
Mathematics 552, Review for Test 3

Reminder: The test is Monday, April 17.

The best thing to do is to go over the quizzes and homework. I will look at these
while making up the test. You can find these (hopefully with most of the typos
corrected) at

http://www.math.sc.edu/∼howard/Classes/552d/

Also anything that is proven on this sheet is fair game for the test.
The last test brought us up to the Cauchy integral formula. We when showed that

his implied such a formula for the derivatives of an analytic.

Theorem (Existance of higher derivatives). If f(z), is analytic in a domain D, then
its derivative f ′(z) is also analytic in D. This all the higher derivatives f ′(z), f ′′(z), . . . ,
f (n)(z), . . . exist and are analytic in D. �
Theorem (Cauchy formula for higher derivatives). Let D be a bounded domain with
nice boundary and f(z) a function that is analytic in D and continuous in D ∪ ∂D.
Then the n-th derivative of f(z) is given by

f (n)(z) =
n!

2πi

∫
∂D

f(ζ)

(ζ − z)n+1
dζ

�
Definition (Entire function). A function is entire iff it is analytic in all of C. �

We used the formula

(1) f ′(a) =
1

2πi

∫
|z−a|=R

f(z)

(z − a)2
dz

to show that if f(z) was a bounded entire function that f ′(z) ≡ 0. (This was done by
taking a limit as R → ∞.) Here is one way to see this. In equation (1) we parmeterize
the circle |z − a| = R by z = a + Reit with 0 ≤ t ≤ 2π. Then z − a = Reit and
dz = iReit dt. Thus the formula (1) for f ′(a) becomes

f ′(a) =
1

2πi

∫ 2π

0

f(a + Reit)

(Reit)2
iReit dt =

1

2π

∫ 2π

0

f(a + Reit)

R
e−it dt

If f(z) is entire and bounded then |f(z)| ≤ M for some constant M . Thus

|f ′(a)| =

∣∣∣∣ 1

2π

∫ 2π

0

f(a + Reit)

R
e−it dt

∣∣∣∣ (by equation (1))

≤
∫ 2π

0

|f(a + Reit)|
R

|e−it| dt (putting absolute values inside the integral)

=

∫ 2π

0

|f(a + Reit)|
R

| dt (as |eit| = 1)

≤
∫ 2π

0

M

R
dt (as |f(a + Reit)| ≤ M)

=
2πM

R
.



Therefore

0 ≤ |f ′(a)| ≤ lim
R→∞

2πM

R
= 0,

which shows that f ′(a) = 0. This holds for all a ∈ C and thus f ′(z) ≡ 0. But an
analytic function with zero derivative is constant. Thus we have derived:

Theorem (Liouville’s Theorem). A bounded entire function is constant. �

A main application of this is:

Corollary (Fundamental Theorem of Algebra). If p(z) = anz
n + an−1z

n−1 + · · · +
a1z + a0 is a non-constant polynomial. This p(z) has a complex root. That is there is
a complex number r such that p(r) = 0. �

Another nice application is

Corollary (Casorati-Weierstrass Theorem). If f(z) is non-constant entire function,
then the image of f(z) meets each disk D(a, r) = {z : |z − a| < r}. That is for each
such disk there is a z ∈ C with f(z) ∈ D(a, r).

Proof. Assume, toward a contradiction, that there is a non-constant entire function
f(z) that does not have any values in some disk D(a, r). This means that |f(z)−a| ≥ r

for all z ∈ C. Then h(z) =
1

f(z) − a
is an entire function (as f(z) 6= a for all z) and

|f(z) − a| ≥ r implies

|g(z)| =
1

|f(z) − a| ≤
1

r
.

Thus h(z) is a bounded entire function and so, by Liouville’s Theorem, h(z) is con-
stant. But then f(z) = a + 1

h(z)
is constant, contradicting our assumption that f(z)

is non-constant. �

Our next application of the Cauchy integral formula was to apply it to the disk
D = {z : |z − a| < r} and use it to compute the value f(a) at the center of the disk.
This gives

f(a) =
1

2πi

∫
|z−a|=r

f(z)

(z − a)
dz.

But in this case we can parameterize |z − a| = r by z = a + reit with 0 ≤ t ≤ 2π.
Then dz = ireit dt and so

f(a) =
1

2πi

∫ 2π

0

f(a + reit)

reit
ireit dt =

1

2π

∫ 2π

0

f(a + reit) dt.

That is the average value of f(z) over the circle |z − a| = r is value of f at the center
of the circle. We give this fact a name.

Theorem (Mean Value Property of Analytic Functions). Let f(z) be analytic in a
domain D. Then for every disk |z − a| ≤ r contained in this domain

(2) f(a) =
1

2π

∫ 2π

0

f(a + reit) dt.
�



Note that the proof of the mean value property is quite easy and you will be
expected to be able to reproduce it.

The application we gave of the mean value property was the maximum modulus
principle. Here we give two versions.

Theorem (Interior maximum modulus principle). If f(z) is analytic in a domain D
and |f(z)| has a maximum at some point of D, then f(z) is constant. �

Theorem (Boundary maximum modulus principle). Let f(z) be analytic in a bounded
domain D and continuous in D ∪ ∂D. Then the maximum of |f(z)| occurs on the
boundary of D. That is

max
z∈D∪∂D

|f(z)| = max
z∈∂D

|f(z)|.
�

One application of the maximum modulus principle is Schwartz’s lemma.

Theorem (Schwartz’s Lemma). Let D = {z : |z| < 1} be the unit disk, and let f(z)
be analytic in D and continuous in D ∪ ∂D. Assume that f(0) = 0 and |f(z)| ≤ 1.
Then

|f(z)| ≤ |z|
in D. If equality holds for some z1 6= 0, then f(z) = az for some constant a with
|a| = 1. �

Definition (Harmonic function). If u(x, y) is a real valued function defined on a
domain D then u is harmonic iff

∆u = uxx + uyy = 0.

(The operator ∆ is defined by ∆h = hxx + hyy and we have shown this is a linear
operator.) �

Remark. The operator ∆ is defined by ∆h = hxx + hyy and we have shown this is a
linear operator. We have shown that it is linear. That is ∆(h1 + h + 2) = ∆h1 + ∆h2

and ∆(ch) = c∆h where c is a constant. Thus if u1 and u2 are harmonic, that
is ∆u1 = 0 and ∆u2 = 0. Then ∆(u1 + u + 2) = ∆u1 + ∆u2 = 0 + 0 = 0 and
∆(u1 − u + 2) = ∆u1 − ∆u2 = 0 − 0 = 0. Therefore u1 + u2 and u1 − u2 are also
harmonic. �

Harmonic functions are closely related to analytic functions. We have seen (it was a
problem in the first test) that the real part of an analytic function is always harmonic.
There is a partial converse:

Theorem (Harmonic functions are real parts of analytic functions). Let D be a simply
connected domain. Then the following are equivalent.

(1) u(z) is a harmonic function on D.
(2) There is an analytic function f(z) in D such that u(z) = Re(f(z)). �

Remark. This is false if the domain is not simply connected. For example u(x, y) =
ln(x2 + y2) is harmonic in D = {z : z 6= 0} but is not the real part of any analytic
function defined on D. (It is the real part of f(z) = 2 log(z), but this is not single
valued in D.) �



Taking the real part of the main value property of analytic functions, that is (2)
we get a mean value property for harmonic functions.

Theorem (Mean value property of harmonic functions). Let u(z) be analytic in a
domain D. Then for every disk |z − a| ≤ r contained in this domain

u(a) =
1

2π

∫ 2π

0

u(a + reit) dt.
�

This implies a maximum principle. Again we give two versions.

Theorem (Interior maximum and minimum principle for harmonic functions). If
u(z) is harmonic in a domain D and u(z) has a maximum (or a minimum) at some
point of D, then u(z) is constant. �
Theorem (Boundary maximum and minimum principle for harmonic functions).
Let u(z) be harmonic in a bounded domain D and continuous in D ∪ ∂D. Then the
maximum and minimum of u(z) occur on the boundary of D. That is

max
z∈D∪∂D

u(z) = max
z∈∂D

u(z), and min
z∈D∪∂D

u(z) = min
z∈∂D

u(z).
�

Remark. Although these principles work for both maximums and minimums, to is
traditional just to refer to the “Interior maximum principle” and Boundary maximum
principles”. This saves space and breath. �

Here is an application of this.

Theorem (Harmonic Functions that are zero on the boundary). Let D be a bounded
domain and let u be a function that is harmonic in D and continuous on D ∪ ∂D. If
u = 0 on ∂D, then u ≡ 0 in all of D.

Proof. We use the boundary maximum principle for harmonic functions. For any
a ∈ D we have

0 = min
z∈∂D

u(z) (As u = 0 on ∂D)

= min
z∈D

u(z) (by the maximum principle)

≤ u(a) (by definition of the minimum)

≤ max
z∈D

u(z) (by definition of the maximum

= max
z∈∂D

u(z) (by the maximum principle)

= 0 (As u = 0 on ∂D)

Thus for all a ∈ D we have 0 ≤ u(a) ≤ 0. That is u(a) = 0 for all a ∈ D and therefore
u ≡ 0 in D. �

This implies

Theorem (Harmonic functions that are equal on the boundary). Let D be a bounded
domain and let u1 and u2 be functions that are harmonic in D and continuous on
D ∪ ∂D. If u1 = u2 on ∂D, then u1 ≡ u2 in all of D.



Proof. Let u = u1 − u2. This is harmonic and if z ∈ ∂D, then u1(z) = u2(z) as u1

and u2 are equal on the boundary. Therefore u(z) = u1(z) − u2(z) = 0 for z ∈ ∂D.
By then u is a harmonic function that vanishes on ∂D. So by the last theorem this
implies that u = u1 − u2 ≡ 0 in D. Thus u1 ≡ u2 in D. �

Getting back to more direct applications of the Cauchy integral formula, we used
it and the expansion

1

ζ − z
=

∞∑
n=0

(z − z0)
n

(ζ − z0)n+1

(which converges whenever |z − z0| < |ζ − z0|) to get that if D is a bounded domain
with nice boundary and f(z) is analytic in D and continuous on D∪ ∂D, then for all
z0 ∈ D and z with |z − z0| < dist(z0, ∂D).

f(z0) =
1

2πi

∫
∂D

f(ζ)

(ζ − z)
dζ

=
1

2πi

∫
∂D

f(ζ)

( ∞∑
n=0

(z − z0)
n

(ζ − z0)n+1

)
dζ

=
∞∑

n=0

1

2πi

∫
∂D

f(ζ)
(z − z0)

n

(ζ − z0)n+1
dζ

=
∞∑

n=0

(
1

2πi

∫
∂D

f(ζ)

(ζ − z0)n+1
dζ

)
(z − z0)

n

=
∞∑

n=0

an(z − z0)
n

where

(3) an =
1

2πi

∫
∂D

f(ζ)

(ζ − z0)n+1
dζ =

f (n)(z0)

n!
.

Summarizing this calculation we have

Theorem (Existance of power series expansions). Let f(z) be a function analytic in
a domain D. Let z0 ∈ D. Then f(z) has a convergent power series expansion

f(z) =
∞∑

n=0

an(z − z0)
n

with an given by equation (3). The radius of convergence is ≥ dist(z0, ∂D). �

You can expect problem on finding the radius of convergence of functions.

Corollary (A function is zero if all its derivatives at a point vanish). Let f(z) be
analytic in a domain. If there is a point z0 ∈ D such that f(z0) = f ′(z0) = f ′′(z0) =
· · · = f (n)(z0) = · · · = 0, then f(z) = 0 for all z ∈ D.



Corollary (Order of a zero). Let f(z) be an analytic function that is not identically
zero, then for each z0 ∈ D there is a non-negative integer k and a analytic function
h(z) in D such that

f(z) = (z − z0)
kh(z) and h(z0) 6= 0.

The number k is the order of the zero of f(z) at z0. �
Remark. The order of the zero of f(z) can also be defined as the smallest non-negative
integer k such that f (k)(z0) 6= 0, but f(z0) = f ′(z0) = · · · = f (k−1)(z0) = 0. You can
use either definition.

Definition (Isolated singularity). The function f(z) has an isolated singularity
at z0 iff for some R > 0 we have that f(z) is analytic in the punctured disk A = {z :
0 < |z − z0| < R}. �
Theorem (Existence of a Laurent expansion about an isolated singularity). If f(z)
has an isolated singularity at z0 then for some R > 0 there is a convergent Laurent
expansion

f(z) =
∞∑

n=−∞
an(z − z0)

n

which holds for 0 < |z − z0| < R. �
Definition (Classification of singularities). If f(z) has an isolated singularity at z0

with Laurent expansion

f(z) =
∞∑

n=−∞
an(z − z0)

n

then the singularity is

(1) removable iff an = 0 for all n ≤ −1. In this case f(z) extends to an analytic
function on the disk {z : |z − z0| < R} with power series f(z) =

∑∞
n=0 an(z −

z0)
n.

(2) a pole iff there is a k ≤ −1 so that an = 0 for n < k but ak 6= 0. In this case
z0 is a pole of order −k. In the case of k = −1 we also call z0 a simple
pole.

Examples: The f(z) =
1

z
has a simple pole (i.e. A pole of order one) at

z0 = 0, the function f(z) =
1

zk
has a pole of order k at z0 = 0, and if

h(z0) 6= 0 then f(z) =
h(z)

(z − z0)k
has a pole of order k at z0.

(3) essential singularity iff there are infinitely many n ≤ −1 with an 6= 0. �
Theorem (Characterization of removable singularities). Let f(z) have an isolated
singularity at z0. Then the following are equivalent.

(1) f(z) has a removable singularity at z0.
(2) f(z) is bounded near z0. That is there is an R > 0 and a constant M > 0

such that |f(z)| ≤ M for 0 < |z − z0| < R. �



Theorem (Characterization of poles.). Let f(z) have an isolated singularity at z0.
Then the following are equivalent.

(1) f(z) has a pole at z0.
(2) lim

z→z0

|f(z)| = ∞. �

Theorem (Structure of poles of order k). Let f(z) have an isolated singularity at z0.
Then the following are equivalent.

(1) z0 is a pole of f(z) of order k.
(2) There is a analytic function h(z) defined in a neighborhood of z0 with

f(z) =
h(z)

(z − z0)k
, and h(z0) 6= 0.

�
Definition (Definition of residue). If f(z) has an isolated singularity at z0 and the
Laurent expansion of f(z) about z0 is

f(z) =
∞∑

n=−∞
an(z − z0)

n,

then the residue of f(z) at z0 is

Res(f, z0) = a−1.

That is the residue of f(z) at z0 is the coefficient of (z−z0)
−1 in the Laurent expansion

of f(z) at z0. �
Theorem (Resdue Theorem). Let D be a bounded domain with nice boundary and
f(z) continuous on D ∪ ∂D and analytic function in D except at a finite number of
points z1, . . . , zm (these points are isolated singularities of f(z). Then∫

∂D

f(z) dz = 2πi

m∑
k=1

Res(f, zk).

That is
∫

∂D
f(z) dz is 2πi times the sum of the residues of f(z) in D. �


