Show your work! Answers that do not have a justification will receive no credit.
(1) (30 Points) Compute the following:
(a) $(1+2 i)(3+4 i)$
(b) $\frac{1+2 i}{3+4 i}$
(c) $\arg (-1+\sqrt{3} i)$
(d) $(-1+\sqrt{3} i)^{11}$
(e) $\left|\frac{(a+b i)^{9}}{(a-b i)^{8}}\right|$
(f) The first four terms (that is up to and including the z^{3} term) of the series for $\frac{e^{z}-1-z}{z^{2}}$.
(2) (5 points) Find a Möbius transformation $f(z)$ such that $f(i)=0, f(2)=1$, and $f(-i)=\infty$.

$$
f(z)=
$$

\qquad
(3) (5 points) Use the definition $\sinh (z)=\frac{e^{z}-e^{-z}}{2}$ to show that $\sinh (i z)=$ $i \sin (z)$.
(4) (10 Points) Find all values of $(-8)^{\frac{2}{3}}$.
(5) (10 Points) Solve $\cos (z)=\frac{5}{4}$.
(6) (10 Points) Find the image of $|z-i|=1$ under the map $f(z)=\frac{1}{z}$. Draw a picture of both $|z-i|=1$ and its image.
(7) (10 Points) Find power series for $f(z)=(1+z)^{-3}$.
(8) (10 Points)
(a) Let $U \subseteq \mathbb{C}$ be an open set and $f: U \rightarrow \mathbb{C}$ a function. State the definition, in terms of a limit, of what if means for f to be analytic.
(b) If $f(z)=u(x, y)+i v(x, y)$ state the Cauchy-Riemann equations.
(c) Give the derivation of the Cauchy-Riemann equations.
(9) (5 points) Show that an analytic function $f(z)$ with $\operatorname{Re} f(z)=5$ is constant.
(10) (10 points) Let U be the domain defined by the inequalities $1<|z|<2$, and $0<\arg (z)<\frac{\pi}{2}$.
(a) Draw a picture of U.
(b) Find the image of U under the map $f(z)=z^{3}$ and draw its picture.

Extra Credit: (5 points) Show that $f(z)=z^{2}+4 z$ is one to one on the disk $|z|<2$.

