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Abstract. Let Mn be a compact Riemannian manifold isometrically im-

mersed in the Euclidean space Rn+m. Then a modification of a beautiful

method first used by Lawson and Simons [22] is used to give a pointwise alge-

braic condition on the second fundamental form of M in Rn+m which implies

that M has no complete stable submanifolds (or integral currents) in some

given dimension p (1 ≤ p ≤ n − 1). It is then shown that this condition is

preserved under small deformation of the metric on M in the C2 topology.

Some results of these are (1) There is a C2 neighborhood of the standard met-

ric on the Euclidean sphere Sn (and other sufficiently convex hypersurfaces

in Rn+1), such that for any g in this neighborhood (Sn, g) has no stable sub-

manifolds (or integral currents). (2) A characterization (and in some cases a

classification ) of stable submanifolds and integral currents of all the rank one

symmetric spaces (extending the work of Lawson and Simons on the spheres

and complex projective spaces [22]), and some information about what hap-

pens in this case under a small C2 deformation of the metric. (3) There is a

C2 neighborhood U of the standard metric on the complete simply connected

manifold Rn+m(c) of constant sectional curvature c ≥ 0 such that if Mn is a

compact immersed submanifold of (Rn+m(c), g) with mean curvature vector

and the second fundamental form satisfying (5.17) for some g ∈ U , 1 ≤ p ≤ n
2

,

and q = n−1. Then (a) M has no stable p-integral or (n−p)-integral currents

over any finitely abelian group G, (b) Hp(M,G) = Hq(M,G) = 0 for any G

and if p = 1 or p = n−1 then M is simply connected, and (c) If (5.17) holds for

some g ∈ U , and p = 1, then M is diffeomorphic to Sn for all n ≥ 2. Indeed,

by a Theorem of Federer and Fleming [10] every non-zero integral homology

class in a compact manifold N can be represented by a stable integral current;

thus, the method can also be used to give pointwise conditions on the second

fundamental form of a compact submanifold which forces some of the integral

homology groups of M to vanish.
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1. Introduction

In this paper we will be concerned with how the geometry of a Riemannian

manifold Mn effects the existence, or more importantly the nonexistence, of stable

submanifolds and currents in M . Stability in our context means any deformation

with compact support does not decrease the volume or mass ( cf. (2.8)
)
. In par-

ticular, we will give conditions on the second fundamental form of an immersed

submanifold M of a Euclidean space which implies that M supports no stable sub-

manifolds or currents in dimension p. These conditions are related to M being

positively curved in a sense made precise by Proposition 3.1 below. This has strong

implications about the topology of M because of the existence theorems of Fed-

erer and Fleming which state that every nonzero homology class (over a finitely

generated Abelian group) in a compact manifold contains a stable current.

The earliest result of this type known to us is the result of Synge that a compact,

orientable, even dimensional Riemannian manifold of positive sectional curvature

has no stable closed geodesics. As any free homotopy class contains a stable ge-

odesic, this implies the toplogical result that any such manifold must be simply

connected. The first results about the nonexistence of stable submanifolds other

than closed geodesics seems to be in the celebrated paper of Simons [31] on minimal

varieties. He shows that the standard sphere Sn contains no stable submanifolds

and that there are no oriented closed stable hypersurfaces in an oriented manifold

with positive Ricci curvature. The first of these results was extended by Lawson

and Simons [22] to show that Sn and its submanifolds whose second fundamental

form are small enough have no stable currents. This gives very strong results about

the topology of these submanifolds. On the basis of these results they made the

Conjecture A (Lawson and Simons [22]). There are no closed stable submani-

folds (or rectifiable currents) in any compact, simply connected, strictly 1
4 -pinched

Riemannian manifold.

We are able to verify this conjecture for several classes of positively curved

manifolds.

Theorem 1. There is a neighborhood in the C2 topology of the usual metric on the

Euclidean sphere Sn such that for any metric g in this neighborhood (Sn, g) has no

stable rectifiable currents. (In fact, no stable varifolds).

Theorem 2. Let Mn(n ≥ 3) be a compact hypersurface in the Euclidean space

Rn+1 which is pointwise δ-pinched for

δ =
1

4
+

3

n2 + 4

then M has no stable rectifiable currents (or varifolds) and M is diffeomorphic to a

sphere.
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On the basis of our results we feel a stronger conjecture is justified. (In what

follows G is a finitely generated abelian group, and Hp(M,G) is the p-th singular

homology group of M with coefficients in G.)

Conjecture B. Let Mn be a compact Riemannian manifold of positive sectional

curvature. If Hp(M,G) = 0 (and if p = 1 also assume M is simply connected ) then

there are no stable rectifiable currents of dimension p over the group G in M .

As evidence supporting this conjecture we have,

Theorem 3. Let (M, g0) be a compact simply connected rank one symmetric space

with its usual metric g0. Then there is a neighborhood of g0 in the C2 topology such

that for any metric g in this neighborhood the Riemannian manifold (M, g) satisfies

Conjecture B.

Along the way to proving this we also characterize the stable currents in the

simply connected rank one symmetric spaces.

Theorem 4. Let F = H or Cay and S ∈ Rp(FPn, G) be a stable current, where

FPn = HPn or CayP2. Then

(a) For ‖S‖ almost all x ∈ FPn, the approximate tangent space Tx(S) is an F-

subspace of Tx(FPn). There is also a set of smooth vector fields V1, . . . , V` on

FPn such that for every p with 1 ≤ p ≤ n · dimR(F) that is not divisible by

dimR(F), the set V1, . . . , V` is universally mass decreasing in dimension p.

(b) If FPn = HPn, p = 4k, and the (4k− 1)-dimensional Hausdorff measure of the

singular set of S is zero, then there are a finite number L1, . . . , L` of HPk’s in

HPn and elements a1, . . . , a` ∈ G so that the current S = a1L1 + · · · + a`L`.

Thus,

(c) The only connected stable submanifolds of HPn are the totally geodesic HPk’s,

1 ≤ k ≤ n.

(d) If FPn = HPn, G = Z2, and S is a mass minimizing element of a nonzero Z2

homology class of dimension 4k, then S = a1L1 + · · ·+ a`L`, for some ai ∈ G,

finite number Li of HPk’s in HPn, 1 ≤ i ≤ `.
(e) If FPn = CayP2, p = 8, and the 7-dimensional Hausdorff measure of the sin-

gular set of S is zero, then there are a finite number L1, . . . , L` of CayP1’s in

CayP2 and elements a1, . . . , a` ∈ G so that as the current S = a1L1+· · ·+a`L`.
Thus,

(f) The only connected stable submanifolds of CayP2 are the totally geodesic CayP1’s.

For the Euclidean spheres and the complex projective spaces these have already

done by Lawson and Simons [22]. The above classification results (a), (c) and (f)

are also obtained by Ohnita [24]. The non-simply connected rank one symmetric

spaces are the real projective spaces RPn. For these we show the following (cf.
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section 7), where the case S is a p-dimensional stable minimal submanifold is also

obtained by Ohnita [24].

Theorem 5. Let 0 6= α ∈ Hp(RPn,Z2) and let S be a closed rectifiable current in α

of least mass. Then, up to a rigid motion of RPn, S is just the standard imbedding

of RPp into RPn.

Our basic method is to isometrically immerse the manifold we wish to study in a

Euclidean space Rn+m. Then for any parallel vector field v on Rn+m and compact

p-dimensional submanifold (or rectifiable current) Np of Mn we deform N along

the flow ϕV
T

t of the vector field V T obtained by taking the orthogonal projections

of V onto tangent spaces of M . In this case the formula for the second variation

(which will be nonnegative when N is stable)

(1.1)
d2

dt2

∣∣∣
t=0

vol(ϕV
T

t N)

can be greatly simplified by use of the fundamental equations of Gauss and Wein-

garten in submanifold theory. The resulting formula still has one term (involving

the covariant derivative of the Weingarten map) that is hard to understand, but

if (1.1) is averaged over an orthonormal basis {v1, . . . vn+m} of Rn+m, this term

drops out. The result is a pointwise algebraic condition on the second fundamental

form of M (corresponding to the average of (1.1) over v1 . . . vn+m being negative)

which implies M has no stable currents in dimension p. This method is in contrast

to the method of Lawson-Simons [22] in which the gradient vector fields of the

first eigenvalues of the Laplacian are used to deform p-rectifiable currents in the

unit sphere Sn. Our method which can be viewed as an extrinsic average varia-

tional method [36], does not require the symmetry of the ambient manifold Mn

and the deformation vector fields agree with the conformal gradient vector fields

when Mn = Sn. This method has the advantages that it also works when M is

not compact and the resulting criterion for the nonexistence of stable currents is

preserved under small deformations of the metric in the C2 topology. Therefore we

can also conclude that (M, g) has no stable currents for g sufficiently close to the

original metric. The method also gives (what seem to us) striking results about the

topology of submanifolds of Euclidean space. For example in sections 4 and 5 it is

shown, among other things, that the following hold.

Theorem 6. Let Mn be a compact immersed hypersurface in Rn+1 with principal

curvatures k1 ≤ · · · ≤ kn. Assume for some 1 ≤ p ≤ n− 1, q = n− p that

(a) 0 < k1 + · · ·+ kp

(b) kq+1 + · · ·+ kn < k1 + · · ·+ kp + k1 + · · ·+ kq,

then Hp(M,G) = Hq(M,G) = 0 and if p = 1 or n − 1 then π1(M) = 1. If (a)

and (b) hold for 1 ≤ p ≤ n
2 or n

2 ≤ p ≤ n then M is homeomorphic to a sphere.
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Theorem 7. Let Mn be a compact immersed submanifold of the simply connected

Riemannian space form Rn+m(c) of dimension n + m and constant sectional cur-

vature c ≥ 0. Let h be the second fundamental form and H the mean curvature

vector of M in Rn+m(c). If for some p ≤ n
2 the inequality

(1.2) ||h||2 < n2

n− p
||H||2 + 2pc

holds at all points of M then Hk(M,G) = 0 for p ≤ k ≤ n − p and if it holds for

p = 1 then M is a homeomorphic to a sphere.

In the process of proving this Theorem, we have proved the following:

Corollary. With the notation of Theorem 7, if for 1 ≤ p ≤ n
2 and q = n− p,

(5.19)

p∑
i=1

n∑
`=p+1

(
2||h(ei, e`)||2 − 〈h(ei, ei), h(e`, e`)〉

)
< pqc

at all points where {e1, · · · , en} is an orthonormal basis of TxM . then

(a) there are no stable currents in Rp(M,G) or Rq(M,G) for any finitely generated

abelian group G. In particular M has no closed stable minimal submanifolds of

dimension p or n− p.

(b) Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n − 1 then M is simply

connected.

(c) If (5.19) hold for p = 1 or for p = n − 1 then M is a topological sphere.

Furthermore, when n = 2 or n = 3 M is diffeomorphic to a sphere.

These results (a) and (b) are also obtained by Xin [38]. In fact, Theorem 1 in [38]

treats the Euclidean space case (c=0), where the right hand side of (5.19) becomes

0. As an application, this recaptures a Trace Formula of Lawson-Simons on the

unit Euclidian sphere case (c=1), where the right hand side of (5.19) becomes pq ·1.

(cf. also [35, p.538] for the results (a), (b) and (c)).

Theorem 8. There is a C2 neighborhood U of the standard metric g0 on Rn+m(c),

c ≥ 0 such that if Mn is a compact immersed submanifold of Rn+m(c) with the

mean curvature vector H and the second fundamental form h satisfying

(5.17) q‖h‖2 < n2‖H‖2 + 2pqc

with respect to some g in this neighborhood U , 1 ≤ p ≤ n
2 , and q = n− 1. Then for

any finitely generated abelian group G,

(a) M has no stable submanifolds of dimension p or n − p
(
or stable rectifiable

G-currents of degree p or n− p
)
.

(b) Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n − 1 then M is simply

connected.
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(c) If (5.17) holds for some g ∈ U and p = 1, i.e.

(5.20) ‖h‖2 < n2

n− 1
‖H‖2 + 2c ,

then M is diffeomorphic to Sn for all n ≥ 2.

This Theorem generalizes a pioneering Theorem of H.B. Lawson and J. Simons

[22] when g = g0 , R
n+m(c) = Sn+m(1), and n ≥ 5, M is homeomorphic to Sn.

Furthermore, the results (c) in the case g = g0, Rn+m(c) = Sn+m(1), and n ≥ 4

are due to G. Huisken [19] and B. Andrews [2] for codimension m = 1, and to J.R.

Gu and H. W. Xu [14] for arbitrary codimensions m ≥ 1 based on the work of S.

Brendle [4].

The inequality (5.20) is optimal. As presented in [35], we have the following

immediate optimal result.

Proposition. Let M be a closed surface in a Euclidean sphere with the second

fundamental form h satisfying ‖h‖2 < 2. Then M is diffeomorphic to a sphere S2

or RP2 depending on M is orientable or not.

This result is sharp as the length of the second fundamental form of Clifford

Torus S1( 1√
2
) × S1( 1√

2
) in S3(1) satisfies ‖h‖2 = 2. The case n = 2, ‖h‖2 < 1 is

due to Lawson-Simons: Let M be a compact (orientable) manifold of dimension

n immersed in SN with second fundamental form h satisfying ‖h‖2 < min{n −
1,
√
n− 1}. Then M is a homotopy sphere [22, Corollary 2].

It is our hope that the methods used here, and especially the trace formulas of

Section 3, will find other uses in studying the topology of submanifolds and also

that the examples given here shed light on the relation between curvature properties

of manifolds and the existence of stable submanifolds. These methods can also be

used to study other variational problems in Riemannian geometry, for example the

nonexistence of nonconstant stable harmonic maps between manifolds. We have

done this in a subsequent paper [18].

Many Theorems in this paper were proved and presented in 1983 (cf. e.g. [35]). A

preprint was circulated and has been quoted in the literature and at international

conferences, listed as “preprint” (cf. e.g. [25], [29], [30]). The authors went on

to pursue other projects. Meanwhile these methods have been used, extended or

generalized to other situations such as harmonic maps ([18],[23]), Yang-Mills Fields

([20]), p-harmonic maps ([37]), F -harmonic maps ([3]), Finsler geometry ([28]),

etc. The notions of strongly unstable, super-strongly unstable, p-super-strongly

unstable, F -super-strongly unstable manifolds, etc are introduced and studied. This

paper is an improved and enlarged update of the preprint.
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2. Universally mass decreasing sets of vector fields.

Let M be a smooth complete Riemannian manifold with metric g( , ) = 〈 , 〉. If

G is a finitely generated abelian group then we are interested in elements of the

group Rp(M,G) of p-rectifiable currents in M over the group G. To establish our

notation we give an informal description of Rp(M,G) and refer the reader to [11]

or [8] for the exact definitions. Let σp be the standard p-dimensional simplex with

its usual volume form Ωσp
. A singular p-dimensional Lipschitz simplex c in M is a

Lipschitz continuous map c : σp →M . The variation measure ||c|| of c is the Borel

measure on M defined on continuous real valued functions ϕ on M by

(2.1)

∫
M

ϕ(y)d||c||(y) =

∫
σp

ϕ(c(x))|(Jc)(x)|Ωσp
(x)

where Jc is the Jacobian of c. (Recall that by Rademacher’s theorem [8, p.216] a

Lipschitz map has a well-defined Jacobian almost everywhere.) The mass of M(c)

of c is defined to be

(2.2) M(c) =

∫
M

1 d||c|| =
∫
σp

|(Jc)(x)|Ωσp
(x) .

Thus if c : σp →M is a smooth imbedding then integration with respect to ||c||
is just integration over c[σp] with the volume form induced on it as a submanifold

of M , and M(c) is the p-dimensional volume of c[σp]. A singular p-dimensional

Lipschitz chain over the group G is a finite sum.

(2.3) s =
∑
k

gkck

where each gk ∈ G and each ck is singular p-dimensional Lipschitz simplex. Let

Cp(M ;G) be the group of all p-dimensional Lipschitz chains over G modulo the

equivalence relation ∼ such that s1 ∼ s2 if and only if “s1 and s2 triangulate the

same subset of M .” In the case G = Z, the integers, this can be made precise by

s1 ∼ s2 if and only if

∫
s1

ω =

∫
s2

ω

for all smooth p-forms ω on M . (This defines Cp(M ;Z), the general case can then

be defined by Cp(M ;G) = G⊗Z Cp(M ;Z).)

Assume that G has a translation invariant norm | · | (every finitely generated

abelian group has at least one). When G = Z. we will always assume that | · | is

the usual absolute value and when G = Z` (the integers modulo `) then | · | will

always be taken to by |α| = min{|k| : k ∈ α}. Then define the variation measure
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||s|| and the mass M(s) of s given by equation (2.3) by

(2.4) ||s|| =
∑
k

|gk|||ck||

(2.5) M(s) =

∫
M

1 d||s|| =
∑
k

|gk|M(ck)

then Cp(M ;G) is a metric space with respect to the distance ρ(s1, s2) =M(s1−s2).

Whence Rp(M,G), the group of rectifiable currents of degree p in M over the group

G, can be defined to be the completion of Cp(M ;G) with respect to the distance

function ρ. For our purposes we only need to know that each S ∈ Rp(M ;G) has

associated with it a variation measure ||S|| and a mass M(S) (and if S = s is

of the form (2.3) these are given by (2.4) and (2.5)) such that for ||S|| almost all

x ∈M , S has a well-defined p-dimensional approximate tangent space Tx(S) which

is a subspace to TxM (see [8, chap. 4].)

We now summarize the part of the variational theory of currents we need. Let

V be a smooth vector field on M and let ϕVt be the flow (or one parameter pseu-

dogroup) of V . Then for small t we can deform S ∈ Rp(M,G) along the flow of V

to get a new current ϕVt∗ S. If S = s is given by (2.3) then

(2.6) ϕVt∗ S =
∑
k

gk ϕ
V
t ◦ ck

Definition An element S ∈ Rp(M,G) is minimal (or critical) if and only if for

every smooth vector field on M ,

(2.7)
d

dt

∣∣∣
t=0
M(ϕVt∗ S) = 0

It is stable if and only if for every smooth vector field V there is a δ > 0 such that

(2.8) M(ϕVt∗ S) ≥M(S)

For stable currents S there is the stability inequality

(2.9)
d2

dt2

∣∣∣
t=0
M(ϕVt∗ S) ≥ 0

The fundamental result on the existence of stable current is due to Federer and

Fleming [10] when G = Z and Fleming [11] for finite G. They define a subgroup

Ip(M,G) of Rp(M,G) (the group of integral currents in M over G) and boundary

operators ∂ : Ip(M,G) → Ip−1(M,G) (which coincides with the usual boundary

operator on the singular p-dimensional Lipschitz chains) such that ∂ ◦ ∂ = 0.
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They then show there is a natural isomorphism of the homology groupsH∗(I∗(M,G))

with the singular homology groups H∗(M,G). The basic existence theorem for sta-

ble currents is then the following, which gives a deep relation between geometry,

topology and the calculus of variations.

Compactness Theorem (Federer and Fleming [10] and Fleming [11]). . Let M

be a compact Riemannian manifold and G a finitely generated abelian group. Then

every nonzero homology class α ∈ Hp(I∗(M,G)) ∼= Hp(M,G) contains a stable

element of Rp(M,G). In fact there is an S ∈ α of least mass in the sense that

0 <M(S) ≤M(S ′) for all S ′ ∈ α (and this S is clearly stable).

Corollary. (Generalized principle of Synge). If there are no nonzero stable currents

in Rp(M,G) then Hp(M,G) = 0. If p = 1 and G = Z then not only does H1(M ;Z)

vanish but M is also simply connected.

Proof. All of the corollary except the statement about M being simply connected

follows at once from the compactness theorem. If π1(M) 6= 1 then, as is well known,

every free homotopy class of loops in M contains a closed geodesic of minimum

length. This geodesic represents a stable current in R1(M,Z). �

To use the generalized principle of Synge to study the topology of a Riemannian

manifold a method of relating the geometry of the manifold to the nonexistence

of stable currents is needed. This is provided by the first and second variation

formulas for the mass integrand. First some notation is needed. Let ∇ be the

Riemannian connection on M defined by the Riemannian metric on M . For any

smooth vector field V on M define a tensor field of type (1, 1) (i.e. a field of linear

endomorphisms of tangent spaces) by

(2.10) AV (X) = ∇XV

Extend AV to the full tensor algebra as a derivation. Then AV is given on decom-

posable element of Λp(TxM) by

(2.11) AV (x1 ∧ · · · ∧ xp) =

p∑
i=1

x1 ∧ · · · ∧ AV xi ∧ · · · ∧ xp .

If S ∈ Rp(M,G) and x is a point at which S has an approximate tangent space

then set

−→
Sx = e1 ∧ · · · ∧ ep

where {e1, · · · , ep} is an orthonormal basis of Tx(S). (This is only well-defined

up to a sign, but in all the formulas in which
−→
S appears are invariant under the

substitution e1 ∧ · · · ∧ ep 7→ −e1 ∧ · · · ∧ ep.) The first and second variation formulas

(due to Lawson and Simons [22]) are



10 R. HOWARD AND S.W. WEI

(2.12)
d

dt

∣∣∣
t=0
M(ϕVt∗ S) =

∫
M

〈AV (
−→
S ),
−→
S 〉 d||S||

(2.13)
d2

dt2

∣∣∣
t=0
M(ϕVt∗ S)

=

∫
M

(−〈AV
−→
S ,
−→
S 〉2 +〈AVAV

−→
S ,
−→
S 〉+ ||AV

−→
S ||2 + 〈(∇VAV )

−→
S ,
−→
S 〉) d||S|| .

If the linear map AVx is self adjoint for all x then ||AV
−→
S ||2 = 〈AVAV

−→
S ,
−→
S 〉 and

the second variation formula can be rewritten as

(2.14)

d2

dt2

∣∣∣
t=0
M(ϕVt∗ S)

=

∫
M

(−〈AV
−→
S ,
−→
S 〉2 +2〈AVAV

−→
S ,
−→
S 〉+ 〈(∇VAV )

−→
S ,
−→
S 〉) d||S|| .

It is convenient to introduce some notation for the integrand in the second vari-

ation formula. Let g( , ) = 〈 , 〉 be the metric on M . Then for any nonzero

decomposable p-vector ξ = e1 ∧ · · · ∧ ep tangent to M and any vector field V on M

define V(V, ξ; g) to be the integrand in (2.13), that is

(2.15)

V(V, ξ; g) = −g(AV ξ, ξ)2

g(ξ, ξ)2
+
g(AVAV ξ, ξ)

g(ξ, ξ)
+
g(AV ξ,AV ξ)

g(ξ, ξ)
+
g((∇VAV )ξ, ξ)

g(ξ, ξ)
.

If g( , ) is written as 〈 , 〉 , ||ξ|| = 1 and the dependence on g is suppressed from

the notation this becomes

(2.16) V(V, ξ) = −〈AV ξ, ξ〉2 + 〈AVAV ξ, ξ〉+ ||AV ξ||2 + 〈(∇VAV )ξ, ξ〉

and if AV is self-adjoint

(2.17) V(V, ξ) = 〈AV ξ, ξ〉2 + 2〈AVAV ξ, ξ〉+ 〈(∇VAV )ξ, ξ〉 .

Definition. A finite set {V1 . . . V`} of smooth vector fields on the Riemannian

manifold (M, g) is universally mass decreasing in dimension p on (M, g) if and

only if for every nonzero decomposable p-vector ξ = e1 ∧ · · · ∧ ep tangent to M

(2.18)
∑̀
i=1

V(Vi, ξ, g) < 0

Theorem 9. Let (M, g0) be a complete Riemannian manifold and assume there

is a set of vector fields {V1, · · · , V`} on M that are universally mass decreasing in

dimension p on (M, g0). Then (M, g0) has no stable currents in Rp(M,G) for any
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finitely generated abelian group G. Thus if M is compact Hp(M,G) = 0 and if M is

compact and p = 1 then M is simply connected. Moreover there is a neighborhood of

g0 in the C2 topology (if M is not compact we must use the strong C2 topology see

[16] for the definition) such that for every g in this neighborhood the Riemannian

manifold (M, g) has no stable currents in Rp(M,G).

Proof of Theorem 9. Let S be any element of Rp(M,G) then from the definition of

a universally mass decreasing set of vector fields and the second variation formula,

∑̀
i=1

d2

dt2

∣∣∣
t=0
M(ϕVi

t∗ S) =

∫
M

∑̀
i=1

V(Vi,
−→
S , g0) d||S|| < 0.

Thus, d2

dt2 |t=0M(ϕVi
t∗ S) < 0, for some i. This contradicts the stability inequality

(2.9) and thus S is not stable. The results on the topology of M now follow from

the generalized principle of Synge.

To prove the last part of the theorem it is enough to show there is a neighbor-

hood U of g0 in the C2 topology such that for every g ∈ U the set {V1, · · ·V`} is

still universally mass decreasing on (M, g). Let M(M) be the space of smooth Rie-

mannian metrics on M with the strong C2 topology and let Gp(M) be the bundle

of p-planes tangent to M . Consider the function on Gp(M)×M(M) given by

(2.19) (ξ, g) 7→
∑̀
i=1

V(Vi, ξ, g).

If this is continuous then

U = {g ∈M(M) :
∑̀
i=1

V(Vi, ξ, g) < 0 for all ξ ∈ Gp(M)}

is the required neighborhood of g0. To show that the function given by (2.19) is

continuous it is enough to show that for any smooth vector field V the function

(g, ξ) 7→ V(V, ξ, g) is continuous.

Let x1, . . . xn be local coordinates on M and let gij = g( ∂
∂xi ,

∂
∂xj ) be the com-

ponents of g in this coordinate system. Let the Christoffel symbols Γkij be given as

usual by ∇ ∂

∂xi

∂
∂xj =

∑n
k=1 Γkij

∂
∂xk . Then by a well known formula

(2.20) Γkij =
1

2

n∑
`=1

gk`(
∂g`j
∂xi

+
∂g`i
∂xj
− ∂gij
∂x`

) .

(where [gij ] is the inverse of the matrix [gij ]). If the vector field V is locally given

by V =
∑n
i=1 v

i ∂
∂xi and the components (AV )ji and (∇VAV )ji are given by

(AV )
∂

∂xi
=

n∑
j=1

(AV )ji
∂

∂xj
, (∇VAV )

∂

∂xi
=

n∑
j=1

(∇VAV )ji
∂

∂xj
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then a little calculation shows that

(2.21) (AV )ji =
∂vj

∂xi
+

n∑
k=1

vkΓjik .

(2.22) (∇VAV )ji =

n∑
k=1

vk
∂aji
∂xk

+

n∑
k,`=1

(a`iv
kΓjk` − a

j
`v
kΓ`ki) ,

where aji = (AV )ji . Indeed,

(∇VAV )
∂

∂xi
= ∇V

(
AV (

∂

∂xi
)
)
−AV (∇V

∂

∂xi
)

= ∇∑n
k=1 vk

∂

∂xk
(

n∑
j=1

aji
∂

∂xj
)−∇∇∑n

k=1
vk

∂
∂xk

∂

∂xi
V )

=

n∑
j,k=1

vk
∂aji
∂xk

∂

∂xj
+

n∑
k,`=1

(ajiv
kΓ`kj

∂

∂x`
− vkΓ`ki∇ ∂

∂x`
V ) ,

=

n∑
j=1

( n∑
k=1

vk
∂aji
∂xk

+

n∑
k,`=1

(a`iv
kΓjk` − a

j
`v
kΓ`ki)

)
∂

∂xj
,

Putting (2.20) into (2.21) and (2.22) and the result of that into (2.15) gives V(V, ξ, g)

as a rational function of the gij and their first two derivatives. Thus V(V, ξ, g) is

clearly a continuous function of g in the strong C2 topology. This completes the

proof. �

Using the trace formulas of the next section we will show latter (sections 4 and

6) that if M is any compact simply connected rank one symmetric space then there

is a set of vector fields V1, . . . , V` on M that is universally mass decreasing in any

dimension p such that Hp(M ;Z) = 0. Using this along with The Main Theorem

yields

Theorem 10. Let (M, g0) be a compact simply connected rank one symmetric space

with its usual metric. Then there is a neighborhood of g0 in the C2 topology such

that for any metric g in this neighborhood (M, g) has no nonzero stable currents

Rp(M,G) for any p with Hp(M,Z) = 0.

Remarks. (1) The last theorem proves Theorems 1 and 3 of the introduction.

(2) The first and second variation formulas hold in the forms given by (2.12) and

(2.13) for arbitrary varifolds on M (see section 2 of [22]). Thus the Theorems

of this section can be extended to conclude there are no stable varifolds on M

in the appropriate dimensions.

3. Trace formulas for immersed submanifolds of Euclidean Space

In this section Mn will be an n-dimensional Riemannian manifold isometrically

immersed in the Euclidean space Rn+m. We now fix our notation for the imbedding
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invariants on M . The normal bundle of M in Rn+m will be denoted by T⊥M , the

Riemannian connection on M by ∇ and the standard Riemannian connection on

Rn+m by ∇̃. Let h be the second fundamental form of M in Rn+m. Then for each

x ∈ M, hx is a symmetric bilinear map from TxM × TxM to T⊥x M . If X ,Y are

vector fields on M then ∇ ,∇ and h are related by the Gauss equation

(3.1) ∇XY = ∇XY + h(X,Y )

where X ,Y are smooth vector fields on M . For each x ∈ M and η ∈ T⊥x M

let Aη be the Weingarten map for the direction η. It is a self-adjoint linear map

Aη : TxM → TxM and is related to the second fundamental form by

(3.2) 〈h(x, y), η〉 = 〈Aηx, y〉

for x, y ∈ TxM and η ∈ T⊥x M . Denote by ∇⊥ the induced connection on the

normal bundle, that is if η is a section of T⊥M and X is a vector field on M then

∇⊥ X η is the orthogonal projection of ∇XY onto T⊥M . It is related to A and ∇
by the Weingarten equation

(3.3) ∇Xη = ∇⊥ X η −AηX .

The connections ∇ and ∇⊥ induce a connection ∇ (the connection of van der

Wearden-Bortolotti) on all the tensor bundles constructed from TM and T⊥M . In

particular A can be viewed as a smooth section of Hom(T⊥M,Hom(TM, TM))

and if X,Y are tangent fields on M , η is a section of T⊥M then by definition

∇X(AηY ) = (∇XA)(Y ) +A∇
⊥η(Y ) +Aη(∇XY )

so that

(3.4) ∇X(Aη) = (∇XA)η +A∇
⊥

X η .

We identify all tangent vectors to Rn+m with elements of Rn+m in the usual

way. If v is an element of Rn+m then define a smooth field vT of tangent vectors

on M and a section of T⊥M by

(3.5) vT (x) = orthogonal projection of v onto TxM .

(3.6) v⊥(x) = orthogonal projection of v onto T⊥x M .

Lemma 3.1. Let v ∈ Rn+m and X ∈ Γ(TM). Then

(3.7) AV
T

= Av
⊥

and thus AV
T

is self-adjoint ,

(3.8) ∇⊥ X v⊥ = −h(X, v⊥) ,

(3.9) ∇V T AV
T

= (∇V TA)V
⊥
−Ah(v

T ,vT ) .
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Also equations (3.7) and (3.9) hold when AV T

, Av
⊥

, and Ah(v
T ,vT ) are extended

to Ap(TM) as derivations.

Proof. The vector v ∈ Rn+m is identified with a parallel vector field on Rn+m

and thus ∇X v = 0. By the Gauss equation (3.11) ∇xvT = (∇xvT )T and by the

Weingarten equation (3.3) Av
⊥
X = −(∇x v⊥)⊥. Thus

AV
T

(X) = ∇X vT =
(
∇X(v − v⊥)

)T
= 0− (∇Xv⊥)T = Av

⊥
X.

This proves (3.7). To prove (3.8) use (by (3.1)) (∇xvT )T = ∇xvT ,

∇⊥X v⊥ = ∇X v⊥ = ∇X (v − vT ) = 0− (∇X vT )⊥ = −h(X, vT ) .

To prove (3.9) use (3.7), (3.8), and (3.4)

∇V T (AV
T

) = ∇X(AV
T

) = (∇V TA)V
⊥

+A∇
⊥
vT v⊥

= (∇V TA)V
⊥
−Ah(v

T ,vT ) .

The result about the extensions to ∧p(TM) is straightforward. �

We now introduce some notation. If S ∈ Rp(M,G) then define IS to be the

function on Rn+m given by

(3.10) IS(v) =
d2

dt2

∣∣∣
t=0
M(ϕV

T

t∗ S) .

It follows at once from the second variation formula (2.13) that IS is a quadratic

form on Rn+m. For each decomposable p-vector ξ = e1 ∧ · · · ∧ ep tangent to M

define another quadratic form on Rn by

(3.11) Qξ(v) = V(vT , ξ) ,

where V(v, ξ) is given by equation (2.17). Then as AV T

is self-adjoint equation

(2.14) yields

(3.12) IS(v) =

∫
M

QSx(v) d||S||(x) .

Theorem 11 (Trace Formulas). With the notation just introduced

(3.13) trace(IS) =

∫
M

trace(Q~Sx) d||S||(x) .

and if S is stable then trace(IS) ≥ 0. If {e1, . . . en+m} is an orthonormal basis

of Rn+m such that {e1, . . . , en} is a basis of TxM , {en+1, . . . , en+m} is a basis of

T⊥x M and ξ = e1 ∧ · · · ∧ ep then trace(Qξ) either of the formulas

(3.14) trace(Qξ) =

n+m∑
k=n+1

(
− 〈Ae

k

ξ, ξ〉2 + 2〈AekAekξ, ξ〉 − 〈tr(Aek)Aekξ, ξ〉
)
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(here each Aek has been extended to ∧pTM as a derivation and tr(Aek) is the trace

of Aek as a linear map Aek : TM → TM) or

(3.15) trace(Qξ) =

p∑
i=1

n∑
`=p+1

(
2||h(ei, e`)||2 − 〈h(ei, ei), h(e`, e`)〉

)
.

Finally if ξ⊥ = ep+1 ∧ · · · ∧ en there is a duality

(3.16) trace(Qξ) = trace(Qξ⊥).

Corollary. Let Mn be a complete Riemannian manifold isometrically immersed in

Rn+m.

(a) If for some p the inequality trace(Qξ) < 0 holds for all unit decomposable p-

vectors ξ = e1 ∧ · · · ∧ ep tangent to M and {v1, · · · , vn+m} is an orthonormal

basis of Rn+m then V1 = vT1 , · · · , Vn+m = vTn+m is a set of vector fields which

is universally mass decreasing in both dimension p and dimension n− p. Thus

there are no stable currents in Rp(M,G) for any finitely generated abelian group

G. In particular M has no closed stable minimal submanifolds of dimension p

or n− p.

(b) If in addition to the hypothesis of (a) M is also compact then Hp(M,G) =

Hq(M,G) = 0 and if p = 1 or p = n− 1 then M is simply connected.

(c) If M is compact and the hypothesis of (a) hold for 1 ≤ p ≤ n
2 or for n

2 ≤ p ≤
n− 1 then M is a topological sphere.

Remarks. (a) In some sense this result is as sharp as passable for we will show in

section 6 that there is an isometric immersion of the real projective space RPn

into a Euclidean space in such a way that trace(Qξ) = 0 for every decomposable

p-vector tangent to RPn and all 1 ≤ p ≤ n − 1. But Hp(M,Z2) 6= 0 , 1 ≤ p ≤
n − 1. Thus Rp(M,Z2) contains stable currents (in section 7 we will show

that the natural imbedding of RPp into RPn is stable viewed as an element of

Rp(M,Z2).)

(b) As with the results in the last section both Theorem 11 and Corollary 3 can be

extended to varifolds.

(c) We note that when M is not compact that Corollary 3 (a) does not rule out

the existence of noncompact stable minimal submanifolds N of M , where in

the noncompact case stable means that for every compact subset K of M and

every smooth vector field V supported in K that vol(K ∩ϕVt∗N) ≥ vol(K ∩N).

(d) In the case that Mn is a submanifold of the sphere Sn+m−1 ⊂ Rn+m then the

trace formula (3.15) is in the paper of Lawson and Simons [22].

Proof of Corollary 3 from Theorem 11. If {v1, · · · , vn+m} is an orthonormal basis

of Rn+m then

trace(Qξ) =

n+m∑
i=1

Qξ(vi) =

n+m∑
i=1

V(vTi , ξ)



16 R. HOWARD AND S.W. WEI

and thus if trace(Qξ) < 0 for all unit p-vectors ξ tangent to M then vT1 , · · · , vTn+m
is clearly universally mass decreasing in dimension p

(
and also in dimension n− p

by the duality (3.16)
)
. Therefore parts (a) and (b) of the lemma follow from the

Main Theorem 9. To prove (c) note that the hypothesis, along with (b), imply that

π1(M) = 1 and Hp(M,Z) = 0 for 1 ≤ p ≤ n − 1. The Hurewicz Isomorphism

Theorem [33, p.393-400] then implies M is a homotopy sphere. Therefore M is a

topological sphere (classical for n = 2, Smale [32] for n ≥ 5, and Friedmann [12]

for n = 4 ). When n = 3 equation (3.18) below implies the Ricci tensor of M is

positive and a result of Perelman [26, 27] or Hamilton [15] implies that any simply

connected three dimensional manifold with positive Ricci tensor is diffeomorphic to

the Euclidean sphere S3. This completes the proof. �

Proof of Theorem 11. . By the second variation formula (2.14) (recall AvT is self-

adjoint by Lemma 3.1)

IS(v) =
d2

dt2

∣∣∣
t=0
M(ϕv

T

t∗ S) =

∫
M

V(vT , ~Sx) d||S||x =

∫
M

Q~S(v) d||S|| .

Therefore equation (3.14) follows by summing the last equation over any orthonor-

mal basis of Rn+m We now compute trace(Qξ). Let {e1, · · · , en+m} be an orthonor-

mal basis of Rn+m chosen as in the statement of Theorem 11. Then using equation

(2.17) and lemma 3.1

trace(Qξ) =

n+m∑
i=1

Qξ(ei) =

n+m∑
i=1

V(eTi , ξ)

=

n+m∑
i=1

(−〈Ae
T
i ξ, ξ〉2 + 2〈Ae

T
i Ae

T
i ξ, ξ〉+ 〈(∇eiT A

ei
T

)ξ, ξ〉)

=

n+m∑
i=1

(−〈Ae
⊥
i ξ, ξ〉2 + 2〈Ae

⊥
i Ae

⊥
i ξ, ξ〉+ 〈(∇eiTA)ei

⊥
ξ, ξ〉)−

n+m∑
i=1

〈Ah(e
T
i ,e

T
i )ξ, ξ〉

=

n+m∑
k=n+1

(−〈Ae
k

ξ, ξ〉2 + 2〈AekAekξ, ξ〉)−
n∑
i=1

〈Ah(ei,ei)ξ, ξ〉 .

Also,
n∑
i=1

〈Ah(ei,ei)ξ, ξ〉 =

n∑
i=1

n+m∑
k=n+1

〈A〈h(ei,ei),ek〉ekξ, ξ〉

=

n+m∑
k=n+1

n∑
i=1

〈h(ei, ei), ek〉〈Aekξ, ξ〉

=

n+m∑
k=n+1

n∑
i=1

〈Aekei, ei〉〈Aekξ, ξ〉

=

n+m∑
k=n+1

trace(Aek)〈Aekξ, ξ〉
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The last two equations imply (2.14). We now prove (3.15) from (3.14). First

−
n+m∑
k=n+1

〈Aekξ, ξ〉2 = −
n+m∑
k=n+1

( p∑
i=1

〈e1 ∧ · · · ∧Aekei ∧ · · · ∧ ep, e1 ∧ · · · ∧ ep〉
)2

= −
n+m∑
k=n+1

( p∑
i=1

〈Aekei , ei〉
)2

= −
n+m∑
k=n+1

p∑
i,j=1

〈Aekei , ei〉〈Aekej , ej〉

= −
p∑

i,j=1

n+m∑
k=n+1

〈h(ei , ei), ek〉〈h(ej , ej), ek〉

= −
p∑

i,j=1

〈h(ei , ei), h(ej , ej)〉

Second

2

n+m∑
k=1

〈AekAekξ, ξ〉 = 2

n+m∑
k=1

〈Aekξ, Aekξ〉

= 2

n+m∑
k=n+1

〈
p∑
i=1

e1 ∧ · · · ∧Aekei ∧ · · · ∧ ep,
p∑
j=1

e1 ∧ · · · ∧Aekej ∧ · · · ∧ ep〉

= 2

n+m∑
k=n+1

p∑
i,j=1

〈Aekei, ei〉〈Aekej , ej〉+ 2

n+m∑
k=n+1

∑
1≤i≤p

p+1≤`≤n

〈Aekei, e`〉2

= 2

p∑
i,j=1

n+m∑
k=n+1

〈h(ei, ei), ek〉〈h(ej , ej), ek〉+ 2
∑

1≤i≤p
p+1≤`≤n

n+m∑
k=n+1

〈h(ei, e`), ek〉2

= 2

p∑
i,j=1

〈h(ei, ei), h(ej , ej)〉+ 2
∑

1≤i≤p
p+1≤`≤n

||h(ei, e`)||2
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Third

−
n+m∑
k=n+1

〈tr(Aek)Aekξ, ξ〉

= −
n+m∑
k=n+1

n∑
t=1

〈Aeket, et〉〈
p∑
i=1

e1 ∧ · · · ∧Aekei ∧ · · · ∧ ep, e1 ∧ · · · ∧ ep〉

= −
n∑
t=1

p∑
i=1

n+m∑
k=n+1

〈h(et , et), ek〉〈h(ei , ei), ek〉

= −
n∑
t=1

p∑
i=1

〈h(et , et), h(ei , ei)〉

= −
p∑

i,j=1

〈h(ei , ei), h(ej , ej)〉 −
∑

1≤i≤p
p+1≤`≤n

〈h(ei ei), h(e` e`)〉

Using these in (3.14) yields (3.15). Finally (3.16) follows at once from (3.15). This

completes the proof. �

We close this section by giving a lower bound on trace(Qξ) in terms of the

sectional curvatures of M . This will show that Theorem 11 and Corollary 3 can

only apply to get results on the topology of a manifold if M is positively curved

in the sense that the sum of sectional curvatures (without the minus sign) on the

right of (3.17) is positive.

Proposition 3.1. With the notation used in Theorem 11 let {e1, · · · , en} be an

orthonormal basis of TxM and set ξ = e1,∧ · · · ∧ ep. Then

(3.17)

trace(Qξ) = −
∑

1≤i≤p
p+1≤`≤n

K(ei , e`) +
∑

1≤i≤p
p+1≤`≤n

||h(ei , e`)||2

≥ −
∑

1≤i≤p
p+1≤`≤n

K(ei , e`)

where K(ei, e`) is the sectional curvature of the two-plane spaned by ei and e`. Let

Ric( , ) be the Ricci tensor of M . Then if p = 1 (3.17) becomes

(3.18) trace(Qξ) ≥ −Ric(e1, e1)

and if p = n− 1 it becomes

(3.19) trace(Qξ) ≥ −Ric(en, en)
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Proof. The Gauss equation is

K(ei, e`) = 〈h(ei, ei), h(e`, e`)〉 − ||h(ei, e`)||2 .

Using this in (3.15) yields (3.17). Equations (3.18) and (3.19) now follow from the

definition of the Ricci tensor. �

4. Applications to the topology of hypersurfaces

In this section we will apply the results of the last section to the case Mn is

an immersed submanifold of the Euclidean space Rn+1. We assume that M has

the induced metric and that it is complete. Fix a unit normal field η along M .

We do not assume that η is continuous as we do not wish to assume that M is

orientable. Let k1, · · · , kn be the principal curvatures of M corresponding to the

choice of η. That is k1, · · · kn are the eigenvalues of the Weingarten map Aη. Order

the principal curvatures so that

k1 ≤ · · · ≤ kn .

Theorem 12. Let 1 ≤ p ≤ n− 1 and set q = n− p. Assume that at every point of

M the principal curvatures of M satisfy

(a) 0 < k1 + · · ·+ kp

(b) kq+1 + · · ·+ kn < k1 + · · ·+ kp + k1 + · · ·+ kq.

Then for any decomposable unit p vector ξ = e1 ∧ · · · ∧ ep tangent to M

(4.1)

trace(Qξ) = trace(Qξ⊥)

≤ −(k1 + · · ·+ kp)
(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)
< 0.

Therefore there are no stable currents in Rp(M ;G) or Rq(M ;G) for any finitely

generated abelian group G. If M is compact then Hp(M,G) = Hq(M,G) = 0 and if

also p = 1 or p = n− 1 , M is simply connected. If (a) and (b) hold for 1 ≤ p ≤ n
2

or n
2 ≤ p ≤ n− 1 then M is a topological sphere.

Proof. Once the inequality (4.1) is proven everything else follows from Theorem 11

and its corollary. Write A for Aη. Because A is self-adjoint there is an orthonormal

basis {v1, · · · , vn} of TxM such that Avi = kivi. For each sequence I = {i1, . . . , ip}
with 1 ≤ i1 < · · · < ip ≤ n let vI = vi1 ∧ · · · ∧ vip and kI = ki1 + · · ·+ kip . Then

(4.2) AvI = kIvI

and {vI} is an orthonormal basis of ∧p(TxM). Write ξ in terms of the basis {vI}

(4.3) ξ =
∑
I

xIvI .
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Then

〈Aξ, ξ〉 =
∑
I

x2IkI .

and
∑
I x

2
I = 1 as ξ is a unit vector. Thus 〈Aξ, ξ〉 is a convex combination of the

kI ’s so that

k1 + · · ·+ kp ≤ 〈Aξ, ξ〉 ≤ kq+1 + · · ·+ kn.

Using the formula (3.14) for trace(Qξ), that by (a) kI > 0 for all I, equation (4.3)

and the last inequality

trace(Qξ) = −〈Aξ, ξ〉2 + 2〈AAξ, ξ〉 − 〈tr(A)Aξ, ξ〉

= 〈
(
− 〈Aξ, ξ〉A+ 2AA− tr(A)A

)
ξ, ξ〉

= 〈
(
− 〈Aξ, ξ〉A+ 2AA− tr(A)A

)∑
I

xIvI ,
∑
J

xJvJ〉

=
∑
I

(
− 〈Aξ, ξ〉kI + 2k2I − tr(A)kI

)
x2I

=
∑
I

(
− 〈Aξ, ξ〉+ 2kI − tr(A)

)
kIx

2
I

≤
∑
I

(
− (k1 + · · ·+ kp) + 2(kq+1 + · · ·+ kn)− (k1 + · · ·+ kn)

)
kIx

2
I

= −
(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)∑
I

kIx
2
I

≤ −
(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)
(k1 + · · ·+ kp)

< 0.

This completes the proof. �

In light of the Conjectures in the introduction it is of interest to relate the last

result to the intrinsic geometry of M.

Definition 4.1. Let 0 < δ < 1. Then a Riemannian manifold M is pointwise

δ-pinched if and only if at each point of M there is a positive real number r(x) such

that for every two-plane P tangent to M at x

δr(x) ≤ K(P ) ≤ r(x)

where K(P ) is the sectional curvature of the two-plane P .

Theorem 13. Let Mn be a complete Riemannian manifold isometrically immersed

in Rn+1 as a hypersurface. Let 1 ≤ p ≤ n
2 and set q = n− p. Then

(a) If M is pointwise δ-pinched for some δ satisfying

(4.4) n2δ2 − (p2 − 1)δ − 1 > 0 ,

in particular, if

(4.5) δ =
p2

n2
+

n2 − p2

n2(p2 + 1)
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then M has no stable currents in Rp(M,G) or Rq(M,G) for any finitely gen-

erated abelian group G.

(b) If n = 2k+1 is odd and M is pointwise δ-pinched for δ greater than the positive

root of nx2 − (k2 − 1)x− 1 = 0, in particular if

(4.6) δ ≥ 1

4
− 4k3 − 11k2 − 12k − 3

4(2k + 1)2(k2 + 1)

(δ = 1
4 works when k ≥ 4) or if n = 2k ≥ 4 is even and M is pointwise δ-

pinched for δ greater than the positive root of n2x2 − (k2 − 1)x2 − 1 = 0, in

particular, if

(4.7) δ ≥ 1

4
+

3

4(k2 + 1)
=

1

4
+

3

n2 + 4

then there are no stable currents in Rp(M ;G) for p = 1, · · · , n− 1.

(c) If M is pointwise δ-pinched for

δ =
1

4
+

3

n2 + 4

n ≥ 2, then M is diffeomorphic to a sphere.

Lemma 4.1. Let n ≥ 3 and 0 < k1 ≤ k2 ≤ · · · ≤ kn be n positive numbers.

Assume that for some r > 0 , 0 < δ < 1 that δr ≤ kikj ≤ r for 1 ≤ i < j ≤ n. If

1 ≤ p ≤ n− 1 and q = n− p then

(4.8) n2δ2 − (p2 − 1)δ2 − 1 > 0

implies

(4.9) kq+1 + · · ·+ kn < k1 + · · ·+ kp + k1 + · · ·+ kq .

Proof. Recall the inequality

1(
k
2

) ∑
1≤i<j≤k

xixj ≤
1

k2
(x1 + · · ·+ xk)2 .

This implies

rδ =
1(
p
2

) ∑
1≤i<j≤p

rδ ≤ 1(
p
2

) ∑
1≤i<j≤p

kikj ≤
1

p2
(k1 + · · ·+ kp)

2 .

Therefore p
√
rδ ≤ k1 + · · ·+ kp. Likewise q

√
rδ ≤ k1 + · · ·+ kq. Hence

(4.10) n
√
r
√
δ = p

√
rδ + q

√
rδ ≤ k1 + · · ·+ kp + k1 + · · ·+ kq .

As n ≥ 3

k2n =
knk1knk2
k1k2

≤ r · r
rδ

=
r

δ



22 R. HOWARD AND S.W. WEI

and if i < n , k2i ≤ kiki+1 ≤ r. Thus

(4.11)

(kq+1 + · · ·+ kn)2 = k2q+1 + · · ·+ k2n + 2
∑

1≤i<j≤p

kikj

≤ (p− 1)r +
r

δ
+ p(p− 1)r

=
(
(p2 − 1) +

1

δ

)
r .

The two inequalities (4.10) and (4.11) show that (4.9) is implied by

√
r

√
p2 − 1 +

1

δ
< n
√
r
√
δ

and this inequality is easily seen to be equivalent to (4.8). �

Lemma 4.2. If p ≤ n
2 and

(4.12) δ =
p2

n2
+

n2 − p2

n2(p2 + 1)

then

n2δ2 − (p2 − 1)δ − 1 > 0.

Proof. Let the convex function f(x) = n2x2− (p2− 1)x− 1. Then the tangent line

to y = f(x) at the point where x = p2

n2 is

(4.13) y −
(
p2

n2
− 1

)
= (p2 + 1)

(
x− p2

n2

)
.

The graph of y = f(x) lies above any of its tangent lines and f( p
2

n2 ) 6= 0. Therefore

if δ is the x-intercept of the line (4.13) then f(δ) > 0. But the x-intercept of (4.13)

is easily seen to be given by (4.12). This completes the proof. �

Proof of Theorem 13. If e1, · · · , en are the eigenvectors of Aη at x ∈M , say Aηei =

kiei, then the Gauss equation yields that kikj is the sectional curvature of the two-

plane spanned by ei and ej . Therefore part (a) of Theorem 13 follows from the last

two lemmas and Theorem 12. To prove part (b) first assume n = 2k+ 1 is odd and

that p ≤ n
2 . Then p ≤ k. Thus

n2δ2 − (p2 − 1)δ − 1 ≥ n2δ2 − (k2 − 1)δ − 1

and so if δ is greater than the positive root of n2x2 − (k2 − 1)x − 1 = 0 then the

hypothesis (4.4) of part (a) hold for 1 ≤ p ≤ n
2 . Whence there are no stable currents

in Rp(M,G) for 1 ≤ p ≤ n− 1. If we let n = 2k + 1, p = k in (4.5) then the result

is given by (4.6). This completes the proof of part (b) in the case n is odd. The

proof when n is even is similar. The hypothesis (4.4) of part (c) implies that M

is a compact manifold with pointwise 1
4 -pinched sectional curvature. For n ≥ 4

by [5, Theorem 1], M admits a metric of a constant curvature and therefore is

diffeomorphic to a spherical space form. By (b), M is simply-connected and hence
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is diffeomorphic to a sphere. For n = 3, the result follows from [15, 26, 27], and for

n = 2, the result is classical. �

5. Topological vanishing theorems for submanifolds of Euclidean

space

In this section the generalized Synge lemma and the trace formulas of Theorem 11

will be used to study the topology of compact immersed submanifolds of Euclidean

space. At least part of the motivation for this is the classical theorem that if Mn

is a compact immersed submanifold of Rn+m that is totally umbilic (that is each

of the Weingarten maps Aη is proportional to the identity map) then Mn is the

standard imbedding of a sphere of constant sectional curvature into Rn+1 ⊂ Rn+m.

It is therefore reasonable that if the immersion is close to being totally unbilic then

M is a topological sphere. Among other things we will make this precise.

For the rest of this section Mn will be a compact Riemannian manifold isomet-

rically immersed in Rn+m. For each x ∈M we split the normal bundle T⊥x M into

an orthogonal direct sum

(5.1) T⊥x M = E1
x ⊕ E2

x

with dim(E1
x) = m1 ,dim(E2

x) = m2 and m1 +m2 = m. It is not necessary for this

decomposition to be smooth, however in all the applications we have in mind this

will be the case. Now we split the second fundamental form h of M in Rn+m into

two pieces

h1x(X,Y ) = E1
x component of hx(X,Y )

h2x(X,Y ) = E2
x component of hx(X,Y ).

It follows easily that

||h(X,Y )||2 = ||h1(X,Y )||2 + ||h2(X,Y )||2

and

〈h(X,X), h(Y, Y )〉 = 〈h1(X,X), h1(Y, Y )〉+ 〈h2(X,X), h2(Y, Y )〉.

Therefore if {e1, · · · , en} is an orthonormal basis of TxM , ξ = e1∧· · ·∧ep , q = n−p
and T p,qξ is defined by

T p,qξ (hα) =

p∑
i=1

n∑
`=p+1

(
2||hα(ei, e`)||2 − 〈hα(ei, ei), h

α(e`, e`)〉
)

for α = 1, 2. Then, with the notation of Theorem 11,

(5.2) trace(Qξ) = T p,qξ (h1) + T p,qξ (h2) .
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If {en+1, · · · , en+m} is an orthonormal basis of E1
x and A is the Weingarten map

of M in Rn+m then the calculations in the proof of Theorem 11 which show the

equivalence of equations (3.14) and (3.15) also show

(5.3) T p,qξ (h1) =

n+m1∑
k=n+1

(
− 〈Ae

k

ξ, ξ〉2 + 2〈AekAekξ, ξ〉 − 〈trace(Aek)Aekξ, ξ〉
)
.

For each x ∈M define a “quasi-norm” || · ||p,q on the space of symmetric bilinear

maps from TxM × TxM to Eαx , α = 1, 2 by

(5.4) ||B||2p,q = sup
ξ
|T p,qξ (B)| .

where the supremum is taken over all decomposable p-vectors ξ = e1∧ · · ·∧ ep with

e1, · · · , ep orthonormal. In section 4 of [22] it is shown that

(5.5) ||B||2p,q ≤ max
{

1,

√
pq

2

}
||B||2

where || · || is the standard norm given by

||B||2 =

n∑
i,j=1

||B(ei, ej)||2 .

We thus have the following inequalities

trace(Qξ) = T p,qξ (h1) + T p,qξ (h2)

≤ T p,qξ (h1) + ||h2||2p,q

≤ T p,qξ (h1) + max
{

1,

√
pq

2

}
||h2||2 .

This, along with the results of sections 2 and 3, imply

Proposition 5.1. Let Mn be a compact Riemannian manifold isometrically im-

mersed in Rn+m. With the notation of the last paragraph, if for all unit decompos-

able p-vectors ξ = e1 ∧ · · · ∧ ep tangent to M either of the inequalities

(5.6) ||h2||2p,q < −T
p,q
ξ (h1)

or

(5.7) max
{

1,

√
pq

2

}
||h2||2 < −T p,qξ (h1)

holds then for any finitely generated abelian group G, Hp(M,G) = Hq(M,G) = 0

and if p = 1 or p = n − 1 M is also simply connected. If (5.6) or (5.7) holds for

1 ≤ p ≤ n
2 or n

2 ≤ p ≤ n− 1 then M is a topological sphere.

To make use of the last proposition to get results about the topology of a compact

immersed submanifold of Rn+m it is only necessary to find an orthogonal splitting

T⊥x M = E1
x ⊕ E2

x such that h1 is well behaved in the sense that T p,qξ (h1) < 0 and

h2 is small relative to h1. Then (5.7) will hold. As an example we make precise our
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remarks on the topology of submanifolds of Rn+m which are close to being totally

umbilic.

Recall that if η is a unit section (i.e. ||η|| ≡ 1) of the normal bundle of Mn then

the principal curvatures k1(η) ≤ · · · ≤ kn(η) corresponding to η are the eigenvalues

of Aη. For a unit section η of T⊥M let

hη
⊥

(X,Y ) = orthogonal projection of h(X,Y ) onto η⊥ .

We remark that M is totally umbilic if and only if there is a unit section η of T⊥M

such that for all x ∈M,Aη(x) = r(x) Id for some r(x) > 0 and h⊥η ≡ 0.

Theorem 14. Let Mn be a compact immersed submanifold of Rn+m, and let 1 ≤
p ≤ n − 1. Set q = n − p and assume there is a unit section η of T⊥M such that

at all points of M
(
setting ki = ki(η)

)
(a) k1 + · · ·+ kp > 0

(b) kq+1 + · · ·+ kn < k1 + · · ·+ kp + k1 + · · ·+ kq.

(c) one of the two inequalities

(5.8) ||hη
⊥
||2p,q < (k1 + · · ·+ kp)

(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)
or

(5.9)

max
{

1,

√
pq

2

}
||hη

⊥
||2 < (k1+· · ·+kp)

(
k1+· · ·+kp+k1+· · ·+kq−(kq+1+· · ·+kn)

)
holds.

Then Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n−1 , M is simply-connected.

If (a), (b), (c) hold for 1 ≤ p ≤ n
2 (or n

2 ≤ p ≤ n−1) , then M is a topological sphere.

Proof. In the last proposition let E1
x = span{η(x)} and E2

x = orthogonal comple-

ment of span{η(x)} in T⊥x M . Then using equation (5.3)

T p,qξ (h1) = −〈Aηξ, ξ〉2 + 2〈AηAηξ, ξ〉 − trace(Aη)〈Aηξ, ξ〉

≤ −(k1 + · · ·+ kp)
(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)
where the proof of the inequality is the same as the proof of the inequality (4.1).

The result now follows from the last proposition. �

Remarks. (1) In the results of the last paragraph if we take Mn to be an immersed

submanifold of Sn+m−1 = {x ∈ Rn+m : ‖x‖ = 1} and take η to be the inward-

pointing unit normal to Sn+m−1 then Aη is the identity map on TM and hη
⊥

is the

second fundamental form B of M in Sn−1. The conditions of part (c) then become

‖B‖2p,q < pq or ‖B‖2 < min{pq, 2√pq}. Therefore our result implies Theorem 4

of paragraph 4 in Lawson and Simons. [22]. (Note that due to the subsequent

results of Perelman [26, 27] or Hamilton [15], and Freedman [12] that the corollary

to their theorem for n ≥ 5 can be strengthened to the conclusion that ‖B‖2 <
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min{n− 1, 2
√
n− 1} implies Mn is homeomorphic to a sphere for all n. In fact, M

is diffeomorphic to a sphere.)

(2) In light of the last remarks and the examples in section 4 of [22] it follows

that Theorem 14 is sharp in the sense that if pq ≥ 4 there is an imbedding of

M = Sp(r)× Sq(s) (r2 =
√
p√

p+
√
q , s2 =

√
q√

p+
√
q ) into Rn+2 and a smooth section η

of T⊥M so that (5.8) and (5.9) both hold with “<” replaced by “≤” but neither

Hp(M,G) nor Hq(M,G) vanishes.

(3) As another application of the above formulas we extend Theorem 12 to the

case of hypersurfaces in simply connected manifolds of positive constant sectional

curvature. For any real number c let Rn(c) be the complete simply connected

Riemannian manifold of constant sectional curvature c and dimension n. If c > 0

then Rn(c) = Sn(r), the sphere of radius r = 1√
c

in Rn+1.

Applying the same technique as before, one can prove the following:

Theorem 15. Let Mn be a compact hypersurface in Rn+1(c) where c > 0. Let

k1 ≤ · · · ≤ kn be the principal curvatures of Mn in Rn+1(c) and 1 ≤ p ≤ n− 1. Set

q = n− p. Assume that at each point of Mn that

(a) k1 + · · ·+ kp ≥ 0

(b) kq+1 + · · ·+ kn ≤ k1 + · · ·+ kp + k1 + · · ·+ kq

(c) (k1 + · · ·+ kp)
(
k1 + · · ·+ kp + k1 + · · ·+ kq − (kq+1 + · · ·+ kn)

)
< pq c.

Then Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n−1 , M is simply connected.

If (a) and (b) hold for 1 ≤ p ≤ n
2 or n

2 ≤ p ≤ n− 1, then M is homeomorphic to a

sphere.

Problem. Find an extension of the last theorem to the case where c < 0.

Let Mn be a submanifold of the Riemannian manifold M
n+m

and let h be the

second second fundamental form of Mn in M
n+m

. Then the mean curvature vector

H of M in M is defined to be

Hx =
1

n
trace(hx) =

1

n

n∑
i=1

hx(ei, ei)

where {e1, . . . , en} is an orthonormal basis of TxM . It is well known that n‖Hx‖2 ≤
‖hx‖2 with equality if and only if M is totally umbilic in M at x. Thus if M

n+m
=

Rn+m and equality holds at each point of M then Mn is isometric to a sphere.

Conversely we will show that if M = Rn+m that (n− 1)‖h‖2 < n2‖H‖2 implies M

is a topological sphere.

Lemma 5.1. Let vij, where 1 ≤ i, j ≤ k be k2 vectors in an inner product space.

Then,

(5.10)

∥∥∥∥∥
k∑
i=1

vii

∥∥∥∥∥
2

≤ k
k∑

i,j=1

‖vij‖2
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with equality if and only if vij = 0 for i 6= j and v11 = · · · = vkk.

Proof. This follows from the easily verified identity

k

k∑
i,j=1

‖vij‖2 −

∥∥∥∥∥
k∑
i=1

vii

∥∥∥∥∥
2

=
1

2

k∑
i,j=1

‖vii − vjj‖2 + k
∑
i6=j

‖vij‖2 ≥ 0

�

If {e1, . . . , en} is an orthonormal basis of TxM and ξ = e1 ∧ · · · ∧ ep,
ξ⊥ = ep+1 ∧ · · · ∧ en then define h|ξ to be the restriction of h to span{e1, . . . , ep}×
span{e1, . . . , ep} and h|ξ⊥ similarly. Clearly

(5.11) ‖h|ξ‖2 =

p∑
i,j=1

‖h(ei, ej)‖2, ‖h|ξ⊥‖2 =

n∑
`,s=p+1

‖h(e`, es)‖2

and

(5.12) ‖h|ξ‖2 + ‖h|ξ⊥‖2 ≤ ‖h‖2.

Proposition 5.2. With notation as above let q = n− p. Then

(5.13) T p,qξ (h) ≤ ‖h‖2 − n2

2
‖H‖2 +

(p
2
− 1
)
‖h|ξ‖2 +

(q
2
− 1
)
‖h|ξ⊥‖2.

If 1 ≤ p ≤ n
2

(5.14) T p,qξ (h) ≤ 1

2
(q‖h‖2 − n2‖H‖2).

Proof. Write hij = h(ei, ej). Then ‖h‖2 =
∑n
s,t=1 ‖hst‖2 implies that

(5.15) 2
∑

1≤i≤p
p+1≤`≤n

‖hi`‖2 = ‖h‖2 −
p∑

i,j=1

‖hij‖2 −
n∑

`,s=p+1

‖h`s‖2

and squaring

nH =

n∑
t=1

htt =

p∑
i=1

hii +

n∑
`=p+1

h``

implies

(5.16)

〈
p∑
i=1

hii,

n∑
`=p+1

h``

〉
=

∑
1≤i≤p

p+1≤`≤n

〈hii, h``〉

=
n2

2
‖H‖2 − 1

2

∥∥∥∥∥
p∑
i=1

hii

∥∥∥∥∥
2

− 1

2

∥∥∥∥∥∥
n∑

`=p+1

h``

∥∥∥∥∥∥
2

.
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In the following we use (5.10) (several times), (5.15), and (5.16).

T p,qξ (h) =
∑

1≤i≤p
p+1≤`≤n

(
2‖hi`‖2 − 〈hii, h``〉

)

= ‖h‖2 − n2

2
‖H‖2 −

p∑
i,j=1

‖hij‖2 −
n∑

`,s=p+1

‖h`s‖2 +
1

2

∥∥∥∥∥
p∑
i=1

hii

∥∥∥∥∥
2

+
1

2

∥∥∥∥∥∥
n∑

`=p+1

h``

∥∥∥∥∥∥
2

≤ ‖h‖2 − n2

2
‖H‖2 +

(
−1

p
+

1

2

)∥∥∥∥∥
p∑
i=1

hii

∥∥∥∥∥
2

+

(
−1

q
+

1

2

)∥∥∥∥∥∥
n∑

`=p+1

h``

∥∥∥∥∥∥
2

≤ ‖h‖2 − n2

2
‖H‖2 +

(
−1

p
+

1

2

)
p

p∑
i=1

‖hii‖2 +

(
−1

q
+

1

2

) n∑
`,s=p+1

‖h`s‖2

= ‖h‖2 − n2

2
‖H‖2 +

(p
2
− 1
)
‖h|ξ‖2 +

(q
2
− 1
)
‖h|ξ⊥‖2

The use of (5.10) in the second inequality is allright even in the case that

(− 1
p + 1

2 )
(

or (− 1
q + 1

2 )
)

is negative for in that case p = 1 (or q = 1 ) and equality

holds in (5.10). To prove (5.14) note that 1 ≤ p ≤ n
2 implies p

2 ≤
q
2 . Thus using

(5.13)

T p,qξ (h) ≤ ‖h‖2 − n2

2
‖H‖2 +

(p
2
− 1
)
‖h|ξ‖2 +

(q
2
− 1
)
‖h|ξ⊥‖2

≤ ‖h‖2 − n2

2
‖H‖2 +

(q
2
− 1
)

(‖h|ξ‖2 + ‖h|ξ⊥‖2)

≤ 1

2
(q‖h‖2 − n2‖H‖2).

�

Theorem 16. Let Rn+m(c) be the complete simply connected Riemannian man-

ifold of constant sectional curvature c ≥ 0 and let Mn be a compact immersed

submanifold of Rn+m(c). Let 1 ≤ p ≤ n
2 and q = n − p. Assume that the mean

curvature vector H and the second fundamental form h of M satisfy

(5.17) q‖h‖2 < n2‖H‖2 + 2pqc

at all points. Then Hk(M,G) = 0 for p ≤ k ≤ n − p. If (5.17) holds when p = 1

then M is homeomorphic to a sphere.

Problem. Does Theorem 16 also hold when c < 0?

Proof of Theorem 16. In the case c = 0 then Rn+m(c) = Rn+m and the trace

formulas of section 3 apply. Thus for any decomposable unit p-vector ξ we have by

(5.14) that

trace(Qξ) = T p,qξ (h) ≤ 1

2
(q‖h‖2 − n2‖H‖2)
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so the result follows from Corollary 3. In the case c > 0 let r = 1√
c

and let Sn+m(r)

be the sphere of radius r. Then Mn ⊆ Rn+m(c) = Sn+m(r) ⊆ Rn+m+1. Let h

be the second fundamental form of M in Rn+m+1 and h1 the restriction of the

second fundamental form of Rn+m(c) = Sn+m(r) to TM . Then if η is the inward-

pointing unit normal along Sn+m(r) that h1(X,Y ) = c 〈X,Y 〉. It follows that

T p,qξ (h1) = −pqc for all decomposable p-vectors ξ tangent to M . Also, h = h+ h1

and the ranges of h and h1 are everywhere orthogonal. Thus, by equation (5.2), for

any decomposable p-vector ξ tangent to M

(5.18)

trace(Qξ) = T p,qξ (h) + T p,qξ (h1)

=

p∑
i=1

n∑
`=p+1

(
2||h(ei, e`)||2 − 〈h(ei, ei), h(e`, e`)〉Rn+m(c)

)
− pqc

≤ 1

2
(q‖h‖2 − n2‖H‖)− pqc

(
equality holds in (5.10)

)
< 0

and now the result again follows from Corollary 3. �

Remark 5.1. The constants involved in Theorem 16 are the best possible as we now

show. Assume c > 0, let r = 1√
c

and α, β > 0 with α2 + β2 = r2. Let 1 ≤ p ≤ n
2

and set q = n− p. If M(α) = Sp(α)×Sq(β) ⊆ Sn+1(r) = Rn+1(c) the calculations

show that on M(α) that

‖h‖2 =
p

α2
+

q

β2
− nc

and

n2‖H‖2 =
p2

α2
+
q2

β2
− n2c.

If we take limits as α→ r so that 1
α2 → c we find

q‖h‖2 − n2‖H‖2 =
pq

α2
+
q2

β2
− qnc− p2

α2
− q2

β2
+ n2c

→ (pq − qn− p2 + n2)c = 2pqc.

But Hp(M(α), G) 6= 0. Thus it is impossible to make the constants 2pqc or n2 any

larger or q any smaller in (5.17) and still have the conclusion of Theorem 16 hold.

Similar examples also work when c = 0.

In the process of proving Theorem 16, we have proved the following:

Corollary. With the notations Mn, Rn+m(c), and h of Theorem 16, if for 1 ≤
p ≤ n

2 and q = n− p,

(5.19)

p∑
i=1

n∑
`=p+1

(
2||h(ei, e`)||2 − 〈h(ei, ei), h(e`, e`)〉

)
< pqc

at all points where {e1, · · · , en} is an orthonormal basis of TxM , then (a) there

are no stable currents in Rp(M,G) or Rq(M,G) for any finitely generated abelian
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group G. In particular M has no closed stable minimal submanifolds of dimension

p or n − p. (b) Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n − 1 then M

is simply connected. (c) If (5.19) holds for p = 1 or for p = n − 1 then M is a

topological sphere. Furthermore, when n = 2 or n = 3 M is diffeomorphic to a

sphere.

Proof. In the case c = 0, the result follows from Corollary 3. In the case c > 0 let

r = 1√
c
. Then Mn ⊆ Rn+m(c) = Sn+m(r) ⊆ Rn+m+1. It follows from (5.18) and

the assumption (5.19) that

trace(Qξ) =

p∑
i=1

n∑
`=p+1

(
2||h(ei, e`)||2 − 〈h(ei, ei), h(e`, e`)〉Rn+m(c)

)
− pqc < 0.

Now the result again follows from Corollary 3. �

Theorem 17. There is a C2 neighborhood U of the standard metric g0 on Rn+m(c),

c ≥ 0 such that if Mn is a compact immersed submanifold of (Rn+m(c), g) with the

mean curvature vector H and the second fundamental form h satisfying (5.17) for

some g ∈ mathcalU , 1 ≤ p ≤ n
2 , and q = n− 1. Then

(a) M has no stable p-currents or (n−p)-currents over any finitely generated abelian

group G,

(b) Hp(M,G) = Hq(M,G) = 0 and if p = 1 or p = n − 1 then M is simply

connected, and

(c) If (5.17) holds for some g ∈ U and p = 1, i.e.

(5.20) ‖h‖2 < n2

n− 1
‖H‖2 + 2c ,

then M is diffeomorphic to Sn for all n ≥ 2.

Proof. Case 1: g = g0. The assertions (a) and (b) follow from Theorem 16. The

assertions (c), when n ≥ 4 follows from Huisken [19] and B. Andrews [2] for codi-

mension m = 1, and J. R. Gu and H.W. Xu [14] for arbitrary codimensions m ≥ 1.

When n = 3, the Gauss equation, or (3.18) and (3.19) imply that M has positive

Ricci curvature and hence by a Theorem of Hamilton, M is diffeomorphic to S3.

When n = 2, M is diffeomorphic to S2. This follows from the Gauss- Bonnet

Theorem.

Case 2: g is in some neighborhood of g0. Denote by K̄(π) the sectional curvature

of (Rn+m(c), g) for 2-plane π
(
⊂ Tx(Rn+m(c), g)

)
. Set

K̄max(x) := max
π⊂Tx(Rn+m(c),g)

K̄(π) and K̄min(x) := min
π⊂Tx(Rn+m(c),g)

K̄(π)

We note when p = 1, (5.18) takes the form(
trace(Qξ) ≤

)1

2
((n− 1)‖h‖2 − n2‖H‖)− (n− 1)c < 0 on (Rn+m(c), g0),
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and coincides with

(5.21)

(
‖h‖2 − 8

3

(
K̄min −

1

4
K̄max

)
− n2‖H‖2

n− 1
=

)
‖h‖2 − 2c− n2‖H‖2

n− 1
< 0

on (Rn+m(c), g0). In view of the proof of Theorem 9 and (5.18), trace(Qξ), ‖h‖2 −
n2

n−1‖H‖
2 − 2c and ‖h‖2 − 8

3

(
K̄min − 1

4K̄max

)
− n2

n−1‖H‖
2 are continuous functions

of g in the C2 strong topology. Thus, by the continuity and (5.21) we can choose

a neighborhood U of g0, such that for every g ∈ U ,

trace(Qξ) < 0 on (Rn+m(c), g)

and

(5.22) ‖h‖2 − 8

3

(
K̄min −

1

4
K̄max

)
− n2‖H‖2

n− 1
< 0

on (Rn+m(c), g).

Arguing in the same way as in the proof of Theorem 16, the assertions (a),

(b) and the topological sphere theorem follow. To prove the differentiable sphere

theorem (c), we consider the following cases: (1) if n ≥ 4, then by a Theorem

of H.W. Xu and J.R. Gu [39, Theorem 4.1], that is built on the work of Simon

Brendle [4, Theorem 2] on the convergence of Ricci flow, inequality (5.22) implies

that the submanifold M , of (Rn+m(c), g) is diffeomorphic to a space form. As in

the proof of Theorem 16 the compact manifold M is simply- connected and hence

M is diffeomorphic to Sn. (2) if n = 3, then argue as before, M has positive

Ricci curvature and M is diffeomorphic to S3, by a Theorem of Hamilton [15].

(3) if n = 2, then M has positive Gaussian curvature and Gauss-Bonnet Theorem

implies that M is diffeomorphic to S2. This completes the proof. �

As presented in 1983 (cf. [35]), we have the following immediate optimal result.

Proposition 5.3. Let M be a closed surface in a Euclidean sphere with the second

fundamental form h satisfying ‖h‖2 < 2. Then M is diffeomorphic to a sphere S2

or RP2 depending on M is orientable or not.

Proof. If ‖h‖2 < 2 then (5.20) holds. Now the assertion is an immediate conse-

quence of Theorem 17. �

6. Stable currents in the rank one symmetric spaces

In this section we classify the stable currents in the compact simply connected

rank one symmetric spaces. We recall that these are the spheres Sn, the complex

projective spaces CPn, the quaternionic projective spaces HPn, and the Cayley

plane CayP2. The spheres were done in section 4. We start by giving a description of

the usual imbeddings of the projective spaces in Euclidean space as sets of matrices.

Let F be one of the following: the real numbers R, the complex numbers C, the

quaternions H, or the Cayley numbers Cay. Then F is a division algebra over the
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real numbers R (nonassociative if F = Cay) that has an involutive antiautomor-

phism a 7→ a (called conjugation) such that the set of elements fixed by conjugation

is the field of real numbers imbedded in F as the scalar multiples of the identity

element 1. The real part of a and the norm of a are defined to be

(6.1) Re(a) =
1

2
(a+ a), |a|2 = aa = aa.

An inner product is given on F by 〈a, b〉 = Re(ab).

If A = [aij ] is an m × n matrix with elements in F then A∗ is the conjugate

transpose of A, that is A∗ = [bij ] with bij = aji. Let H(n+ 1,F) be the real vector

space of (n+ 1) by (n+ 1) Hermitian matrics over F, that is A ∈ H(n+ 1,F) if and

only if A∗ = A. If F = Cay we will always assume that n = 2. Define a positive

definite inner product on H(n+ 1,F) by

(6.2) 〈A,B〉 =
1

2
Re trace(AB∗) =

1

2
Re trace(A∗B).

Let FPn be the set of rank one idempotents in H(n+ 1,F), that is A2 = A and

trace(A) = 1. Given FPn the metric it inherits as a submanifold of H(n+ 1,F). To

see this is isometric to the usual model of FPn, at least when F 6= Cay, let U(n+1,F)

be the group of (n + 1) by (n + 1) matrices g over F that satisfy gg∗ = g∗g = 1.

This group acts on H(n+ 1,F) by the rule g(A) = gAg∗. This action preserves the

inner product on H(n + 1,F) and maps FPn onto itself. Moreover U(n + 1,F) is

transitive on FPn (for F = R,C this follows from standard normal forms theorems,

for the case F = H see the appendix to the paper [34]). Moreover if we let

(6.3) P0 =

[
I1×i 01×n

0n×1 0n×n

]
then the subgroup of U(n + 1,F) fixing P0 is U(I,F) × U(n,F). This shows that

FPn is isometric to the homogeneous space U(n+ 1,F)/(U(I,F)×U(n,F)) with an

invariant metric. But this is the usual model of FPn as a symmetric space. When

F = Cay and n = 2 things are more complicated. The vector space H(3,Cay)

becomes a Jordon algebra under the product A ◦ B = 1
2 (AB + BA). The auto-

morphism group of this algebra is the compact exceptional Lie group F4, which

for reasons of uniformity we denote by U(3,Cay). This group preserves the inner

product of H(3,Cay) and is transitive on CayP2. The subgroup of F4 = U(3,Cay)

fixing P0 (given by (6.3)) is the group spin(9). Thus CayP2 is F4/spin(9) with an

invariant metric. See [34] and the references given there for details.

Lemma 6.1. (a) The tangent space to FPn at P0

(
given by (6.3)

)
is

(6.4) TP0
(FPn) =

{[
01×1 X∗

X 0n×n

]
: X ∈ Fn

}
(here Fn is the space of column vectors of length n over F).
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(b) If the vector X ∈ Fn is identified with

(6.5) x =

[
01×1 X∗

X 0n×n

]
∈ TP0

(FPn)

then the second fundamental form of FPn in H(n+ 1,F) is given at P0 by

(6.6) h(X,Y ) =

[
−X∗Y − Y ∗X 01×n

0n×1 XY ∗ + Y X∗

]
Proof. If c(t) is a curve in FPn with c(0) = P0 then the lemma is proven by taking

derivatives of the relation c(t) = c(t)c(t) = c(t)c(t)∗. See [7] for details. �

Definition 6.1. Identify Fn with TP0
(FPn) by (6.4) and for 1 ≤ k ≤ n− 1 let Fk

be the subspace of Fn = TP0
(FPn) given by

Fk =

{[
Xk×1

0(n−k)×1

]
: X ∈ Fn

}
.

Then a subspace W tangent to FPn at some point A will be called an F-subspace

of TA(FPn) if and only if there is an element g ∈ U(n+ 1,F) such that g∗AW = F
for some k with 1 ≤ k ≤ n− 1.

Therefore every subspace of a tangent space to RPn is an R-subspace, the C-

subspaces of tangent spaces to CPn are the complex subspaces in the usual sense

(i.e. invariant under the almost complex structure) and all have even dimension

over R, the H-subspaces of tangent spaces to HPn are the quaternionic subspaces

in the usual sense (see [13]) and all have dimension divisible by four over R, and all

Cay-subspaces of T (CayP2) have dimension eight over R. In the case F 6= R it is

easy to give an intrinsic definition of an F-subspace. Normalize the metric on FPn

so that the maximal sectional curvatures are 4 and the minimal sectional curvatures

are 1. Then a subspace W tangent to FPn is an F-subspace if and only if for each

independent pair of vectors X,Y tangent to FPn at A with K(X,Y ) = 4, X ∈ W
implies that Y ∈W .

(
K(X,Y ) = sectional curvature of span {X,Y }.

)
A fact that

we will use several times is that a subspace W is an F-subspace if and only if its

orthogonal complement is an F-subspace.

Lemma 6.2. (a) Let X,Y be orthonormal vectors tangent to FPn at some point

A. Then

(6.7) 2‖h(X,Y )‖2 − 〈h(X,X), h(Y, Y )〉 ≤ 0

with equality if and only if Y is orthogonal to the F-subspace of TA(FPn) gen-

erated by X.

(b) Let d = dimR(F) and let {e1, . . . , end} be an orthonormal basis of TA(FPn) and

for some 1 ≤ p ≤ nd, set ξ = e1∧ · · ·∧ ep. Then, with the notation of Theorem

11,

(6.8) trace(Qξ) ≤ 0
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with equality if and only if e1, . . . , ep span an F-subspace of TA(FPn).

Proof. Because U(n+ 1,F) acts on both FPn and H(n+ 1,F) by isometries we can

replace X,Y by g∗X, g∗Y for any g ∈ U(n + 1,F) without changing the value of

the left side of (6.7). The group U(n+ 1,F) is transitive on the set of unit vectors

tangent to FPn so that we may (by replacing X,Y by g∗X, g∗Y for the proper

choice of g) assume that A = P0 and

X =

[
1

0

]
,

Y =

[
y1

Y1

]

where 1, y1 ∈ F, 0, Y1 ∈ Fn−1. In the following calculations we will use that for

matrices A,B over F that Re trace(AB) = Re trace(BA). To simplify notation set

h1(X,Y ) = −X∗Y − Y ∗X, h2(X,Y ) = XY ∗ + Y X∗.

Then,

(6.9) 2‖h(X,Y )‖2 − 〈h(X,X), h(Y, Y )〉

=
∑
i=1

(
2‖hi(X,Y )‖2 − 〈hi(X,X), hi(Y, Y )〉

)
.

Using that X∗Y = y1, Y ∗X = y1, X∗X = 1 and Y ∗Y = ‖Y ‖2 = 1;

(6.10)

2‖h1(X,Y )‖2 − 〈h1(X,X), h1(Y, Y )〉

= Re trace
(
(X∗Y + Y ∗X)(X∗Y + Y ∗X)∗

)
− 1

2
Re trace

(
2(X∗X)(Y ∗Y )

)
= Re

(
(y1 + y1)(y1 + y1)

)
− 2Re

(
(1)(1)

)
= Re(y21) + Re(y21) + 2|y1|2 − 2 .

But because X is orthogonal to Y we have that 0 = Re(X∗Y ) = Re(y1). But it is an

elementary fact that if a ∈ F with Re(a) = 0 then a2 = −|a|2.
(
2Re(a) = a+ a = 0

implies a2 = a(−a) = −|a|2
)
. Whence y21 = y21 = −|y1|2. Using this in (6.10) gives

(6.11) 2‖h1(X,Y )‖2 − 〈h1(X,X), h1(Y, Y )〉 = −2.

Next,

(6.12)
2‖h2(X,Y )‖2 − 〈h2(X,X), h2(Y, Y )〉

= Re trace
(
(XY ∗ + Y X∗)(XY ∗ + Y X∗)∗

)
− 1

2
Re trace

(
(2XX∗)(2Y Y ∗)

)
= Re trace

(
(XY ∗)(XY ∗) + (XY ∗)(Y X∗) + (Y X∗)(XY ∗) + (Y X∗)(Y X∗)

)
− 2Re trace

(
(XX∗)(Y Y ∗)

)
.

Let x1 = 1, x2 = · · · = xn = 0 be the components of X and y1, . . . , yn the

components of Y . Then the components of XY ∗ are (XY ∗)ij = xiyj(= 0 when
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i 6= 1 and = yj when i = 1) and likewise for XX∗, Y Y ∗, etc. Using that y21 = y21 =

−|y1|2,

trace
(
(XY ∗)(XY ∗)

)
=

n∑
i,j=1

(x1yj)(xjyi) = y1y1 = −|y1|2

trace
(
(Y X∗)(Y X∗)

)
=

n∑
i,j=1

(yixj)(yjxi) = (y1)(y1) = −|y1|2

trace
(
(XY ∗)(Y X∗)

)
=

n∑
i,j=1

(x1yj)(yjxi) =

n∑
j=1

yjyj = |Y |2 = 1

trace
(
(Y X∗)(XY ∗)

)
=

n∑
i,j=1

(yixj)(xjyi) =

n∑
i=1

yiyi = |Y |2 = 1

trace
(
(XX∗)(Y Y ∗)

)
=

n∑
i,j=1

(xixj)(yjyi) = y1y1 = |y1|2.

Note that the associative law has not been used so these calculations work when

F = Cay. Using these in (6.12) gives

2‖h2(X,Y )‖2 − 〈h2(X,X), h2(Y, Y )〉 = 2− 4|y1|2.

Putting this and equation (6.11) into (6.9) yields

(6.13) 2‖h(X,Y )‖2 − 〈h(X,X), h(Y, Y )〉 = −4|y1|2 ≤ 0

and equality holds if and only if y1 = 0 which is equivalent to Y being orthogonal

to the F-subspace generated by X. This proves part (a) of the lemma.

By equation (3.15) and part (a)

(6.14) trace(Qξ) =

p∑
i=1

nd∑
`=p+1

(
2‖h(ei, e`)‖2 − 〈h(ei, ei), h(e`, e`)〉

)
≤ 0

with equality if and only if e` is orthogonal to the F-subspace generated by ei

whenever 1 ≤ i ≤ p and p+ 1 ≤ ` ≤ nd. Thus if span{e1, . . . , ep} is an F-subspace

trace(Qξ) = 0. Conversely, suppose that span{e1, . . . , ep} is not an F subspace.

Then there is a unit u in span{e1, . . . , ep} so that the F-subspace generated by

u is not contained in span{e1, . . . , ep}. This implies there is a unit vector v in

span{e1, . . . , ep}⊥ = span{ep+1, . . . , en} that is not orthogonal to the F-subspace

generated by u. By relabelling we may assume that e1 = u and ep+1 = v. Then,

ep+1 is not orthogonal to the F-subspace generated by e1 and so equality cannot

hold in (6.14). This completes the proof of the lemma. �

We can now give our classification theorem, which is that stable currents are

“F-currents.”

Theorem 18. Let S ∈ Rp(FPn, G) be a stable current. Then for ‖S‖ almost

all x ∈ FPn the approximate tangent space Tx(S) is an F-subspace of Tx(FPn).
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There is also a set of smooth vector fields V1, . . . , V` on FPn such that for every p

with 1 ≤ p ≤ n · dimR(F) that is not divisible by dimR(F) the set {V1, . . . , V`} is

universally mass decreasing in dimension p.

Proof. Let l = d(n+1)(n+2)
2 = dimRM(n+ 1,F) and let {e1, . . . , e`} be an orthonor-

mal basis of M(n+ 1,F). If S is stable then by Theorem 11 and the last lemma

0 ≤
∑̀
i=1

d2

dt2

∣∣∣
t=0
M(ϕ

eTi
t∗ S) =

∫
FPn

trace(Q−→Sx
)d‖S‖(x) ≤ 0

and so trace(Q−→Sx
) = 0 for ‖S‖ almost all x in FPn. By the last lemma this implies

that Tx(S) is an F-subspace for ‖S‖ almost all x ∈ FPn. If p is not divisible by d

then trace(Qξ) < 0 for all unit decomposable p vectors ξ = e1 ∧ · · · ∧ ep tangent to

FPn as span{e1, . . . , ep} is never an F-subspace. Thus, {eT1 , . . . , eT` } is universally

mass decreasing in dimension p by Corollary 3. This completes the proof. �

Remarks. (1) As is well known Hp(FPn;Z) 6= 0 if and only if 0 ≤ p ≤ nd and p is

divisible by d. Therefore Theorem 18 completes the proof of Theorem 10.

(2) As every subspace of T (RPn) is an R-subspace this implies trace(Qξ) = 0 for

all ξ as claimed in Remark 3 (1).

(3) In the case F = C Theorem 18 is due to Lawson and Simsons [22] where they

show how to use this theorem, along with a Theorem of Harvey and Shiffman

on the structure of complex currents, to prove the only stable closed integral

currents in CPn are the algebraic cycles.

We now classify the stable currents in the quaternionic projective space HPn. By

an HPk in HPn we mean any of the standard imbeddings of HPk in HPn as a totally

geodesic submanifold. By the support of S ∈ Rp(M,G) the support of the measure

‖S‖ is meant. If U is an open subset of M then a current S ∈ Rp(M,G) is said

to be smooth in U if and only if there are imbedded smooth oriented submanifolds

N1, . . . , N` of M (which are pairwise disjoint and if ∂Ni 6= ∅ then ∂Ni ∩ U = ∅)
and elements a1, . . . , a` ∈ G such that the current S − (a1N1 + · · · + a`N`) has

its support in M\U . A point x ∈ spt(S) (the support of S) is a smooth point of

S if and only if x has a neighborhood U in M such that the S is smooth in U .

The set of smooth points of S will be denoted by smooth(S). It is known [1] that

smooth(S) is open and dense in spt(S). The set sing(S) = spt(S)\smooth(S) is

called the singular set of S. We will denote the p-dimensional Hausdorff measure

by Hp (see [8] for the definition).

Theorem 19. Let S ∈ R4k(HPn, G) be a stable current and assume that

H4k−1(sing(S)
)

= 0.

Then there are a finite number L1, . . . , L` of HPk’s in HPn and elements a1, . . . , a` ∈
G so that as a current S = a1L1 + · · ·+ a`L`. Thus the only connected stable sub-

manifolds of HPn are the HPk’s.
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To prove this Theorem, we need some lemmas.

Lemma 6.3 (A. Gray [13]). Any smooth connected submainifold N of HPk such

that TxN is always an H-subspace of Tx(HPn) is an open piece of some HPk.

Lemma 6.4. If M is an n-dimensional Riemannian manifold and A ⊆M discon-

nects M then Hn−1(A) > 0.

Proof. This follows from the isoperimetric inequalities in [8]. �

Lemma 6.5. If S is a stable current of degree p then Hp
(
spt(S)

)
<∞.

Proof. See Proposition 3.13 of [21]. �

Proof of Theorem 19 . Let x0 be a smooth point of spt(S) and let U be a maximal

open (in spt(S)) connected subset of smooth(S). Then by Theorem 18 and Lemma

6.3, U is an open subset of some HPk, say L. Let bdy(L) be the boundary of U

in L. Then by the maximality of U it follows that bdy(U) ⊆ sing(S). If U is not

dense in L then bdy(U) disconnects L. But if this were the case then Lemma 6.4

would imply that

0 < H4k−1(bdy(U)
)
≤ H4k−1(sing(S)

)
,

which contradicts our hypothesis. Thus U is dense in L and H4k−1(L\U) = 0.

Therefore there is an element a ∈ G such that spt(S − aL) ⊆ L\U . Also

L ⊆ spt(S). This shows that if L1, . . . , Lm are HPk’s in HPn so that smooth(S)∩Li
contains an open set of Li then spt(S) ⊇ L1 ∪ · · · ∪ Lm and thus

∞ > H4k(S) ≥ mH4k(HPk) = m vol(HPk).

If follows that there are only a finite number L1, . . . , L` of HPk’s in HPn that

intersect smooth(S) in an open subset of smooth(S) and that there are a1, . . . , a` ∈
G such that

H4k

(
spt
(
S − (a1L1 + · · ·+ a`L`)

))
= 0.

This implies S = a1L1 + · · ·+ a`L`. The proof is complete. �

Remarks. (1) The present proof has the advantage that it works for all coefficients

groups G and can also easily be extended to the case of varifolds.

(2) When G = Z2 and S has least mass in its homology class it is known [9]

that H4k−1(sing(S)) = 0. Therefore the last theorem implies that the mass

minimizing elements of nonzero Z2 homology classes in HPn are the HPk’s.

(3) There are several proofs of Lemma 6.3 in the literature but all of these we have

seen are in the same spirit as Gray’s original proof and make use of the existence

of fields of almost complex structures on HPn that have certain properties. It

can be shown that no such almost complex structures exist on CayP2.
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Theorem 20. Let S ∈ R2(CayP2, G) be a stable current and assume that

H7
(
sing(S)

)
= 0.

Then there are a finite number L1, . . . , L` of CayP1’s in CayP2 and elements

a1, . . . , a` ∈ G so that as a current S = a1L1 + · · · + a`L`. Thus the only con-

nected stable submanifolds of CayP2 are the CayP1’s.

Proof. Use the method in the proof of Theorem 19 and the analogy of Gray’s

Theorem (Lemma 6.3) that every smooth submanifold N8 of CayP2 such that TxN

is a Cay-subspace of Tx(CayP2) for all x ∈ N is totally geodesic (cf. [24], see also

[25] for more general results), the assertion follows. �

7. Mass minimizing currents modulo two in real projective spaces

In this section we will find all the currents in Rp(RPn,Z2) that minimize the

mass in their homology class. Recall that for 0 ≤ p ≤ n, Hp(RPn,Z2) = Z2.

Theorem 21. Let α be the nonzero homology class in Hp(RPn,Z2) (1 ≤ p ≤ n−1)

and let S ∈ Rp(RPn,Z2) be a current in α of least mass. Then S is one of the

standard imbeddings of RPp into RPn as a totally geodesic submanifold.

Proof. Our main tool for this proof is the generalized Crofton Formula which relates

volumes of a submanifold N of RPn (and other homogeneous spaces) to the average

number of points of intersection N has with a “moving plane.” To be precise let

PG(n, `) be the Grassman manifold of all RP`’s in RPn with the volume form dL

which is invariant under the natural action of the orthogonal group O(n+1)
(
which

acts on RPn and thus also on PG(n, `)
)
. If Np is any p-dimensional submanifold

of RPn of finite volume the Crofton formula

(7.1)

∫
PG(n,n−p)

#(N ∩ L) dL = γ vol(N)

holds. Here γ = γ(n, p) only depends on n, p and the choice of the density dL.

(dL is unique up to a constant multiple.) This can be found in [6] or [17]. It is

convenient to break the proof up into several steps. From here on S is as in the

statement of the theorem.

Step 1. #(L ∩ spt(S)) ≥ 1 for all L ∈ PG(n, n− p).

Proof. Let sk be a sequence of smooth chains in RPn over Z2 with ∂sk = 0 and

such that sk → S in the flat topology. This sequence of chains exists by virtue

of Theorem 15 in [11]. (The theorem there assumes that RPn is imbedded in a

Euclidean space and that the chains Pk converging to S are polyhedral chains in

the Euclidean space. But will then be a tubular neighborhood U of RPn and a

smooth retraction π : U → RPn. Then we can set sk = π#Pk.) Because sk → S
and ∂sk = 0 for all large enough k, and so we can assume for all k the homology

class [sk] of sk is α = [S]. It is a well known fact about the topology of RPn
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that if 0 6= α ∈ Hp(RPn,Z2) and 0 6= β ∈ Hn−p(RPn,Z2) then α ∩ β 6= 0 in the

Z2 intersection ring of RPn. If L ∈ PG(n, n − p) then 0 6= [L] ∈ Hn−p(M,Z2).

Therefore for each k there is an xk ∈ L∩ spt(sk) and because L is compact we can

assume xk → x for some x ∈ L. Then Sk → S implies x ∈ L ∩ spt(S) 6= ∅. �

Step 2. There is a smooth imbedded submanifold S of RPn such that S ⊆ spt(S)

and the Hausdorff p− 2 + ε dimensional measure Hp−2+ε of spt(S)\S is zero for all

ε > 0.

Proof. This is a Regularity Theorem of Federer [9]. �

Step 3. M(S) = vol(S) ≥ vol(RPp) with equality if and only if #(S ∩L) = 1 for

almost all L ∈ PG(n, n− p).

Proof. First note that Hp−1(spt(S)\S) = 0 implies that spt(S) ∩ L = S ∩ L for

almost all L ∈ PG(n, n−p). It is elementary that if RPp is imbedded in RPn in the

usual way that #(RPp∩L) = 1 for almost all L ∈ PG(n, p). Using this in Crofton’s

Formula (7.1)

γM(S) = γ vol(S)

∫
PG(n,n−p)

#(S ∩ L) dL

≥
∫
PG(n,n−p)

1 dL

=

∫
PG(n,n−p)

#(RPp ∩ L) dL

= γ vol(RPp)
and equality holds if and only if #(S ∩L) = 1 for almost all L ∈ PG(n, n− p). �

Step 4. Let Np be an imbedded submanifold of RPn of dimension p, L0 ∈
PG(n, n− p) and x1, . . . , x` any points in N ∩ L0 where N and L0 intersect trans-

versely. For each i let Ui be a neighborhood of xi in N . Then there is a neighbor-

hood W of L0 in PG(n, n − p) such that every element L of W intersects each Ui

transversely in at least one point yi. Thus if some element of PG(n, n−p) intersects

N transversely in at least ` points, then there is an open subset of PG(n, n − p)
whose elements all intersect N in at least ` points.

Proof. This is just a restatement in our context of a standard transversality result.

See for example [16]. �

Step 5. The submanifold S of step 2 is contained in some RPp of RPn.

Proof. Because [S] = [RPk] and S has least mass in its homology class equality

must hold in step 3. Thus #(S ∩ L) = 1 for almost all L ∈ P (n, n − p). Suppose,

toward a contradiction, that S is not a subset of any RPp in RPn. Then choose

x1 ∈ S and let N1 be the RPp in RPn that goes through x1 and has the same

tangent space at x1 that S has. Because S is not contained in any RPp there is an
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x2 ∈ S\N1. Let x1x2 be the geodesic through x1 and x2. Then, x1x2 is transverse

to S at x1 (for if not x1x2 ⊆ N2 and so x2 ∈ N1). It follows there is an element L0

of PG(n, n − p) containing x1 and x2 which is transverse to S at x1. If L0 is also

transverse to S at x2 then step 4 implies there is an open subset of PG(n, n − p)
which intersects S in at least two points. But open sets have positive measure and

so this would contradict that equality holds in step 3. If L0 is not transverse to S

at x2 then by step 4 we can choose a neighborhood W of L0 in G(n, n−p) such that

every element of W intersects S transversely at some point near x1. But W will

contain at least one element L1 that contains x2 and is transverse to S at x2. This

L1 will intersect S transversely in at least two points. As before this contradicts

that equality holds in step 3. �

Step 6. Let N be the RPp in RPn with S ⊆ N (as in step 5). Then S = N as

currents.

Proof. By step 3, vol(S) ≥ vol(N) = vol(RPp) = vol(S) and thus S is dense in N .

But S is also dense in spt(S). Therefore spt(S) = N . But currents over Z2 are

determined by their supports. This completes the proof in step 6. �

This completes the Proof of Theorem 21. �
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