Mathematics 552, Review for Test 1

Reminder: The test is Wednesday, February 15.
The best thing to do is to go over the quizzes and homework. I will look at these while making up the test.
(1) Basics about the complex numbers.
(a) The definition of complex numbers as $x+i y$ where $x, y \in \mathbf{R}$ and $i^{2}=-1$.
(b) Basic arithmetic as done on the first couple of homeworks.
(c) Be able so solve simple equations such as $z^{2}+4 i z+3=0$, along with linear equations in one and two variables.
(d) The real part and complex part of a complex number. The complex conjugate $\overline{x+i y}=x-i y$ and its basic properties. Also the norm or modulus of a complex numbers $|z|=\sqrt{|z|^{2}}$. This includes the triangle inequality $|z+w| \leq|z|+|w|$.
(e) The polar form of a complex number $z=r e^{i \theta}$. Be able to use this to find roots and powers of complex numbers.
(f) Be able to identify geometric type (line, circle, etc.) from equations such as $|z-a|=r,|z-\alpha|=5|z-\beta|$.
(2) Basics about mappings and sets.
(a) Finding images of sets under elementary maps such as linear fractional transformations (also called Möbius transformations). Some practice here would be the most recent homework, and the text pages 32-33, $1,3,8$.
(b) The basics about open sets, closed sets, boundaries, connected sets, and domains. You will not be ask the definitions directly, but you might have to be able to identify such objects.
(3) Analytic functions.
(a) The definition of an analytic function as a function that is complex differentiable. That is

$$
f^{\prime}(z)=\lim _{\Delta z \rightarrow 0} \frac{f(z+\Delta z)-f(z)}{\Delta z}=\lim _{w \rightarrow z} \frac{f(w)-f(z)}{w-z} .
$$

(b) A function $f(z)=u(x, y)+i v(x, y)$ on an open set is analytic if and only if it satisfies the Cauchy-Riemann equations.

$$
u_{x}=v_{y}, \quad u_{y}=-v_{x}
$$

If $f(z)$ is analytic then its derivative is give in terms of the partial derivatives of u and v by the formulas

$$
f^{\prime}(z)=u_{x}+i v_{y}=v_{y}-i u_{y} .
$$

Be able to derive the Cauchy-Riemann equations.
(c) Basic differential calculus with analytic functions. That is be able to take derivatives.
(4) The basic transcendental functions.
(a) The functions $e^{z}, \cos (z)$, and $\sin (z)$ we extended from the real numbers to the complex numbers by use of their series expansions

$$
\begin{aligned}
e^{z} & =\sum_{k=0}^{\infty} \frac{z^{k}}{k!} \\
\cos (z) & =\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k}}{(2 k)!}, \\
\sin (z) & =\sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2 k+1}}{(2 k+1)!} .
\end{aligned}
$$

These series were used to establish Euler's formulas

$$
\begin{aligned}
e^{i z} & =\cos (z)+i \sin (z), \\
\cos (z) & =\frac{e^{i z}+e^{-i z}}{2} \\
\sin (z) & =\frac{e^{i z}-e^{-i z}}{2 i}
\end{aligned}
$$

These formula can be used to derive all the basic properties of $\cos (z)$ and $\sin (z)$ from those of e^{z}.
(b) Be able to solve equations such as $e^{z}=a, \cos (z)=3, \sin (z)=5$, etc.
(c) You should be able to find the real and imaginary parts of $\sin (z), \cos (z)$ in terms of $\cosh (z)=\frac{e^{z}+e^{-z}}{2}$, and $\sinh (z)=\frac{e^{z}-e^{-z}}{2}$.
(d) For a general function given by a series

$$
f(z)=\sum_{k=0}^{\infty} a_{k} z^{k}
$$

with radius of convergence R we have that this is analytic in $\{|z|<R\}$ and that the coefficients a_{k} are given by $a_{k}=\frac{f^{(k)}(0)}{k!}$. This can be used to find the series expansions of functions such as $\dot{f}(z)=(1+z)^{\alpha}$.
(5) Various and sundry Surprise mystery questions.

