(c) a(Z:D:b(z>=(a—b+1)(bi1>;

(d) if 0 < a, then (‘g (agb) :
(e) if 0 < b, then () = (—=1)%;

(0 ()=o)

(9) if 0 <a, then
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S ()= (27)
0 S (L)) = (1) ona
0 (o 20)= () o))

Proof. Identities (a) — (d) are well known and easy to prove. Identity (f) is an
immediate consequence of the definition and (e) follows from (f). The identities
(g), (h), and (j) are proved in [27]. Let L(a,b,c) represent the left side of (i). It is
clear that

(1.3) L(a+1,b,¢) = L(a,b,c) + L(a,b,c — 1)

(h) if 0 < a, then

for all integers a, b, and c. Observe that (i) holds for all a and b whenever ¢ < —1.
The identity also holds for all b and ¢ when a = 0. A quick application of (1.3)
shows that (h) holds for all b and ¢, whenever 0 < a. A second induction completes
the proof. (See Lemma 1.15, if necessary.) [

We also make much use of multilinear and divided power algebra. (More in-
formation about these topics may be found in [12, Appendix] or [15].) Let R be
a commutative noetherian ring, and F' be a free R—module of finite rank. Each
element of F* is a graded derivation on A\® F, and this action gives rise to the A\* F™*-
module structure on A* F. The A* F-module structure on A* F'* is obtained in an

analogous manner. In particular, if a; € /\Z F and b; € /\j F*, then

j—i i—j
ai(bj) S /\F‘>I< and b]-(ai) S /\F
The following well known formulas show some of the interaction between the two
module structures.
Proposition 1.4. Let F' be a free module over a commutative noetherian ring R
and let a,b € A\* F and c € \* F* be homogeneous elements.
(a) Ifdega =1, then
(a(c)) (b) = a A (e(b) + (1) F9Ec(a A D).
(b) If c € N™™F F*, then
(a(c)) (b) = (=1)" (b(¢)) (a),
where v = (rank F' — dega)(rank F' — degb).
Note. The value for v which is given above is correct and is different than the value
given in [12].
The first main theorem in this paper states that the resolution M of section 3
is a DGI'—algebra. At this time, we recall most of the definition of this concept.

The easiest way to remember the surpressed axioms is to recall that the definition
2(® = 29 /¢! gives every graded Q—algebra the structure of a divided power algebra.
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Definition 1.5. A DGI'—algebra is an associative graded ring F = é F;, together
with a differential d: F — T, which satisfies: i

(a) the multiplication in F is graded-commutative, that is, z;z; = (—1)Yz;z; €

Fitj,

(b) x? =0 for 7 odd,

(c) dis an Fg—module homomorphism with d? = 0,

(d) d(z;) € F;—1, and

(e) d(ziz;) = d(zi)z; + (—1)'zid(z;),
for all z; € F; and z; € F;. Furthermore, for every homogeneous element x of
positive even degree, there is an associated sequence of divided powers z(9) = 1,
W = 2, 2@, £ . which satisfies degz(¥ = ¢ - degz and the other four
divided power axioms which are given on [15, page 51] or [12, page 482]. Moreover,
the differential structure and the divided power structure of ' are related by

(1.6) d(z'?) = d(z)zl4=

for all homogeneous x € F of positive even degree.

Examples 1.7. (a) If F' is a free module of finite rank over the commutative
noetherian ring R, then there is a divided power structure on the exterior algebra
A°® F which makes (A\® F,Y) a DGI'—algebra for every Y € F*, see the appendix

of [12] for details. We view A°* F to be @ /\g F because we take /\e F' to be zero
LEL

whenever ¢ < 0 or rank F' < /.

(b) If x is a homogeneous cycle in the DGI'—algebra (F, d), then F=F<X;dX =

x> is the DGI'—algebra which is obtained by “adjoining a divided power variable

in order to kill the cycle x.” In particular, deg X = 1+ degz, and, as a module, F'

is free over F with

_ @D FX@ if degz is odd, and
F = 0<gq
FeFX if degx is even.

See [15] for more details.

Note 1.8. Let x be a homogeneous element of positive degree in the DGI'—algebra
F. We view z(? as an clement of F for any integer ¢, because we take z(?) to
be zero, whenever ¢ < 0. In particular, if y € F is a homogeneous element with
degy = degz, then axioms (1.6),

(@) (2 +5)@ = ¥ 200y, and
LEL

(b) zP (@) = (P+q)x(p+q)
D b
hold for all integers p and gq.

The following pfaffian identity is the main result of [27]. Two variations of this
identity play a crucial role in our proof of Theorem 3.8.
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Theorem 1.9. Let R be a commutative noetherian ring, F be a free R—module

of finite rank, and ¢ be an element of /\2 F. Let A, B, C, and d be integers. If
d s

a e N\ F*, then

R (BB o) A (AR ST B—=A+ky () (oA
> DR () ale®™) npttt = Do) (#P @) (A7),

Corollary 1.10. Retain the notation and hypotheses of Theorem 1.9 and let B be
an element of N\°F. If B=A—1 and d < C, then

S04 ( -y )a (¢ 48) Aot = (-1 (69 1 5)

kEZ

Proof. Without loss of generality, we may assume that ( is homogeneous. The
proof proceeds by induction on deg . If deg 3 = 0, then we may take 8 = 1. In
this case, Theorem 1.9 shows that the left side of the proposed identity is equal to

S (o) (o) ()

keZ

The only non-zero term in the above sum occurs when & = 0. (Indeed, if £ < 0,
then *®) = 0; if 0 < k, then the binomial coefficient is zero.) Observation 1.2 (e)
completes the proof when deg 8 = 0. For the general case, let 3 = 31 A 3’ for some
B € /\1 F and 8/ € \* F. Apply Proposition 1.4 (a) to see that the left side of the
proposed identity is equal to Ly + Ly for

L= (0" 3 (-1 (g ] ,]:) (B1(@) (¢® A 5') A4 and

keZ

Ly = (=1)7p1 A z:(—l)’C (g : Z)a ((p(k) A ﬁ/) A AR,

kEZ

The induction applies to both L; and L, because

deg 81 (a) < dega < C  anddegf’ < degf;
thus, Ly = (=1)°4 (81(a)) (¢ A B') and Ly = (=1)9T46y A [a () A 5)].
Another application of Proposition 1.4 completes the proof. [

Corollary 1.11. Retain the notation and hypotheses of Theorem 1.9. Let s be a
nonnegative integer, let Cy,...,Cy and q1,...,qs be integers, and let 3 € \* F be
a homogeneous element. If

1+ A+degB+> C;<d,

=1
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then

(1.12) Z(—l)kf[ (k Zvi%) <¢<k>(a)> (¢<A—k> A ﬁ) = 0.

kEZ

Proof. Throughout this proof A and d are fixed. The proof consists of a nested
pair of inductions. The outer induction is on deg 3. We begin with deg (3 = 0; in
other words, we begin with § = 1.

The inner induction is on s. We first take s = 0. Apply Theorem 1.9, with
B = A and C = d, to see that

k%(—l)k (go(k)(a)> <g0(A*k)> — k%(q)d% (3::)04 (90('“)) A QAR

The hypothesis 1 + A < d ensures that the binomial coefficient is zero whenever
k < A. On the other hand, ¢4=%) = 0, whenever A < k. Thus, (1.12) holds when
s =deg( =0.

By induction on s, we now assume that

(113 ST (T 6 e e o

kEZ

whenever 1+A—|—Zf:_11 C; <d. Fixq,...,qs_1and Cq,...,Cs_1. Let ®: ZXZ —
A°® F be the function

o {g} = I%(—l)’“ (kg q) ]f[j (k gq> (so(’“)(a)> (A7),
It is clear that

C

It is also clear that ® satisfies the Pascal identity of Lemma 1.15. We next show
that

@[q} =0, whenever g€ Z and C' < —1.

s—1
(1.14) @{g} =0, WheneverOSCg—l—A—ZCi+d.
i=1

Consider Cy to be fixed with

s—1
0<Ci<-1-A=) Ci+d.

i=1

Apply (1.13) to the data A—Cy, g1 +Cs, ..., qs_1+Cs, Ci,..., Cs_1, and (€ (a).

We know that .
o

1+(A-Cy)+ ZC& < deg (%) (a);

1=1
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and therefore, we see that

Z(_l)k 81:[1 (k + CC’i + Qi) <S0(k) (go(cs)(a)» (SO(Afkas)> —0

keZ =1

A quick index shift yields (1.14). Apply Lemma 1.15 in order to see that equation
(1.12) holds whenever deg 8 =0 and 1+A+>""_, C; < deg . The inner induction
is now complete.

We continue with the outer induction. Henceforth, we assume that 3 = 81 A 3,
where deg 51 = 1. Proposition 1.4 (a) shows that the left side of (1.12) is equal to
S1 + S, for

S

Si= (1% A S EDFTT(E) (¢M(@) (¢4 A ) and

keZ =1

S = (-1 S DR TT (5 (o (81 (0))) (649 A 3.

kEZ i=1

The induction hypothesis applies because

1+ A+degB +) Ci<d—1=degpi(a) <dega and degf < degp;

i=1
therefore, S7 = S5 = 0 and the proof is complete. [l

Lemma 1.15. Let A be an abelian group and let ®: 7Z x Z. — A be a function
which satisfies Pascal’s identity:

g—1 g—1| 414
vlesi ool o]
for all integers q and C'. If there are integers qo, Cy, and Cy such that

(a) @ [qco} =0, whenever Cy < C < (1, and

(b) @[Cq}:OforallqEZ,
0

then ® lg] =0, whenever q € Z and Cy < C < (4.
Proof. There is nothing to prove if C; < Cy. Henceforth, we assume that Cy < C;.

The proof proceeds by induction on C'. We suppose that C'is fixed with Cy < C' <
C1 and

q —
(1.16) @[0_1]_0 for all ¢ € Z.
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We must show that ® g, = 0 for all ¢ € Z. Now, we let ¢ be a fixed integer. If

qo < q, then, by induction on ¢, we assume that

(1.17) @{qgl}:m

thus, (1.17) and (1.16) give

q| _gla—1 q—1|_
‘I’M _cp{ . ]+<1>[C_J —0.
If ¢ < qo, then, by induction on ¢, we assume that

(1.18) @[qgl}:m

thus, (1.18) and (1.16) give
| _4lat+1] q | _
q>M_q>{ C] qp[c_l]_o. 0

2. The complexes F and M.

Data 2.1. Let R be a commutative noetherian ring, n > 2 be an integer, F
be a free R—module of rank 2n + 1, ¢ € /\2 F. and Y € F*. Fix orientation
clements &€ € A>T F* and n € A*""' F which are compatible in the sense that
€(n) = (—=1)™. Let g be the element Y (¢) of F, I be the ideal I(g) of R, and A be
the quotient R/I.

The ideal I of Data 2.1 is, of course, a coordinate free representation of the ideal
I of the introduction. For future convenience, we make this identification explicit.

Note 2.2. Let eq,...,ea,+1 be a basis for F' and let ¢1,...,e9,41 be the corre-
sponding dual basis for F*. It is then natural to choose £ = 1 A ... A egy41 and
2n+1

n=-eiN...Neapq1. Write Y =3 7707 yies and ¢ = 3 ;oo g Tij€i Aej. Let X
be the alternating matrix whose entry in row ¢ and column j is x;; whenever ¢ < j.
Observe that I1(g) is generated by the entries of the product [y1, ..., Y2,+1]X.

In the present section we record two complexes of free R—modules. Each complex
is a resolution of A whenever the grade of I is at least 2n. The complex F of
Definition 2.5 is always infinite, but is easy to manipulate. The complex M of
Definition 2.15 is a finite summand of IF; furthermore, M is a minimal resolution
of A whenever the data is chosen in an appropriate manner; see, for example,
Corollary 2.17 and Corollary 2.18. A significant amount of information about M
is already available in the literature. The graded modules which comprise Ml were
calculated in [24] by using the technique of linkage. They were also calculated in
[22] by using techniques from multilinear algebra. Furthermore, the main result in
[22] is the resolution of the ring which is defined by the ideal I’ = I; (Y’'X"), where
X' is a 2n x 2n alternating matrix and Y’ is a 1 x 2n matrix. The ideal I’ is never
perfect and is not studied in the present paper; nonetheless, it would be possible
to modify the resolution in [22] in order to resolve A.

Our plan for resolving A is based on the ideas of [28].
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Definition 2.3. Adopt Data 2.1. Let A and B be the DGI'—algebras

A= /\F'<h> and B=/\F<\>,

where A\® F* and A\°® F are exterior algebras and h and ) are divided power variables
of degree two. The differential d on A is given by d|p+ = ¢g and d(h) =Y. The
differential d on B is given by d|r =Y and d(\) = g. For each integer t, a map

p %
'UtIBt_lz Z /\F)\(q)—>At: Z /\F*h(])

p+2q=t—1 1+25=t

is defined by

Ut(ﬁp)\(Q)) — Z(_l)jﬂ? (n +ti-p—aq- 1) (So(nﬂ‘fpfq) A ﬁp> (f)h(j)-

JEZL q

Proposition 2.4. In the notation of Definition 2.3,

(a) the maps {ve: By1w — A} form a map of complexes v: B[—1] — A, and
(b) vagi1 ((p — N)D) = 20441, where 20441 is the element Y (—1)7 M +i=9) (&)pl)

JEZ
of Aogy1.
Note. The map v was defined in order to make Proposition 2.4 hold. The signifi-
cance of (b) is explained by the fact that (in the generic case) all of the non-zero

homology of B and A is represented by cycles of the form (¢ — A\)(@ and 2941,
respectively; see (2.8) and (2.9).

Proof. (a) Fix pand ¢, with p+2q = t—1. Direct calculation gives (dsov;)(B3,A\(?)
is equal to S7 + S, where

S1= Y (<17 (” fompas 1)9 (9779 A 3)(€)) AP, and

jez 9
; n+j—p-— n+j—p— '
S, = Z(_1)3+p+1( J ) p q)Y A ((90( +j—p—q+1) Aﬁp)(f)) R
€T

On the other hand, (v;—; o dt_l)(ﬁp)\(Q)) = S35 + 54, where

Sa= S (-1t (T PTG v (5, OR), and
JEZL

. n+7—p—qg—1 et — .
S, = Z(_1)3+p+1( J qfl q )(80( D) A g A B,)(E)RY).
j€z
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The module action of A* F on A® F*, together with (1.6), gives

g (77D 0 B,)(©) = (97770 28, ) (§) = (Y77 D) A B, ) (6).

It follows that

S, — 8, = Z(_l)jﬂ)

(n+j—p—q
JEZL

. ) (Y(go("+j_p_q+1)) /\ﬁp) (f)h(j), and

S, — S, — Sy = Z(_1>j+p (n ti-p— q) [Y (w(n+j—p—q+l) A 5p>] (&)h\).

JEZ q

An application of Proposition 1.4 shows that S; — S3 — Sy + Sy = 0; thereby
completing the proof that v is a map of complexes.

(b) The formula holds for ¢ < 0; henceforth, we assume that 0 < ¢q. Apply Note
1.8, as well as the definition of v, in order to see that vag41q (((,0 — )\)(Q)) is equal to

_ ; n+j—2¢+¢—-1 i _ :
Vagi1 (Z(—l)é%’(q f))\(@)> =Yy (_1)J+é( J— 4 ) (<p( +i=20+0) A (4 4)) (€)h9)

LET L,jEL ¢

, n+j3—2¢q+¢—1\(n+j—q n+j— '
— Z(_l)] Z(_1)€ ot Q)(é")h(ﬁ.
, l q—Y
J l
Observation 1.2 (h) shows that the expression inside the brackets is equal to 1,

whenever 0 <n—+j5—¢q. U

Definition 2.5. In the notation of Proposition 2.4, let (F, f) be the mapping cone
of v: B[—1] — A. In other words, the map

fi:Fe=A @By o =1 =Ar 1 ®B_3

is given by

£ = di  (=1)" v
! 0 di—o

in particular, if i + 25 =t and p + 2q¢ =t — 2, then

f ;R0 ] gla;))h9) +Y A a;hU-D 4 (—1)’5_11;,5,1(61,)\(‘1))
CLBAD | T Y (B)AD 4 g A BAED

Note. We write F(Y, ) or F(Y, X) whenever we want to emphasize the data of 2.1
or 2.2 which is used in the construction of F.
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Proposition 2.6. If the ideal I of Data 2.1 has grade at least 2n, then complex F
of Definition 2.5 is acyclic, and Hy(F) = A.

Proof. Some of the arguments are simplified if we take the data of 2.1 to be generic;
moreover, the ideal I is perfect so there is no loss of generality when we assume
that

(2.7) R is the polynomial ring Z{y, ..., Yon, {2i; | 1 <@ < j < 2n},

where the y; and x;; from Note 2.2 are indeterminates. We show that I is acyclic
by examining the long exact sequence of homology which is associated to a mapping
cone of v. In particular, we prove that v induces an isomorphism H;_1(B) — H;(A),
for all positive . With this purpose in mind, we calculate the homology of B and
A. We claim that the homology of B is given by

10, if 7 is odd, and
(2.8) H®)={ ,

if 7 > 0 is even;

furthermore, Hoq(B) is generated by [(¢ — A)(@]. We also claim that the homology
of A is given by

A, if i =0,
(2.9) H;(A) =< 0, if i > 2 is even, and
%, if 2 > 1 is odd;

furthermore, Ho,y1(A) is generated by [224+1], where 29441 is the element of Agq 4
which is defined in Proposition 2.4. Once (2.8) and (2.9) have been established,
then Proposition 2.4 completes the proof.

It is clear that (¢ — \)(@ is a cycle in the DGI'—algebra B, because

d((p — N W) =d(p— N — N,

and d(p — A) = Y(¢) — g = 0. It is now also clear that 2011 = vag41 ((p — A)(@)
is a cycle in A.

The proof of (2.8) follows from the fact that B is the total complex of the following
double complex:

! ! !

! !

— A’FA® — ATEA® o APEPA@ 0 — 0
! ! ! ! !

— AFAD S APFEAO o ATEAD o AP 0
! 1 !

!
— A'FAO S APFEAO o AZEAO o ATEAO o AQEAO),
The proof of (2.9) follows from Lemma 2.11 because Ay = (P?), for 0 < ¢ < 2q+ 1.
UJ

The hard part of the proof of Proposition 2.6 has been isolated and called Lemma
2.11. The following calculations are well known and are used in our proof of Lemma
2.11.
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Lemma 2.10. Let Xonti1x2nt+1 and Y = [y1,...,Y2n+1] be matrices of indeter-
minates, with X an alternating matriz, and let R be the ring Z[X,Y]. If g =
(91, .-+, gon+1] represents the product Y X and p represents the pfaffian of the ma-
trix obtained by deleting the last row and column of X, then

(@) g1...,92n 18 a regular sequence,

(b) ( .;gzn)392n+1 =(91--,92n,Y2n+1,P);
(¢) (91---,92n)  Y2n+1 = 11(g), and

(d) ( ';g2nvy2n+1):pzjl(y)

Proof. Assertion (a) is established in [19] and [24]. For the other assertions, the
inclusion C is obvious and the ideal on the right side is prime. [J

Lemma 2.11. Adopt the notation and hypotheses of Proposition 2.6 and (2.7).
For each nonnegative integer q, let P? be the subcomplex of A which is defined by

0—2j
P?), :Z /\ F*hU) .
J=<q
The following statements hold.
(a) The homology of P? is given by
( A ifi=0,
0 if 2 <1 is even,
H,(PY) = 0 if 2q + 2 <1,
R/I;(Y) if1<i<2q—1 andi is odd, and
(91,1920, Y2n+1,P) ifi=2g+1.
\ (917---,9271)

(b) If 0 < ¢ < q—1, then [z20+1] generates Hapy1(P?).
(c) The homology Hoyy1(P9) is generated by [Yh(D] and [z9441].

Proof. Define g; and p as in Lemma 2.10. The proof proceeds by induction on q.
When ¢ = 0, P4 is the Koszul complex, A® F*, on the elements g1, ..., gont1. Since
gi,---,92, form a regular sequence, the standard facts about Koszul complexes
yield that H;(PY) = 0 for 2 < i and that

H,y (P) = (915 -,92n) gans1 _ (91, -, 92n,Y2n 41, P)
(gla"'aan) (gla"'aan)

The equality is established in Lemma 2.10 and the isomorphism is induced by

™
— Ton+1-
Ton+1

In particular, the homology class [Y] in H;(PP) is sent to y2,,1 and the homology
class [o(™ (€)] in H;(P?) is sent to +p. The proof for ¢ = 0 is complete.
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We now assume, by induction, that the result holds for some fixed value of q.
Observe that P41 is the mapping cone of

A® Frhrlatl) . v = AVFrRGatD) 0 A0 prplet) 0 o e s 0
! ! ! ! !
P = (Pl — (B - (Pag — o — (B

The homology of P? is known by induction. The complex \* F' *h(4* D) is isomorphic
to a shift of P; thus, its homology is also known. In particular, Hagyo(A® F*h4TD)
is isomorphic to A and is generated by [R(9TV]; and Hoyy3(A® F*R4TY) is isomor-

phic to (gl"&'s;f’?f’?;z:;l’p) and is generated by [YhtD] and [p™) (£)R(a+D)]. The

argument is completed by appealing to the long exact sequence of homology which
is associated to a mapping cone. There are two critical steps in this calculation.
The first involves the exact sequence

5 A
0 = Haqi3(P?) — Hagya(PUM) = Hagya(/\ F*RTD) — Hagyo(P) = 0.

The isomorphism ¢ is induced by the projection
patl /\F*h(q+1);

and therefore, 0([z2443]) = +[p™ (€)RTV] and 6([YRITV]) = [YAFTY]. The
other critical step in our calculation involves the exact sequence

0 — Haqya(PTh) — Hagyo(/\ F*h'"Y) — Hyqi1 (PY) — Hagia (P17) — 0.

We know that Hagqq(P?) is isomorphic to (91"(5;?2.’.”‘.’3;22”;1")) and is generated by

[YR(D] and [29441]; furthermore, we also know that d(h(?+1)) = Yh(@ in A. Thus,
Hogi1(P9T1) is generated by [22441] and is isomorphic to

(915- 392, Y2n+1,P) = R
%

;  and
(917"'792nay2n+1) (gla"'792n7y2n+1):p

gi,--- ,gzn) “Yon+41
I(g)

Lemma 2.10 yields that Ha,y1(P9T1) =2 R/ (Y) and Hayio(P?H) =0. O

Hogyo(PPH) = ker | Hag o\ F*RTY) — Hyy iy (PY)| = (

We conclude this section by decomposing the complex F into the direct sum of
two complexes M and N. The complex M has the same homology as the complex
F and is a minimal resolution when the data is chosen in an appropriate manner;
see Corollaries 2.17 and 2.18. The complex N is split exact. For our purposes in
the present section, N could be any direct sum complement of M in F; however,
when we prove that M is a DGI'—algebra it is necessary that we use a particular
representation of N; see, for example, Lemma 3.16.

The next two observations are well known. We use them in our proof of Propo-
sition 2.16.
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Observation 2.12. Let (F, f) be a complex of modules over a ring R and let (M, m)
be a subcomplex of F. Suppose that each module Fy decomposes as My @ E; @ Ej.
For each integer t, let e;: Ey — E;_ be the composition

projection

inclusion ft
Et — ]Ft —_— Ft—l E;—l'

If each map e; is an isomorphism, then the complex (F, f) is isomorphic to (F, f'),

where
fiFe=M;@E,®&E, —-F,_ 1 =M;_ 19 E_1®FE,_,

s given by
my 0 0
ff=10 0 0
0 (7 0

Proof. The hypothesis that (M, m) is a subcomplex of (I, f) guarantees that f|y =
m; and therefore, the map

fi:F,=M,®E,®E, >F,_1=M;_1®E,_1®E,_,

may be decomposed as
m ar by
=10 ¢ d
0 e g

There is no difficulty in checking that «": (F, f) — (F, f’), with

ﬂ;IFt:Mt@Et@EZ.%Ft:Mt@Et@Eé

given by
1 0 —at+1et_+11
(2.13) =10 1 —crpie |
0 0 1
gives the desired isomorphism. [

Observation 2.14. Let R be a commutative ring and let

0-ALB%0c =0

be a short exact sequence of R—modules. If p: B — A and ~v: C — B are maps
which satisfy po f=1ida, go~y =1idc, and o~y =0, then

b="g(b) + fe(b)

for allb e B and
0—-CLB5A—0

18 a short exact sequence.

Proof. 1t is easy to see that b — vg(b) — fo(b) is in kergNkerp =0. O
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Definition 2.15. Let (I, f) be the complex of Definition 2.5. Fix an integer t.
Define M; and N; to be the submodules

M, = Z /\F*h(j) @ Z /P\F)\(Q)

i+j<n p+qg<n—1
i D
N= S AFR @ 3 AFA@
n+1<i+j n<p+q

of Fy. (Of course, the parameters i, j, p, and ¢ must satisfy i +2j = ¢ and p + 2q =
t — 2.) Define
itl Mt — Ft and inclt: Nt — Ft

to be the inclusion maps and define
proj,: Fy = M; and p;: Fp — N

to be the natural projection maps; that is, proj, annihilates N;, but acts like the
identity on M, and p; annihilates M;, but acts like the identity on N;. Define
fi:Fy = Fy by fi = fron My, f{ =0o0n N;NA, and on N, "B, f/ is given by

[0 ] [y, @b
P e

Define maps 7; and 7" from F to F; by 7/ = 7"/ = id on M+ B; however, on N;NA,
7, and 7, are given by

a;h0) a;h(9) . 0
o [ 0 } =2 [ 0 — (=1)" frs1 s (A =n=D) and

() ; 0
U [Oé . ] = (=1)"fr41 [ai(n))\(i+j—n—1):| .

Define my: Mt — Mt—l: Tt L Ft — Mta Ty : Nt - Nt—17 Pt Nt — Ft, and PtZ ]Ft —
N; to be the compositions
Proj,_1

Mt —Zt—> Ft L ]Ft—l _— Mt—l;

™ proj
F, =5 Fy 2225 My,

incl f/ Pt—1
Ny, — F, > F,_y — Ny,

incl )
Nt —4 ]Ft - ]Ft, and

F, =5 F, 25 N,
respectively.

Note. We write M(Y, ¢) or M(Y, X) whenever we want to emphasize the data of
2.1 or 2.2 which is used in the construction of M.
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Proposition 2.16. Retain the notation of Definition 2.15.
(a) The maps {m¢: My — M;_1} form a complex (M, m).
(b) The complex (M, m) is a direct summand of (F, f). In particular,
(i) i: (M,m) — (F, f) is a map of complexes,
(i) m: (F, f) — (M, m) is a map of complexes, and
(i11) o is the identity map on (M, m).
(¢) The complex (M, m) is minimal in the sense that my(My) C [I[1(Y) 4+ I1 ()] M;—_1.
(d) The maps {ni: Ny — Ny_1} form a complex (N,n).
(e) The complex (N,n) is a direct summand of (F, f). In particular,
(i) p: (N,n) — (F, f) is a map of complexes,
(i5) P: (F, f) — (N,n) is a map of complezxes, and
(iit) P o p is the identity map on (N,n).
(f) The sequences
(i) 0 — (N,n) & (F, f) = (M,m) — 0 and
(i) 0 — (M, m) -5 (F, f) = (N,n) — 0
are short exact sequences of complezes.
(g) If x4 € Fy, then xp = iym(xt) + py Pe(xe).

The following statements are obtained by combining Propositions 2.16 and 2.6.

Corollary 2.17. Let (R,m,k) be a noetherian local ring, n > 2 be an integer, and
Yixont+1 and Xonti1xont1 be matrices with entries from m, with X an alternating
matriz. Let I be the R—ideal I;(YX) and A be the quotient ring R/I. If 2n <
grade I, then the complex M(Y, X) of Proposition 2.16 is the minimal R—resolution
of A.

Corollary 2.18. Let R = @, R; be a graded algebra over the field Ry = k. Let
n > 2 be an integer, and Yixoni1 and Xoni1xoni1 be matrices with entries from
Ry, with X an alternating matriz. Let I be the R—ideal I, (Y X) and A be the
quotient ring R/I. If 2n < grade I, then the complex M(Y, X) of Proposition 2.16
18 the minimal graded R—resolution of A. Furthermore,

M, =Y R(=2i+3)) TP D R(—(p+3g+n+2) ),

(4,9) (,9)

where (i, j) varies over all pairs of nonnegative integers with i+j < n andi+2j = t,
and (p,q) varies over all pairs of nonnegative integers with p +q < n — 1 and
p+2q=t—2. In particular, My,, = R(—3n) ® R(—(4n — 1)).

Note. The graded betti numbers of Corollary 2.18 agree with those of Theorem 6.3
of [24] once the typographic error i+ (i+2)/2 in [24] is corrected to be i+ (i +7)/2.

Proof of Proposition 2.16. Assertion (b.iii) is obvious. We prove (a) and (b.i)
simultaneously, by showing that f;(M;) is contained in M;_;. For this, it suffices to
show that v(MNB) C M. Suppose that p+q < n— 1. Recall the value of v(8,\(?)
from Definition 2.3. If 0 < j and

(2.19) n+1<j+deg (so("“""‘” A @)) (6);
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then

2.20 0<n+j—-p—qg—1<g—1 and nti-p—a-1y _,
( j—p—q q

q

(b.ii) Let B, =N; NB, E; =N;NA, and e;: E; — E;_; be the composition

projection

inclusion ft
Et — ]Ft —_— Ft—l E;—l'

We claim that
(2.21) e (BN D) = (—1)mteHlg (g)ppta=n),
Indeed, e; is equal to

E inclusion B (=) oy A projection
t t—2 —————— t—1

E, ;.
Once again, v(ﬁp)\@) is given in Definition 2.3. Notice that the only value of j
which corresponds to a non-zero term in Ef_, is j = p+qg—n. Indeed, if j < p+q—n,
then ("+t7=P=9) = (0; and if p+ ¢ —n < j and (2.19) holds, then (2.20) continues
to hold.

Now that (2.21) is established, we see that e; is an isomorphism for all ¢t. The
inverse of e; is e; ': E/_, — E,, with

i (i) = (=Day (A0,

(Recall, from Proposition 1.4 and Data 2.1, that (a;(n)) () = (=1)"«;.) Apply
Observation 2.12 in order to see that (I, f) is a complex, 7’: (F, f) — (F, f’) is an
isomorphism of complexes, and «”: (F, f') — (F, f) is the inverse of 7’. Observe
that

(2.22) F(M)CM and f/(N)CN.

The only interesting case involves the element b = [ 1 of NN B. In this case,

0
gp)\(q)

) = {(_1)n+p+1ﬁg(g)h(p+q—n)} N,

because n+1 < n+1+q = deg 3, (§)+p+g—n. It follows that proj: (F, f') — (M, m)
is a map of complexes. The proof of (b.ii) is complete because 7" and proj are both
maps of complexes.

)
(c) Let x be the element h } of Fy. Every term of fi(x)isin [[1(Y) + I ()] Fi—1,

0%
B, 2@
except, possibly, the term which involves

<¢<o> A ﬁp) (&)prra—n),
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If we now take = to be an element of My, then p+ ¢ <n — 1 and h(PT7—") = 0.
(d) We saw that (F, f’) is a complex; consequently, (d) follows from (2.22).

(e.i) The map p is equal to 7" oincl. Use (2.22) to see that incl: (N,n) — (F, f’)
is a map of complexes. The proof of (b.ii) shows that n”: (F, f') — (F, f) is a map
of complexes.

(e.ii) The map P is equal to pon’. We already saw that 7’: (F, f) — (F, f') is a
map of complexes. It is clear, from (2.22), that p: (F, f’) — (N, n) is also a map of
complexes.

(e.iii) The map Pop: (N;n) — (N,n) is the composition:
(N,n) 2% (F, ) 2 (F, f) = (F, ) & (N,n).

We know that 7' o 7" = id(g, sy and p o incl = id(y,y,).
(f.i) Notice that

7y 0 p, = (proj, om;) o (m oincly) = proj, o(m, o 7}') o incl; = proj, oincly = 0.
Now suppose x is an element of F; with 7;(x) = 0. Then,
7y (z) € ker proj, = N;.

It follows that

pi(mi(x)) = ) oincly omy(z) = 7 o my(x) = .

(f.ii) and (g) It is clear that P oi = 0. Apply Observation 2.14. [

3. The complexes F and M are DGI'—algebras.

In Theorem 3.8 we prove that the complex ' of Definition 2.5 is a DGI'—algebra.
The proof is based on the ideas of [38], as reformulated in [28]. In particular, we view
B as a left A—module in such a way that I is the trivial extension, A x B[—2], of the
DGT —algebra A by the graded A—module B[—2]. In other words, the multiplication

IFt X ]Fu - ]FtJru

is given by

ag Qy, at * Gy
q . =
(3:-1) [bt—Q] lbu—2:| lat by—o 4+ (—1)"™ay - be—a |’

where the multiplication a; - a,, takes place in the DGI'—algebra A (see Definition
2.3) and the module multiplication as-b, o and a,,-b;_s is defined in Proposition 3.4.
The best feature of this point of view is that we obtain a divided power structure
on [F with no additional effort because of the following observation.
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Observation 3.2. Let (A,d) be a DGI'—algebra and C be a positively graded
A—module. If there is a differential D on the trivial extension AxC, which satisfies
(a) D] =d,
(b) (A x C,D) is a DG—algebra, and
(¢) D(c)c =0 for all homogeneous c € C of even degree,
then (A x C,d) is a DGI'—algebra.
Note. If 2 is not a zero divisor in A x C, then hypothesis (c) follows from the fact
that 0 = D(cc) = 2(Dc)c.

Proof. If a + ¢ is a homogeneous element of A x C of positive even degree, then
define (a + ¢)®) = a® + o~ Ve, Tt is straightforward to verify that A x C satisfies
all of the necessary axioms. [J

The rest of the results in the present section may be proved in the generic
situation (that is, when the hypotheses of (2.7) are in effect) and then specialized
to an arbitrary situation. Thus, in the course of each proof, we may assume that R
is a domain which contains the ring of integers. The DGI'—algebra A of Definition
2.3 is generated as an R—algebra by the elements of F™* together with the elements
h9) for 1 < j. It follows from the fact jR(Y) = RU=DAM) that, if a; is an element
of A;, then there exists a non-zero integer N for which

(3.3) Na; is a sum of elements of the form a;_1 - a7 and a;_» - sy

with a; € A;. We will often establish a formula involving elements of A by first mul-
tiplying both sides of the equation by a non-zero integer and then taking advantage
of (3.3).

Proposition 3.4. Adopt the notation of Definition 2.3. Let «; be an element of
N F* and 8, be an element of N\' F. The multiplication

a; - (5{)}&(1)) — Z(_l)iH (q +i—1- g) o (SD(CIHJ) A 5p) AD  and

LEZ q

h(j)_<ﬁp/\(q)> = S (1) (n -p—2q —Jt (- 1) (q +j—-1- 6) (w(q+j—£) A 5p> NG

LE J q
gives B the structure of a left A—module.
Proof. We first observe that

(35) on - (BAD) = an (BN g (D) 4 30O

for all integers ¢. Indeed, if ¢ < —1, then both sides of (3.5) are zero. If 0 < ¢, then
the only non-zero terms of

Z(_1)1+e (q - 5) ay (SD(qulfﬁ) A 6}3) NG

7 q
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involve £ = 0 and ¢ = g + 1; because, if £ < 0, then \¥) = 0; if 1 < £ < ¢, then
0<g—¥¢<qg—1and (q;e) =0;and if g+2 < /¥, theng¢g+1—-/¢ < —1 and

@(4+1=6) = 0. In a similar manner, we see that
(3.6) bV (3,A9) = —(n—p—q=1)BA T+ (n-p—2-2) (9 1 5, ) A

for all integers ¢q. Apply the trick of (3.3). The proof will be completed once we
show that

(a) ;- (Oél : (5p>\(Q)>> = (i Nay) - (5p)\(Q)> :
(b) () ( R . (5 ,\<q>)> _ (hm <1>> (5 A(q)) and
(c) ay - <h(1) ) (ﬁp)\(q)» — pM . <a1 . <ﬁp)\(Q)>>

for a; € \' F* and By € N\' F. Apply (3.5) to see that the left side of (a) is equal

“’ i (@1 (B)ATY (907D A 3, ) A0

which is equal to S; + S for

fqtri—t .
S, = Z(_l)eré <q 7 )Oéi (SO(QJrl i—2) A Oé1(ﬁp)> /\(6)7 and
V4

qg+1
Sy = — Z(—l)iwai (w(i—e) Aay (So(q—kl) A ﬁp>> A

£

The element oy of /\1 F* acts like a graded derivation on A°® F; and therefore,

(37) (65) < (g+1) A B ) = (@(1)> A\ QD(q) AN Bp + Qp(q+1) A al(ﬁp)'

It follows, from (1.6) and Note 1.8, that Sy = S5 + S%, with

Sy = Z(—I)HHI (q i 6) Q; <041 (SO(qH_ZH)) A\ 5p> 2O and

7 q

sy = et (T Y (o nan(5)) A
4

Identity (b) of Observation 1.2 yields

‘ — ‘
Sy + S = Z(_l)z+e+1 (q +; )ai (SO(Q—H—E—H) A al(ﬁp)> NC)
¢

The module action of A* F* on A\°® F gives

(i A a)(By A By) = au[By A By)) = s (@1 (By) A By + (1) By A a(B,))
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therefore,

(S1+55) + 85 = y_(~1) (q . ) (0 A ) ($FED 25, ) A,
L

and (a) has been established.
The right side of (b) is equal to (j + 1)hU+D) . (ﬁp)\(q)), which is equal to

Z(_l)éNf (W(q+j+1—f) /\ﬁp> MO for
¢

Né:(j+1)<n—p—2q—j+€—2) (q+j—£>‘

j+1 q
Apply (3.6) to see that the left side of (b) is equal to

rl) . <—(n —p—q-— 1)ﬁp)\(q+1) +(n—p—2q—2) (W(q—H) A 5p> )\(0)) .

It follows that the left side of (b) is equal to

Z(—l)éMz (W(q+j+1—f) A 5p> AO for
¢

My = () [ p g = D) + (- p = 20207

We apply Observation 1.2 to show that M, = N,. In particular, identity (b),
applied to the last binomial coefficient, followed by identity (c) gives

My = ("I [ (g ) (T 4+ (- p - 20— 2) (07|

= (PRI (n—p—2g—2—j+ 07T,

One more application of identity (c) yields M, = N, and completes the proof of
(b). Straightforward calculations show that both sides of (c) are equal to

—(n=p—q=Dar(B)AT + (n—p—2g = 2ay ($CTV A B, ) AV

—(n—p—3-2¢)(¢g+ 1)y (go(q“) A 6p> A0 O

Theorem 3.8. The complex F of Definition 2.5 is a DGI'—algebra with multipli-
cation given in (3.1) and divided power structure given by

1 [, ]
b2 a,gé*l) ~by_o
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for a; € Ay and by_o € B;_o, whenever t is a positive even integer.

Proof. Apply Proposition 3.4 and Observation 3.2. It remains to show that (F, f)
satisfies the derivative property. In other words, for X; in F;, we must prove that

(39) ft(Xt) ' Xu + (_1)tXt : fu(Xu) = ftJru(Xt : Xu)

When X; is in A, the result is established by induction on ¢. In light of (3.3), there
are three cases to consider:

S RN
®

(3.11) X, = [ho } . X, = {ﬁpg@} . and
0 0

(3.12) X = {5]),)\(@,')} o Xu= [@p)\(q)]

We first consider case (3.10). Let

3.13 “L | be the left side of (3.9 , and Y1 he the right side of (3.9).
b b
L R

Observe that
by = g(o1) A BAD — ay - (Y(ﬁp))\(q) +gA 5,,A<q—1>) .
Use (3.5) to see that
a1 (Y(BIAD) = ar (¥ (BT = a1 (07D AY(8,)X and
a1 ((g A B)AT™Y) = anlg A BAD = (9 A g A B, ) A,
At this point, there is no difficulty in checking that
by =Y (01(8,)) AT 4 g Ay (B,)A@ — YV (m (go(‘Hl) A @)) A = by,

Apply Proposition 1.4 in order to see that

o = (=17 nu(BA®) = =17 (" TP I o (o g, ) n),

On the other hand, ar = S + S5, where

S; = (—1)Pv (al(ﬁp))\(q+1)) and Sy = (—1)P1y (al (gp(qH) A ﬁp> )\(0)) :
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In other words,

S, = ;(_1)9'“ (n +J ;i; q- 1) <¢(n+j—p—q) A Oé1(ﬁp)) (§)h(j) and

Sy =3 (~1) <¢<n+j—2q—p—1> Aoy <¢<q+1> A Bp)) (€)h),
J

The reasoning of (3.7) gives So = S, + SY, where

S = Z(_l)j (n +J— Z —p— 1) (al (go(nﬂ'—q—p)) A ﬁp) (f)h(j) and

J

8y = S ("I (o ha (3,)) (1.
J

Proceed as in the end of the proof of case (a) in Proposition 3.4 to see that

si+57 = L0 ("I TITETY) (e v (5) (09
J

and ap = (51 +55) + S5 = ar.

We now consider case (3.11). Define ar,br,ar, and b as in (3.13). We know
that

by =Y - (5]0)\@) +pM . (Y(ﬂp))\@ +gA ﬁp)\(q—l)> )

Apply (3.5) and (3.6) to see that
Y. (ﬁp/\(‘ﬁ> — y(ﬁp)A(qH) Y (SO(QH) A 5})) A0
AV (Y (B)AD ) = ~(n—p=a)Y (BN T+ (n—p—2g- 1) "I AY (8,)A®),  and

V- (g ABAED) = —(n—p—q—1)g ABAD + (n = p— 29— (D A B,)A.

A straightforward calculation yields that
b = ~(n=p=g=1) [Y(B)ATD + (g A B)AD |+ (n-p-2g-2)Y (¢ 7 3,) X0 = b,

Use the fact that A1) - hU) = (j + 1)AU+D) in order to see that

ap = (1P LA (B0 @) = 3 (~1)75 (n tJ _7;_ 1= 2) (cp(nﬂ'fpqul) A 5p) (E)h).
J

On the other hand,

ar = (~1)?(n=p=q=1)v (BATD) + (1) (n—p—2g—2)v (D A A0
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We know that

v <5p/\(q+1)> — zj:(_l)jﬂa (n +J ;i; q- 2) (cp(nﬂ'fpqul) A 5p) (§)h(j).

Apply Note 1.8 to see that

. n+7j—mp—qg-—1 et .
v (go(q“) /\ﬁp/\(o)> - Z(_1)3+p( J qi ) q ) (90( +j—p—q—1) /\ﬂp> (S)hm.
J

It follows that

ar, — aR = Z(—l)ij (gp(”+j_p_q_1) A Bp> (E)hY) | for
J
N; =J’(n+j_Z_q_Q)—(n—p—q—l)(nﬂ;i;q_2)+(n—p—2q—2)(n+j;J’:Iq_ h.

Apply Observation 1.2 to simplify N;. In particular, identity (b), applied to the
final binomial coefficient, gives

: n+j—p—q—2 n+j—p—q—2)
N,=(n+j—p—2¢—2 —(g+1 ,
j=m+j—-p—2¢ )( . ) (q )( o1

and identity (c) gives N; = 0. The proof of (3.9) is complete in case (3.11).
Finally, we consider case (3.12). In this case, equation (3.9) is

_1)p'-1 (@) F 1)1y (a)
[( 1) Ubﬁﬁp A )].[ﬂpg\(q)l—l—(—l)l’ +p'(p—1) [( 1) b(ﬁp)‘ )1.[ﬁp,?\(q’)] =0

for appropriate elements b’ and b in B; and therefore, it suffices to prove that
(3.14) B— (=) D=y =g

for A=wv (@,/)\(q/)) . (ﬁp)\(‘”) and B =wv (6p)\(Q)) . (61,/)\(‘1/)). Definition 2.3 gives

B— ;<_1)j+p (n +j— 1; —q- 1) RU) . [%.) . (@p,xq’))} . for

2q+p—2j+1

o) = (So(m—j—p—q) /\ﬁp> (5) e /\ F*.

The multiplication of a(;) on B, as given in Proposition 3.4, yields

B = Z(_DH—H—E <n+j_§_q_1) (q/+2q—i:1;l)—2j—f) h(j)- [a(j)(gp(q/+2q+p—2j+l—f) A ﬁp/))\(e) )
7,
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The multiplication of 2(9) on B is also given in Proposition 3.4; take p to be
deg aj (I T2TPTHTO NG ) = 2+ p— 25 + 1427 +p — 21,
q to be £, and ¢ to be L. It follows that

B— Z 1)L +i+L n+] p—q— 1) (n*2quf2q'fp'+j+L*2>B.L)\(L)
q J 75 ?

where

Bj,L _ Z(_l)z (q'+2q+qz/972jf£) (€+j—€1—L) [Oé(j)((’p(q/+2q+p72j+17€) A ﬁp’):| /\80(6+j—L)_
0

Observations 1.2 (i) and (e) show that
J—1 wtd [
(3.15) ( y ) = 2: (—1)%ta (u)
0<u<q’

for all integers J. Apply (3.15) and Note 1.8 (b) to see that B; 1, is equal to

Z Z )4 " fuL éﬂ ﬂl L) [am (go(q —u+2q+p—2j+1—L) A ((p(u) A By )ﬂ/\gp(é*j”:).
0<u<gq’ ¢

We next apply Corollary 1.10. Replace £ by ¢/ —u+2q+p—2j+1—k; and let A
equal ¢ —u+2q+p—j— L+ 1. Observe that

degajy =2q+p—2j+1<2¢+p—2j+1+(¢ —u)=C.

It follows that

Biu= 30 (07 fag) (s A (50 0 5y ) )

0<u<q’

/ "4+ 2 —74+1—-1L / -
_ Z (=17 +u (q +2¢+p—J+ ) |:Of(j) (SD(Q +2¢+p—j+1-L) Aﬁp/>] _

u
0<u<q’

One further application of (3.15) gives
'+2+p—j—L g1
E%J/::(q q q? j ) ij)<¢02+2q+p 41 L)p\ﬁﬂ>];
and therefore,

B = Z(_1)1+j+L (n+j—§—q—1) (n—2q—p—2q'j—p’+j+L—2> (q’+2q-z;a—j—L) aij)\(L), for
4L

Q= [(gp(”ﬂ_P_q) A 5})) (5)} <(p(q’+2q+p—j+1—L) A Bp’) '
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Use symmetery and Proposition 1.4 (b) to see that (—1)®~D® =1 4 is equal to

Z(_1>1+j+L (n+j—z;’/—q’—1) (n—2q’—p’—2]{1—p+j+L—2> (q+2q’+5’—j—L) O‘;‘,L/\(L)7 for
7,L

oy = [<@(q+2q’+p’fj+1fL) A ﬁp> (5)] (Sp(nﬂ»,p/,q/) A ﬁp,) '

Replace every j in B with k—n+p+q and every j in A with ¢+2¢'+p' —k+1—L,
in order to write the left side of (3.14) as

Z(_1)1+L+k+n+1)+q(k;1> (q’+q+;z,—L—k) Ni.1 [(™) A Bp) (€)] (w(q’+n+q—L+1—k) /\gp,) AL
k,L

for

N, — (k—q—2q/_p/+L—2)+(_1)p,+L+n+p( n—q—-p-1-F )
’ k+p+qg—n q+2¢ +p —k—L+1

Observation 1.2 (j) guarantees that
k+L—q—2¢ —p —2
Nis = = .
n—2q—2¢ —p'—p+L—2
Recall, from Observation 1.2 (f), that
(Q/+q+n,—L—k> _ (_1)q/<k+L—rlL—q—1>.
q q

Apply Corollary 1.11 with s =3, Cy =q,Cy =¢, C3=n—2¢—2¢' —p—p' + L —2,
and A=n+q+q — L+ 1. Observe that

1+ A+Cr 4+ Co+Cs4degfy =2n—p <2n+1—p=degfy(§).

Equation 3.14 has been established and the proof is complete. [
One technical result is needed before we can prove that M is a DGI'—algebra.

Lemma 3.16. Adopt the notation of Definition 2.15. If x and y are elements of
F, then w(z - pP(y)) = 0.

Proof. Our proof is based on the following three observations:

(3.17) pP(F) C (NNB) + f(NNB),
(3.18) F-(NNB)C (NNB), and
(3.19) T(NAB) = 0.

If we assume the three facts for the time being, then the result follows immediately.
Indeed, according to (3.17), we need only show that 7(zz) = 0 and w(zf(z)) for
z € Fand z € (NNB). On the other hand, F is a differential algebra so

m(xf(2)) = xmf(zz) £ 7((fz)z2).
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We know from Proposition 2.16 that 7 is a map of complexes; hence, it suffices to
show that m(zz) = 0 for z € F and z € (NN B), and this is clear from (3.18) and
(3.19).

The rest of the proof is devoted to establishing (3.17) — (3.19). Assertion (3.19)
holds because m = projon’, n’ acts like the identity on B, and proj kills N. We next
prove (3.17). We know that n’ and #”" both act like the identity on B; thus, it is
clear that po P(B) C (NNB). Also, " acts like the identity on M; so, P(MINA) = 0;
and it suffices to apply po P to

()
a = |:Oé 0 ‘| ENt

The map 7’ was defined so that the composition

projection
_

AﬂNt inclusion ]Ft L) ]Ft AﬂNt

is the identity map. (The best way to verify the above claim is to notice that the
map 7" of Definition 2.15 is described in (2.13).) It follows that 7'(a) = a + x for
some element z of M + B; therefore,

po P(a) =" oinclopon’(a) = 7" (a) + 2’
for some element 2’ of NN B, and

po P(a) = (=1)"frra |:ai(n>)\(1o+j—n—1):| +a.

The element

0
QA
of Fyy is in N because

n<n+j=dega;(n)+i+j—n—1.

Line (3.17) has been established.
Finally, we prove (3.18). Let

T = lgjﬁig] el and Yy = [ﬁp/g\(q/)} e N.
We know that
rY = {aih(j)gp,)\(q’)} .
The proof will be complete when we show that (a;h0)) - <ﬁp/)\(ql)> is an element

of N. However, the multiplication in F is associative, so we apply the trick of (3.3).
At this point the result is obvious because (3.5) and (3.6) show that

aq - (ﬁp,)\(q’)> — al(ﬁp/))\(qurl) _ 041(90(‘1"”) A ﬂp/))\(o), and
AV (B A} = —(n = p' = ¢ = 1By ATHD - (n = p 2 = 2) (10D A 3 ) A,
We know n < p’ + ¢'. It follows that

n<(@P -1+ +)<p+¢d+1<2(¢+1)+p —1<p +2(¢d+1). O



30 ANDREW R. KUSTIN

Theorem 3.20. The complex (M, m) of Definition 2.15 is a DGU'—algebra; fur-
thermore, m: (F, f) — (M, m) is a homomorphism of DGI'—algebras.

The following statement is obtained by combining Corollary 2.17 with Theorem
3.20. An analogous statement follows from Corollary 2.18.

Corollary 3.21. Let (R, m, k) be a noetherian local ring, n > 2 be an integer, and
Yixont+1 and Xonti1xont1 be matrices with entries from m, with X an alternating
matriz. Let I be the R—ideal I;(YX) and A be the quotient ring R/I. If 2n <
grade I, then the minimal R—resolution of A is a DGI'—algebra.

Proof of Theorem 3.20. Define the multiplication xpr: M ®@ M — M by

z Xy = 7(i(z) - i(y))

for all x,y € M (where - represents multiplication in F), and define the divided
power structure on M by

2 — o ((ix)(k)>

for all homogeneous elements = in M of even degree. Use Proposition 2.16 (g) and
Lemma 3.16 in order to verify that M and 7 have all of the necessary properties.
For example, we prove

(3.22) m(xy) = m(x) xpm w(y) for x and y in F, and
(3.23) (x Xmy) Xm 2z =2 Xy (y Xy 2) for z, y, and z in M, and
(3.24) Kle®m = g sy - xypz for 2 in M.
—_————
k times

Indeed, the right side of (3.22) is equal to
(lima] - [imy]) = w([x — pP(z)] - [y — pP(Y)]) = 7(zy).
In a similar manner, we see that the right side of (3.23)
m(i(z) - infi(y) - i(2)]) = w(@ - im(yz)) = n(x - [yz — pP(y2)]) = w(x(yz)).

The multiplication in F is associative; therefore, (3.23) is established by symmetry.
The left side of (3.24) is equal to

Kl ((m)<k>) — <k!x(k)> = n(z").
Apply (3.22) to see that

m(zF) = m(x) xpp - - - Xy 7w(2),

J/

TV
k times

and this is equal to the right side of (3.24) because x € M. [
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4. The algebra Torf(A, k).

In the present section

(4.1) (R,m, k) is a local ring, n > 2 is an integer, X2*. |, .1 and Yix2,41 are
matrices with entries in m, I = I (Y X) has grade 2n, and A = R/I.

In Theorem 4.3 we calculate the DGT'—algebra TorZ(A, k).

Lemma 4.2. Adopt Data 4.1. If (M, m) is the DGT'—algebra M(Y, X) of Theorem
3.20 and “—7 is the functor _ Qg k, then the multiplication M x M — M is given
by

(jJ;J')ai nayh )
@-E(j) @‘/E(j/) ( )
% 7 , — : ' — 0 —1\— 5 AT "+i+1
B | |5, x0T (=17 ("N EBON |

_|_(_1)pz (_1)_7 (nipjilqil)ai’ (_p)X(Q+i +35°)

where a; € N'F*, B, e N'F, 0< q,¢,

i+j<n, i+j<n, p+tq<n-1, p+¢ <n-1, and

' E'E(j)
. _aiﬁ(‘j) ’ ifi+j<mn,
proj 0 = 0
) 0 ifn+1<i+j,
0
T o0 _ — ifi+7<n-—1, and
proj | X@} - [@A(Q)}
=P 0 ifn<i+j.

Proof. If z and z’ are elements of M, then m xyy m' = w(m xp m’), where Xy is
multiplication in M, xp is multiplication in F, and 7 is given in Definition 2.15.
Write z = 2’ to mean T = 2’/. Keep in mind that Y =0, ¢ = 0, and

(j)_{l if 7 =0, and
L 0 for any integer j with j # 0.

The only interesting calculation involves

x = a;h?) and 2’ = 0
- 0 - Bp/A(q) :

Use Proposition 3.4 and (3.1) to see that

z xpa' = [aih(j) . <()5p,)\(4')>] ;
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. , (n—p —q¢ —1 I
LBl . <5p,)\(q )) = (1) ( . )@p,)\(q +9) and
J

Q; - <5p,)\(q'+j)> = ai(ﬁp,>)\(q’—|—j+i).

We complete the proof by showing that m = proj. It is clear that 7|y is the identity
)
map and that 7(NNB) = 0. Finally, if a = [alg } is an element of NN A, then

. 0 . () AGHI—n=1) .
m(a) = £ projof [ai<77)>\(i+jn1):| = 4 proj [v (a () 0 )} = +proj(a) = 0.

The map v may be found in Definition 2.3. [
Theorem 4.3. Adopt the hypotheses of (4.1). Let V' be a k—vector space of di-

mension 2n+1, h be a divided power variable of degree two, S be the DGI'—algebra

N V<h>
n+1l 4 ’

Z /\ Vh(n+1—i)
1=0

(with differential identically zero), Ue be the Se-ideal (Z A Vh("_i)) , and No be
i=0

the graded left Se-module (Se/Ue)*[—2n], where (-)* means Homg/(-, k). Then the
DGT -algebras Tor?(A, k) and Se X No are isomorphic.

Note. The algebra S, comes equipped with a divided power structure; and there-
fore, the divided power structure of So X N, is described in Observation 3.2.

Proof. The k—algebra Tork (A, k) is equal to M from Lemma 4.2. We begin our
study of Se X N by naming some of the elements of N,; see [28] for more details.
If w, € A" V* and ¢ is an integer, then let w,x, represent the k—homomorphism
from S, /e to k which sends v;h9) to

0, if p # 1,
0, if ¢ # j, and
wp(v;), ifp=iandg=7j

for v, € /\z V. Observe that w,z, is a nonzero homomorphism if and only if p
and ¢ are nonnegative integers with p + ¢ < n — 1. Observe also, that, w,z, has

degree 2n — p — 2q as an element of N,. It follows that the graded S,—module N,
2n

is equal to ZNd, where Ny = Y A" V*z, and the sum is taken over all pairs of

d=2
nonnegative integers p and ¢ with p+q¢ < n —1 and p+ 2q¢ = 2n — d. We are

now able to give a clean description of the module action Sy x Ny — Nyyq. Let @
and j be nonnegative integers with ¢ +j < n and 7 + 25 = ¢; and let p and ¢ be
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nonnegative integers with p4+¢g <n—1and p+ 29 =2n —d. If v; € /\Z V and
w, € NP V*, then

'Uzh('j) . wpajq = (j)vi(wp>xq—jv

where v;(w,) is the element in AP~*V* which is given by the A®V —action on
A V=

Identify V with F* and V* with F. Consider the map 6: Sy x Ny — M which
is given by

) U'E(j )
0<vih3 —|—wx>:proj e —g—
pq (_1)qu)\( 1-g—p)

for v; € /\1 V and w, € AP V*. The natural projection proj: F — M is recalled in
Lemma 4.2. It is clear that # is an isomorphism of graded k—vector spaces. The
only interesting calculation in showing that # is a ring homomorphism is

0(vih9)-0(wyzy) = (—1)9+ (j) proj [ —(n—ol—q—p+i+j):| = O(v;h wyzy). O

v (wp) A

Caution. We use the symbol “wpx,” to represent an element of (Se/%As)*; no
multiplication of w), and z, is involved. (Indeed, no multiplication of w, and z, is
even defined.)

5. Poincaré series.

In the present section

(5.1) (R,m, k) is a regular local ring of embedding dimension e, n > 2 is an
integer, XS};“HX%H and Yjxop41 are matrices with entries in m, I =
I,(YX) has grade 2n, and A = R/I. The characteristic of k is denoted
by ¢ > 0, and ng represents (n + 2)/2.
The main result in this section is Theorem 5.2, where we prove that the Poincaré
series of every A—module is a rational function, provided 0 = ¢ or ng < ¢. Corollary
5.3 is concerned with the growth of the betti numbers of modules over A. The
remainder of the section contains the calculations which are used in the proof of
Theorem 5.2. Some of the arguments in the present section are similar those in
section four of [28].

Theorem 5.2. Adopt the notation of (5.1). Let Den(z) be the polynomial
Dena () (14 2)2nFL[(1 — 2)2n L — 23] ifc=0o0rn+1<c
enyg(z) =
A (1+ 2)2n+1[(1 . Z>2n+1(1 _ 241 220+2) . zs] if ng < ¢ < n.
If c=0 orng <c, then
(a) the Poincaré series P(z) is given by
(1+2)°(1+2%)
Deny(z)

Pi(z) = and

(b) Deny(2)PY (2) is a polynomial in Z[z] for every finitely generated A—module
M.
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Remark. When n = 2, the above result is contained in Example 3.8 and Corollary
4.2 of [31].

Proof. We saw in Corollary 3.21 that the minimal R—resolution of A is a DGI'—algebra;
therefore, we may apply the technique of [9] which is summarized in [31, section 4].

In Theorem 4.3, we proved that the graded k—algebra Tor®(R/I, k) is isomorphic

to the algebra Ty = S¢ X No. Avramov’s Theorem [2, Corollary 3.3] gives

Pi(2) = Pr(2)Pr, (2) = (1+2)° Py, (2).

The DGI'—algebra B of (5.6) is obtained from T, by adjoining 2n+ 1 divided power
variables of degree two and one divided power variable of degree three. It follows

that _
PE() = it PEC)

In Lemma 5.13 we prove that B is a Golod DGI'—algebra. It follows from [5,
Theorem 2.3] that

1
Pg(z2) = = :
1—2z)> dimg H;(B)z*
i=1
and therefore,
1 (1 3
PIIX(Z>: ( +Z) ( +z >’

Den4(z2)

where

Deny(z) = (1 — 22)?"H! (1 - Z(Z dimy HZ(B)ZZ)> :
i=1

The homology of B is calculated in Lemma 5.13. The proof is completed by ap-
pealing to [9, Corollary 1.6] or [31, Theorem 4.1]. [

Corollary 5.3. Take A as in Theorem 5.2. Let M be a finitely generated A—module
and let b; be the it betti number of M ; in other words, b; = b (M) = dimy, Tor; (M, k).
If the projective dimension of M is infinite, then
(a) the betti numbers of M exhibit strong exponential growth; that is, there are
real numbers My and My, with 1 < My < M-, such that MS <b; < M{ for
all sufficiently large i, and
(b) the betti numbers {b;} form an increasing sequence for all sufficiently large
i.

Proof. According to Theorem 5.2, the Poincaré series P} (z) is a rational function
which does not have a pole at 1; consequently, we may apply the technique of [42].
Let d(z) equal Deny(z)/(1 4+ 2)?"*L. If r is a real root of d(z) = 0, with 0 < r < 1,
then it suffices to show that

(5.4) r is a root of multiplicity 1, and

(5.5) if z is a complex number with |z| = r, but z # r, then d(z) # 0.
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If c = 0 or n+1 < ¢, then the analysis of d(2) = (1—2)?"*T!1—23 is straightforward.
It is clear that d'(r) < 0 for all r. Write d(z) = hq(2)—ha(2), for hi(z) = (1—z)?"*!
and ha(z) = 23, Tt is easy to see that

”m(z) hi(2)
hg (T‘) h1<7”)
Conclusion (5.5) now follows readily.

The analysis of d(z) = (1 — 2)2"T1(1 — 22¢+1 — 22¢+2) _ 23 is glightly more
complicated. Let r represent a real number with 0 < r < 1. Write d'(r) = e(r)—f(r)
with

for all z with 0 < |z|] =7 <1 and z # .

~1<)

e(r) = (1 —r)*" " (—(2c+ 1)r* — (2¢ +2)r***!) and
fry=02n+1)(1 — r)2"(1 — p2etl _ p2et2y 4 52

It is clear that e(r) < 0. We prove that d’(r) < 0 by showing that 0 < f(r). Since
r2et2 < p2etl < we see that fo(r) < f(r), where

fo(r) = 2n+ 1)(1 —r)?™(1 — 2r) + 302,
IfOo<r<1/2,then0<1—2rand0< fo(r). If 1/2 <r < 1, then
0< (2n+1)(1-r)*""t <1 and 0< (2n+1)(1—r)*""H(1—r)(1-2r)+37%] < fo(r).
Thus, (5.4) holds. For (5.5), write d(z) = u(z)[h1(z) — ho(2)], where u(z) = (1 —

2)2" T hy(2) =1 — 22¢HL and

1
_ 2c+2
ha(z) = 27 (1 T 22e-1(1 — Z)2n+1) '
It is not difficult to see that

’ hQ(Z) hl(Z)
hg (T‘) h1<7”)

Once again, conclusion (5.5) follows readily. [

<1§’

for all z with 0 < |z| =7 <1 and z # 7.

Remarks. (a) The statement of the above result, and its proof, imitate the work of
Li-Chuan Sun. Without Sun’s techniques, only the weaker conclusion

Mggibjgj\/[f

J=0

can be drawn. This weaker conclusion is established by observing that P}/ (z) is a
rational function which does not have a pole at 1. See [6] and [7], or [31, Corollary
5.2] for more details.

(b) Notice that the Eisenbud Conjecture holds for the ring A; indeed, if the betti
numbers of M are bounded, then M has finite projective dimension.

(c) One can use Theorem 5.2 to prove that the Herzog Conjecture holds for A;
however, A is in the linkage class of a complete intersection; and therefore [43]
already yields the Herzog Conjecture for A.
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Data 5.6. Let k be a field of characterisic ¢ > 0, n > 2 be an integer, and T,
be the graded k—algebra So X N of Theorem 4.3. Recall that, as a vector space,
T, is generated by elements of have the form v;AU) and wpxy, where v; € A"V,
wp, € AP V* and V is a vector space of dimension 2n + 1. The element v;h) is
zero if ¢ < 0,or j <0, or n+1 < i+ j. The element wyz, is zero if p < 0, or ¢ < 0,
or n < p+ q. The multiplication in T, is given by

Uzh('j) . /Uz‘/h('j/) — (.7+.7/)/UZ /\Uzlh(‘]+‘7/)
i Y
v;h9) - wyz, = (?)vi(wp)xq_j, and

WpTg * Wpr Ty = 0.
The grading in T, is given by
deg v;hY) =i+ 27 and deg wyry = 2n — p — 2g.
Let (B, d) be the DGI'—algebra
B="Te<X1,...,Xo0n41,Y; d(X;) =¢;, diY) =h>,

where e, ..., ea,+1 is a basis for V over k, the divided power variables X1, ..., Xo,4+1
each have degree two, and the divided power variable Y has degree 3.

The rest of this section is devoted to calculating the homology of the complex
B. Our first step, in Proposition 5.8, is to decompose B into a direct sum of
subcomplexes.

Definition 5.7. Adopt Data 5.6. For each integer £, let (X)) be the k-subspace
of B which is generated by

{Xl(al)"'XSZQ-:le) | ap 4 -+ agny1 = £}.

For integers r and m, let Kg,)n> be the k—subspace

(@ /\Vh“’”Y(X)“””) P (@ AVh(T)(X)(mi))

of B, and let L@n> be the subspace

(@/Z\V*xn_TY(X)(m_T—H)) ) (@/\V*xn_r_l(X)(m—r—i—i))

) %

of B.



ALMOST COMPLETE INTERSECTIONS OF TYPE TWO 37

Proposition 5.8. Adopt the notation of Definition 5.7.

K(Q?» and d (L(<7?n>> C L(<T7)n> In particular, (Kg}n>,d> and (L@n>,d>
are subcomplezxes of B.
(b) The complex B is equal to the following direct sum of subcomplezes:

(a) If m and r are integers and d is the differential of (B,d), then d (Kg}n>) -

n+1 ') n o0
D Pri|o|D DL
r=0 m=0 r=0 m=0
Proof. Recall, from (5.6), that
Uih(j)d(Xg> = v; A eghl9), wpLqd(Xy) = (—1)Pep(wp)xq,
v;hDd(Y) = (j + 1)v;RU+D | and wpxd(Y) = qupry_1,

for v; € A’V and wy, € AP V*. Assertion (a) is now established. Assertion (b) is
not difficult. [

Note. The complexes K(;,),D and L(<7?n> have been recorded in the proof of Lemma

5.9. An alternate proof of Proposition 5.8 may be obtained by glancing at this
record.

Lemma 5.9. Retain the notation and hypotheses of Definition 5.7. Assume that,
either, c =0 or ng < c. Let B(B) and Z(B) represent the boundaries and cycles of
B, respectively.

(1) Let V' be the k—subspace

n—1 p
(Z/\vw ”—i—Z/\V*xn . 1) k<X,Y>

of B. Ifc=0 orn+1<c, then Zy(B) C V' + B(B).
(2) For each integer q, with 0 < q < n, let Z\9 be the following k—subspace of
(B, d):

N7V YR<X> NIV V<X >
Z\@ = ker o LN @
NV, k<X > N VR, k<X >

Ifng <c<n, and V" is the k—subspace

q

1-qg p
> N\ V<X, Y>

p=0

Z /\ VA <X, V> + kh™DY + kb +
1= 9=
n—c p

+ Z AV e V<X>+ Z 7@

of B, then Z.(B) C V" + B(B).
(3) Let i and m be integers.

n c—2 n—
0
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(a) If 1 < m, then

- {4n (2n+1\ (2n+m—~4 e
dlIIl;c H(K(O) ) — EZO(_l) - ( £ )( 2n )7 ZfZ =2m — n, and
? <m>) — =
0, otherwise.

(b) If 1 <r <mn, then

1, ifi=2candr=c,
dimkHi(K(<%>): 1, ifi=2c+1andr=c,

0, otherwise.
(¢) If1<r<nandl<m, then

(nzf,:_ll) (n+7r;j;r_1), if it =2m —n+ 3r, and

dimy, H;(K") ) = {
b i (K m>) 0, otherwise.
(d) If 0 < m, then

2n

2n+m cpo.

. : =2m +2n +3, and

dimy, Hy(KYHY) :{ ("), e, an
0, otherwise.

(e) If 0 < m, then

(2”;;7”), if i =2m+2, and

0, otherwise.

dimy, H; (L9, ) = {

(f) If1<r<n-—1and 0<m, then

2n+1) (2n+m), ifi=2m+r+2, and

dlm HZ L(T'Zn, — { ( T 2n
b Hillcm>) 0, otherwise.
(9) If 1 < m, then
n—1
—1 l+n—1(2n+1\ (m+m-+L : TR 2’ p
dimg, HZ(L(Q%Q = ego( ) ( ¢ )( on ) if i m+n+2, an
0, otherwise.

Proof. We begin by proving part (3); and to that end, we record the complexes
K(gn> and L(;,),D for 0 < m:

KO 0= AVAO X)) 5 ATVRO(X)(m=1) L AP VRO (X)(m=n) 0,
KD 0 5 AP VRMY (X)) 0,

LO 0 0= A VEz, (X)) -0,
LY 0 0= AP VY (X)) o ATT2 VY (X) (M=) e AD VR Y (X) (M) o,
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if 1 <r <n, then K(Q,D is the mapping cone of
0— A’VAC-Dy(x)m)  — A'VAC-DY(X)m-D

! l
0 — A VA (X)) (m) = A VAT (X)(m=1) =

RN /\n—r Vh(rfl)Y(X)(mfnJrr) N /\n—r—l—l Vh(rfl)Y(X)(m7n+r71) =0

y !
= ATTTVRDmemn 0 ~0,
and if 1 <r <n —1, then ]L(<T,)n> is the mapping cone of
0— 0 — AT vz, Y (X)m-D o o APV, L Y(X)(mer) o

! ! l
0— A" V*l‘nfrfl(X)(m) N /\r—l V*l‘nfrfl(X)(m_l) — /\O V*xnfrfl(X)(m_T) = 0.

The horizontal maps are the “partial derivative with respect to X”, and the vertical
maps are the “partial derivative with respect to Y”. The key to the proof is the
following observation.

Claim. The nonzero homology of each horizontal strand of each K@,D occurs at

the right hand side of the strand and the nonzero homology of each horizontal
strand of each L(<T7)n> occurs at the left hand side of the strand.

Proof of claim. Let E represent the DGI'—algebra

/\V<X17 SR 7X2n+1;dXi = e;>,
k

where A\®V is the exterior algebra on the 2n + 1 dimensional vector space V =
2n+1
@ ke;, the differential on A\°®V is identically zero, and each of the divided power
i=1
variables X; has degree two. It is well known (see, for example, [21, Theorem 5.2))

that E is acyclic. It follows that the subcomplex

0 1 2n 2n+1
E@: 0 AVEX)O - Av)ED — s Av)E — A vx)Eth o

of E is exact for every integer ¢, except £ = 0. For each integer ¢, consider the
complex

2n+1 2n 0
E(f) . 0 — /\ V*(X)(E) N /\ V*(X)(Z—l) NN /\ V*(X)(Z—Zn—l) N 0,

where the differential

/a\ VH(X)®) - a/_\ VH(X)e-D
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is given by
2n+1
we X L x () > ei(wa) X" x b x ),
i=1

It is easy to see that E© is isomorphic to E(®). Each horizontal strand of each
K(;,),D is isomorphic to a quotient of some E (). Each horizontal strand of each

]L(!,)n> is isomorphic to a subcomplex of some E() with 0 < £. The claim is now
established.

As we verify (3), we use the well known combinatorial fact

2 V4
dimy (X)(© = ( o )

2n

which holds for all integers ¢, with 0 < 2n + ¢. Assertions (a) and (c)—(g) are all
now clear. Assertion (b) is also obvious because

ArVY s p ()

is an isomorphism, unless ¢ divides r. However, in the second case, ¢ must equal r
because ng < c <r <n.

Assertion (1) is obvious now that (3) has been established. The proof of (2) is
also straightforward. Sometimes we were quite generous as we placed elements in
V”. For example, 1 -z is a boundary and therefore is not used in the proof of
Z4+(B) C V"’ 4+ B(B); nonetheless, we placed 1 -z in V” because it is used in the
proof of Lemma 5.13. On the other hand, at other times we were quite stingy. For
example, the vector space V' of part (1) contains all of

n—q—1 n—q

(5.10) N ViaYk<X>+ \ Ve k<X>

for every ¢; however, if ¢ < ¢, then we have allowed V” to contain only those
elements of (5.10) which are cycles in B. Once again, the proof of Lemma 5.13
dictated the need for frugality. O

The next calculation is used in our proof that B is Golod when ng < ¢ < n.

Lemma 5.11. Retain the notation and hypotheses of Definition 5.7. Let V" be
the k—subspace of B which is described in Lemma 5.9. For integers £ and q, let
u = ull,q] be the integer n + 20 + 2¢ + 2 — q, and let L[{,q] and M, q] be the
k—subspaces

L[¢, q] = ker ((L(&ch;q))u KN (Lg}icc;q))u_l> and

n+c— d n+c—
M[& Q] = ker ((L(<€+c>q))u+1 - <L(<€+c>q)>u)
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of B. If0 <l and ng < c<q<mn, then L[{,q] + M[{,q] C dV".

Proof. Consider the subcomplex

(ntc—q) d (n+c—q) d (ntc—q) d (ntc—q)
(5.12) <L<£+c>q >u+2 - <L<£+c>q >u+1 - <L<£+c>q )u - <L<e+c>q >u_1

of Lgléfc;q); in other words, complex (5.12) is the same as

N TV, Y (XD ATV V()0
4, i 4

S¥)
/\n—Q+2 V*xq—c—l (X)(é—i—Z) /\n—q+1 V*xq—c—l (X)(E—H)

ATV Y (X)ETD AT Y (D)1
S — S
A1 V*xqfcfl(X)(e) /\n_q_1 V*xqfcfl(X)w—l)'

[ (+e=a)

<iryes 18 concentrated in degree

Lemma 5.9 shows that the homology of
i=2l+c)+(n+c—q)+2.

Observe that u < u+ 1 < i. We conclude that (5.12) is exact. It follows that

Mg Ca(LUFEY) o and Litgl Cd(LOTEY)

On the other hand, the hypothesis ng < ¢ < ¢ < n ensures that

g—c—1<qg—c<c—2; thus,

’

p
AVizgk<X,Y>C V",

c—2 n—1—q

(n4c—q) (n4c—q) ~
(L<€+c> )u+2 + <L<€+c> >u+1 < Z Z

qg'=0 p=0

o

and L[l,q] + M[l,q] CdV". O

Lemma 5.13. Retain the notation and hypotheses of Definition 5.7. If ¢ = 0 or
ng < ¢, then B is a Golod algebra, and

22

o ) 1 — 2n+1

S dimg Hi(B)2 = 7 ,

i= % 4 241, _  *
1 2+ 2 + (1= 2yonti

if0=corn+1<c

ifng <c<n.

Proof. Proposition 5.8 shows that

Zdimk Hl(B)z’ =51+ 5+ S35+ 54+ 55+ Sg,
1=1
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where

S, = S dim H; (K9, )2, Si=Y Y dimH; (LY, )z,

1€Z m=1 1€Z m=0

n (e’ ) n—1 oo )

So=3 % S dimH;(KY) )z, Ss=3 3 3 dim H;(LY),. )z, and

1€Z r=1 m=0 1€Z r=1 m=0

=3 3 dim Hy(K&)z, Se =S S dim Hy(LY, )z,
1€Z m=0 i€Z m=1

Notice that the complex K' ())> is 0 — By — 0; and therefore, it does not contribute

to H;(B) for 1 < i. Notice also, that the complex IL(<731> is equal to zero when

m < 0. The homology of each complex K(<,)n> and ]L(<,)n> has been calculated in

Lemma 5.9. In particular, So = ¢ (220 + 220“) + 5%, where

= Z i i dimHi(K@n>)zi, and €=

{0, if0=corn+1<c,
1€Z r=1 m=1

1, ifng <c<n.

We apply the identity

f: m+b\ o, z2(a=b)
2N =
it a (1 _ ZZ)a—I—l !

which holds for all integers a and b provided 0 < a. It follows that

mlEO

n
2n+41 n—l—r—|—2
Z 2n+1 n+m+r—1\ o5 .13, Tzzjl(” T+1)
Z g
—\n-r+ 1 2n (1 — z2)2n+l1
22n+3

(1 _ 22>2n+1

NE iPnﬂg ﬁMg

R

[\’)\

2n+m L2m2nt3 _
2n

S
I

) 2
n+m 22m+2 _ A
2n (1 — 22)2n+1

3
I
o

! (2n—|—1) ZT—I—Q

m o (1 _ Z2)2n+1

r=1
(_1)£+n 1 27’L+1 n+m—|—€ 22m+n—|—2
14 2n

2(1 + Z)2n+1 _ Z2 - (2n—|—1)zn+2 N 22n+3

n

(1 _ z2)2n+1

Nt M

3
,_.

Se

1 /=0

3
[

Observe that

z
Sé+S5:
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Replace m with m —n — 1 and £ with 2n + 1 — £ to see that

o0 2n+1
2n+ 1\ /2n+m — ¥
o l+n 2m—n
So= Y > (P (e

m=n+2 {=n+2

fi1<m<n+landn+2</<2n-+1,then0<2n+m —¥¢ < 2n — 1 and
(2"+m_é) = 0. It follows that

2n
o0 2n—+1
nf2n+1\ 2n+m =20\ 5. .,
=3 S e (M)

m=1 l=n+2

Thus, S; + S¢ is equal to
i 2n+1 ~ )
mZ:1(_1)n [ ego (—1)¢ (an— 1) (2n ~|—21: €> n (_1)n(2::11) (n —|—;Z 1>} omen

We know that 0 < 2n 4+ m — /; therefore,

2n+m — /¢ B 2n+m — /¢
on a m—/ ’

and Observation 1.2 (h) yields that

275:1(—1)6 (an— 1) (2n +277;1 — 6) _ (mn; 1)7

£=0

which is zero when 1 < m. We conclude that

g g . /2n+1 n+m-—1 om—n (2:j11)z"+2
1+ 6_2 n+1 m z _(1_22)2n+1

m=1

and > dimy H;(B)z* has been calculated.
i=1
To show that B is a Golod algebra we exhibit a k—subspace V of B such that

(5.14) Zy(B) CV+ B(B) and
(5.15) V2 C dV;

and then we apply [10, Lemma 5.7] or [31, Lemma 2.6]. We first assume that ¢ =0
or n+ 1 < c. Let V be the subspace V' of part (1) of Lemma 5.9. We know that
condition (5.14) holds. It is apparent that V2 = 0; and therefore, condition (5.15)
also holds.

Henceforth, we assume that ng < ¢ < n. Let V be the subspace V" of part (2) of
Lemma 5.9. We know that condition (5.14) holds. The hypothesis ny < ¢ ensures
that h(¢=1) . h(¢) = 0. This hypothesis also ensures that h(c~Dw,z, is equal to zero,
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whenever ¢ < ¢ < n — 1. Recall, also, that Y has degree 3; thus Y2 = 0. It follows
that

V2 = ple=Dy gz 4 plo) . Z AU

q=c

Fix an integer ¢, with ¢ < ¢ < n. We next prove that k() Z(@ C dV. Let £ > 0
be an integer, and let u = u[¢,q] and L = L[¢,q] be the integer and vector space,
respectively, of Lemma 5.11. The element h(¢) of B is a cycle; and therefore, the
diagram

A" Y ()Y NV Y ()2
I S — S

NV (X)© NV ()Y

h(C)l h(C)l h(C)l

n—q—1y % — Nn—q—2yr% —
N TV, Y (X)ED . NV T, Y (X)=2)
0O — L —— ® — ®

/\n—qV*xq_c_l(X)(é) /\n—q—lv*xq_c_1<X)(£71)

commutes and has exact rows, where all of the vertical maps are multiplication by
h(©) . Tt follows that (h(C)Z(Q))u C L. Lemma 5.11 guarantees that L C dV. Since
¢ is an arbitrary non-negative integer, we conclude that h(9Z(@ C dV. The proof
that h(c=VY Z(9) is contained in dV is very similar. This time, we let u = u[/, ¢] and
M = M][¢,c] for some ¢ > 0. The element R(=DY is a cycle of B; and therefore,
the diagram

AT Ve Y (X)W NPV Y (X))

d

u—2c @ _— @
A" Va1 (X)O AT VR (X))
h<c—1>yl h<c—1>yl h<c—1>yl

0O — M — A"‘Cv*xoy(x)(f) _d /\n_c_lv*xoy(X)(é—l)

also commutes and has exact rows. Thus, (h(¢~DY Z(9)),,; € M. Once again,
Lemma 5.11 ensures that M C dV and we let £ > 0 vary in order to see that
h(e=DY Z(®) is contained in dV. Condition (5.15) has been established and the
proof is complete. [

Remark. The above proof fails when 2 < ¢ < (n + 1)/2, because, in this case,
R{e=DY . b(9) which is equal to (QCgl)h(zc_l)Y, is not a boundary in B; and there-
fore, it is not in dV for any choice of V. This observation makes it very likely that
B is not Golod. We do not know what form Theorem 5.2 takes under the present
hypothesis on c.
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