Mathematics 552, Review for Test 1

Reminder: The test is Wednesday, February 15.

The best thing to do is to go over the quizzes and homework. I will look at these while making up the test.

- (1) Basics about the complex numbers.
 - (a) The definition of complex numbers as x + iy where $x, y \in \mathbf{R}$ and $i^2 = -1$.
 - (b) Basic arithmetic as done on the first couple of homeworks.
 - (c) Be able so solve simple equations such as $z^2 + 4iz + 3 = 0$, along with linear equations in one and two variables.
 - (d) The *real part* and *complex part* of a complex number. The *complex conjugate* $\overline{x + iy} = x iy$ and its basic properties. Also the *norm* or *modulus* of a complex numbers $|z| = \sqrt{|z|^2}$. This includes the triangle inequality $|z + w| \le |z| + |w|$.
 - (e) The **polar form** of a complex number $z = re^{i\theta}$. Be able to use this to find roots and powers of complex numbers.
 - (f) Be able to identify geometric type (line, circle, etc.) from equations such as |z a| = r, $|z \alpha| = 5|z \beta|$.
- (2) Basics about mappings and sets.
 - (a) Finding images of sets under elementary maps such as *linear fractional transformations* (also called *Möbius transformations*). Some practice here would be the most recent homework, and the text pages 32–33, 1, 3, 8.
 - (b) The basics about *open sets*, *closed sets*, *boundaries*, *connected sets*, and *domains*. You will not be ask the definitions directly, but you might have to be able to identify such objects.
- (3) Analytic functions.
 - (a) The definition of an *analytic function* as a function that is complex differentiable. That is

$$f'(z) = \lim_{\Delta z \to 0} \frac{f(z + \Delta z) - f(z)}{\Delta z} = \lim_{w \to z} \frac{f(w) - f(z)}{w - z}$$

(b) A function f(z) = u(x, y) + iv(x, y) on an open set is analytic if and only if it satisfies the **Cauchy-Riemann** equations.

$$u_x = v_y, \qquad u_y = -v_x.$$

If f(z) is analytic then its derivative is give in terms of the partial derivatives of u and v by the formulas

$$f'(z) = u_x + iv_y = v_y - iu_y.$$

Be able to derive the Cauchy-Riemann equations.

(c) Basic differential calculus with analytic functions. That is be able to take derivatives.

- (4) The basic transcendental functions.
 - (a) The functions e^z , $\cos(z)$, and $\sin(z)$ we extended from the real numbers to the complex numbers by use of their series expansions

$$e^{z} = \sum_{k=0}^{\infty} \frac{z^{k}}{k!},$$

$$\cos(z) = \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2k}}{(2k)!},$$

$$\sin(z) = \sum_{k=0}^{\infty} \frac{(-1)^{k} z^{2k+1}}{(2k+1)!}.$$

These series were used to establish *Euler's formulas*

$$e^{iz} = \cos(z) + i\sin(z),$$

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2},$$

$$\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}.$$

These formula can be used to derive all the basic properties of $\cos(z)$ and $\sin(z)$ from those of e^z .

- (b) Be able to solve equations such as $e^z = a$, $\cos(z) = 3$, $\sin(z) = 5$, etc.
- (c) You should be able to find the real and imaginary parts of $\sin(z)$, $\cos(z)$ in terms of $\cosh(z) = \frac{e^z + e^{-z}}{2}$, and $\sinh(z) = \frac{e^z e^{-z}}{2}$.
- (d) For a general function given by a series

$$f(z) = \sum_{k=0}^{\infty} a_k z^k$$

with radius of convergence R we have that this is analytic in $\{|z| < R\}$ and that the coefficients a_k are given by $a_k = \frac{f^{(k)}(0)}{k!}$. This can be used to find the series expansions of functions such as $f(z) = (1+z)^{\alpha}$.

(5) Various and sundry *Surprise mystery questions*.