Mathematics 552 Homework due Friday, February 10, 2006

The most basic functions in analysis other than polynomials are the functions $e^{z}, \cos (z), \sin (z)$. We consider e^{z} the most basic of these and have defined $\cos (z)$ and $\sin (z)$ by

$$
\cos (z)=\frac{e^{i z}+e^{-i z}}{2}, \quad \sin (z)=\frac{e^{i z}-e^{-i z}}{2 i}
$$

We also know that

$$
\begin{equation*}
\frac{d}{d z} e^{a z}=a e^{a z}, \quad e^{a+b}=e^{a} e^{b} \tag{1}
\end{equation*}
$$

In this problems you will show this the basic properties of the trigonometric functions.
(1) Use (1) to show

$$
\frac{d}{d z} \cos (z)=-\sin (z), \quad \frac{d}{d z} \sin (z)=\cos (z)
$$

(2) Use (1) to show

$$
\begin{equation*}
\cos (a+b)=\cos (a) \cos (b)-\sin (a) \sin (b), \quad \sin (a+b)=\sin (a) \cos (b)+\cos (a) \sin (b) . \tag{2}
\end{equation*}
$$

(3) Use (1) to show

$$
\cos ^{2}(z)+\sin ^{2}(z)=1
$$

It is convenient to introduce the hyperbolic functions

$$
\cosh (z)=\frac{e^{z}+e^{-z}}{2}, \quad \sinh (z)=\frac{e^{z}-e^{-z}}{2}
$$

(4) Show that

$$
\cosh ^{2}(z)-\sinh ^{2}(z)=1
$$

(5) Show that

$$
\frac{d}{d z} \cosh (z)=\sinh (z), \quad \frac{d}{d z} \sinh (z)=\cosh (z)
$$

(6) Show that

$$
\begin{equation*}
\sin (i z)=i \sinh (z), \quad \cos (i z)=\cosh (z) \tag{3}
\end{equation*}
$$

(7) Let $z=x+i y$ as usual. Then use the equations (2) and (3) to expand $\cos (x+i y)$ and $\sin (x+i y)$ to find the real and imaginary parts of of $\cos (z)$ and $\sin (z)$. That is write each of $\cos (z)$ and $\sin (z)$ in the form $u(x, y)+i v(x, y)$ where $u(x, y)$ and $v(x, y)$ are real valued.
(8) Use your solution to the last problem to find formulas for $|\cos (z)|^{2}$ and $|\sin (z)|^{2}$.
(9) Here is a fun, but more challenging, problem. Find a formula for the sum

$$
\sum_{k=0}^{n} \cos (k z)=1+\cos (z)+\cos (2 z)+\cdots+\cos (n z)
$$

Hint: One method is to use (1) and the sum formula for a finite geometric series.

