Show your work! Answers that do not have a justification will receive no credit. Also put your answers in some standard "human" form such as $x+i y$ or polar form, and not some specialized form used by your calculator.
(1) (30 Points) Compute the following:
(a) $\operatorname{Arg}(11-11 i)$ \qquad
(b) $\log (11-11 i)$
(c) The principle branch of i^{i}
(d) $\int_{C} z^{7} d x$ where C is the curve $z(t)=1+t i$ with $0 \leq t \leq 1$ and simplify your answer.
(e) $\int_{|z|=3} \frac{e^{z} \cos (z)}{z} d z$
(f) $\int_{|z|=7} \frac{z^{3} e^{z}}{z+1} d z$
(g) $\int_{|z-i|=1 / 2} \frac{z^{3}}{z^{2}+1} d z$
(h) $\int_{|z|=2}(-y d x+x d y)$
(2) (10 points) Define the following (a) D is a domain.
(b) D is a simply connected domain.
(c) C is a closed curve.
(d) C is a simple closed curve .
(e) $\operatorname{Arg}(z)$ where $z \neq 0$.
(3) (15 points)
(a) State Green's theorem.
(b) State the Cauchy-Riemann equations.
(c) Use Green's Theorem and the Cauchy-Riemann equations to show that if D is a bounded domain with nice boundary, and $f(z)$ is a function analytic in D and continuous on $D \cup \partial D$ that

$$
\int_{\partial D} f(z) d z=0
$$

(4) (15 points)
(a) State the Cauchy Integral Formula.
(b) Prove the Cauchy Integral Formula.
(5) (10 Points)
(a) Define antiderivative.
(b) Let D be the disk $\{z:|z-3|<4\}$. Explain why the function $f(z)=$ $e^{z^{2}} \cos \left(z^{3}\right)$ has an antiderivative in D. (This should not involved much more than quoting a theorem and saying why its hypothesis hold.)
(6) (10 points) Let D be the disk $\{z:|z|<1\}$. Explain why there is an analytic function $h(z)$ with $h(z)^{2}=6+z^{3}$.
(7) (10 points) Explain why the function analytic function $f(z)=\frac{1}{z-1}$ does not have an antiderivative in the domain $D=\{z: 1 / 3<|z-1|<4\}$. (This should involve using some English.)

