CONVEX BODIES OF CONSTANT WIDTH AND CONSTANT BRIGHTNESS

RALPH HOWARD

A convex body in \mathbb{R}^n is a compact convex set with non-empty interior. A convex body K in the three dimensional Euclidean space has constant width w iff the orthogonal projection of K onto every line is an interval of length w. It has has constant brightness b iff the orthogonal projection of K onto every plane is a region of area b.

Theorem 1. Any convex body in \mathbb{R}^3 of constant width and constant brightness is a Euclidean ball.

Under the extra assumption that the boundary ∂K is C^2 this was proven by S. Nakajima [4] in 1926. Since then the problem of determining if there is a non-smooth nonspherical convex body in \mathbf{R}^3 of constant width and constant brightness has become well known among geometers studying convexity. For example see [2, Ques. 2 p. 437], [3].

In the case of bodies with C^2 boundaries and positive curvature Nakajima's result was generalized by Chakerian [1] in 1967 to "relative geometry" where the width and brightness are measured with with respect to some convex body K_0 symmetric about the origin called the *gauge body*. The following isolates the properties of the gauge body needed for the proof of Theorem 1 to generalize. Recall the *Minkowski sum* of two subsets A and B of \mathbb{R}^n is $A + B = \{a + b : a \in A, b \in B\}.$

Definition. A convex body K_0 is a *regular gauge* iff it is centrally symmetric about the origin and there are convex sets K_1 , K_2 and Euclidean balls B_r and B_R such that $K_0 = K_1 + B_r$ and $B_R = K_0 + K_2$.

Any convex K_0 body symmetric about the origin with C^2 boundary and positive Gaussian curvature is a regular gauge. For any linear subspace P of \mathbf{R}^n let K|P be the projection of K onto P (all projections in this paper are orthogonal). For any unit vector u let $w_K(u)$ be the width in the direction of u. For each positive integer k and any Borel subset of \mathbf{R}^n be $V_k(A)$ be the k-dimensional volume of A (which in this paper is defined to be the k dimensional Hausdorff measure of A). Two subsets A and B are homothic iff there is a positive scalar λ and a vector v_0 so that $B = v_0 + \lambda A$.

Theorem 2. Let K_0 be a regular gauge in \mathbb{R}^3 and let K be any convex body in \mathbb{R}^3 such that for some constants α , β

$$w_K(u) = \alpha w_{K_0}(u), \quad V_2(K|u^{\perp}) = \beta V_2(K|u^{\perp})$$

for all $u \in \mathbb{S}^{n-1}$. Then K is homothic to K_0 .

References

- G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26–37. MR 35 #3545
- R. J. Gardner, *Geometric tomography*, Notices Amer. Math. Soc. 42 (1995), no. 4, 422–429. MR 97b:52003
- <u>_____</u>, Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 96j:52006
- S. Nakajima, Eine charakteristicische Eigenschaft der Kugel, Jber. Deutsche Math.-Verein 35 (1926), 298–300.

Department of Mathematics, University of South Carolina, Columbia, S.C. 29208, USA E-mail address: howard@math.sc.edu

Date: 14 March, 2003.