CONVEX BODIES OF CONSTANT WIDTH AND CONSTANT BRIGHTNESS

RALPH HOWARD

A convex body in \mathbf{R}^{n} is a compact convex set with non-empty interior. A convex body K in the three dimensional Euclidean space has constant width w iff the orthogonal projection of K onto every line is an interval of length w. It has has constant brightness b iff the orthogonal projection of K onto every plane is a region of area b.

Theorem 1. Any convex body in \mathbf{R}^{3} of constant width and constant brightness is a Euclidean ball.

Under the extra assumption that the boundary ∂K is C^{2} this was proven by S. Nakajima [4] in 1926. Since then the problem of determining if there is a non-smooth nonspherical convex body in \mathbf{R}^{3} of constant width and constant brightness has become well known among geometers studying convexity. For example see [2, Ques. 2 p. 437], [3].

In the case of bodies with C^{2} boundaries and positive curvature Nakajima's result was generalized by Chakerian [1] in 1967 to "relative geometry" where the width and brightness are measured with with respect to some convex body K_{0} symmetric about the origin called the gauge body. The following isolates the properties of the gauge body needed for the proof of Theorem 1 to generalize. Recall the Minkowski sum of two subsets A and B of \mathbf{R}^{n} is $A+B=\{a+b: a \in A, b \in B\}$.

Definition. A convex body K_{0} is a regular gauge iff it is centrally symmetric about the origin and there are convex sets K_{1}, K_{2} and Euclidean balls B_{r} and B_{R} such that $K_{0}=$ $K_{1}+B_{r}$ and $B_{R}=K_{0}+K_{2}$.

Any convex K_{0} body symmetric about the origin with C^{2} boundary and positive Gaussian curvature is a regular gauge. For any linear subspace P of \mathbf{R}^{n} let $K \mid P$ be the projection of K onto P (all projections in this paper are orthogonal). For any unit vector u let $w_{K}(u)$ be the width in the direction of u. For each positive integer k and any Borel subset of \mathbf{R}^{n} be $V_{k}(A)$ be the k-dimensional volume of A (which in this paper is defined to be the k dimensional Hausdorff measure of A). Two subsets A and B are homothic iff there is a positive scalar λ and a vector v_{0} so that $B=v_{0}+\lambda A$.
Theorem 2. Let K_{0} be a regular gauge in \mathbf{R}^{3} and let K be any convex body in \mathbf{R}^{3} such that for some constants α, β

$$
w_{K}(u)=\alpha w_{K_{0}}(u), \quad V_{2}\left(K \mid u^{\perp}\right)=\beta V_{2}\left(K \mid u^{\perp}\right)
$$

for all $u \in \mathbb{S}^{n-1}$. Then K is homothic to K_{0}.

References

1. G. D. Chakerian, Sets of constant relative width and constant relative brightness, Trans. Amer. Math. Soc. 129 (1967), 26-37. MR $35 \# 3545$
2. R. J. Gardner, Geometric tomography, Notices Amer. Math. Soc. 42 (1995), no. 4, 422-429. MR 97b:52003
3. , Geometric tomography, Encyclopedia of Mathematics and its Applications, vol. 58, Cambridge University Press, Cambridge, 1995. MR 96j:52006
4. S. Nakajima, Eine charakteristicische Eigenschaft der Kugel, Jber. Deutsche Math.-Verein 35 (1926), 298-300.

Department of Mathematics, University of South Carolina, Columbia, S.C. 29208, USA
E-mail address: howard@math.sc.edu

Date: 14 March, 2003.

