Mathematics 552 Test #1 Name:

Aathematics 552 Test #1 Name: **Show your work!** Answers that do not have a justification will receive no credit.

(1) (30 Points) Compute the following: (a) (1+2i)(3+4i)

(b)
$$\frac{1+2i}{3+4i}$$

(c)
$$\arg(-1 + \sqrt{3}i)$$

(d)
$$(-1 + \sqrt{3}i)^{11}$$

(e)
$$\left| \frac{(a+bi)^9}{(a-bi)^8} \right|$$

(f) The first four terms (that is up to and including the z^3 term) of the series for $\frac{e^z - 1 - z}{z^2}$.

(2) (5 points) Find a Möbius transformation f(z) such that f(i) = 0, f(2) = 1, and $f(-i) = \infty$.

f(z) =_____

(3) (5 points) Use the definition $\sinh(z) = \frac{e^z - e^{-z}}{2}$ to show that $\sinh(iz) = i \sin(z)$.

(4) (10 Points) Find all values of $(-8)^{\frac{2}{3}}$.

(5) (10 Points) Solve
$$\cos(z) = \frac{5}{4}$$
.

(6) (10 Points) Find the image of |z - i| = 1 under the map $f(z) = \frac{1}{z}$. Draw a picture of both |z - i| = 1 and its image.

(7) (10 Points) Find power series for $f(z) = (1+z)^{-3}$.

(8) (10 Points)

(a) Let $U \subseteq \mathbb{C}$ be an open set and $f: U \to \mathbb{C}$ a function. State the definition, in terms of a limit, of what if means for f to be **analytic**.

(b) If f(z) = u(x, y) + iv(x, y) state the **Cauchy-Riemann equations**.

(c) Give the derivation of the Cauchy-Riemann equations.

(9) (5 points) Show that an analytic function f(z) with $\operatorname{Re} f(z) = 5$ is constant.

(10) (10 points) Let U be the domain defined by the inequalities 1 < |z| < 2, and 0 < arg(z) < π/2.
(a) Draw a picture of U.

(b) Find the image of U under the map $f(z) = z^3$ and draw its picture.

Extra Credit: (5 points) Show that $f(z) = z^2 + 4z$ is one to one on the disk |z| < 2.